1
|
Chen W, Wu Q, Xu W, Hang Z, Zhu W. A new dual-functional strategy to desensitize and sense the explosive and toxic 1,3,5-trinitro-1,3,5-triazinane by cyclo[n]carbons (n = 10,14,18). J Mol Model 2024; 30:324. [PMID: 39227402 DOI: 10.1007/s00894-024-06125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
CONTEXT In this work, in order to find new strategy to solve the safe problem of one famous high energy compound 1,3,5-trinitro-1,3,5-triazinane (RDX) under the impact and static electricity environment, cyclo[n]carbons (n = 10, C10; n = 14, C14; n = 18, C18) were employed to construct novel energetic composites (RDX@C10, RDX@C14, RDX@C18) with RDX for the first time. The investigated results showed that C10, C14 and C18 all can form stable composites with RDX through a exothermal process. Three cyclo[n]carbons could not only decrease the impact sensitivity of RDX by decreasing the positive ESP values and transferring the HPV region. But also could reduce the electrostatic sensitivity greatly by decreasing the energy gap, increasing the EHOMO and controlling the active electron-induced process and reaction. Among them, the desensitization effect by C18 and C14 was found to be much better than C10. In addition, three cyclo[n]carbons may be used as new sensors for the detection of RDX, due to the fast recovery time under different lights, and great change in the UV-Vis spectrum. These improvements may provide valuable insights for enhancing the safe performance of high energy compounds with similar structures to RDX, and broaden the application sphere of cyclo[n]carbons. METHODS All of the calculations on the structures were carried out by using the Gaussian 09 software at the M06-2X/6-311G(d,p) level. In addition, further calculations on the properties and interactions were performed by using the Multiwfn software.
Collapse
Affiliation(s)
- Wei Chen
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, 1 Hongjing Road, Nanjing, 211167, China
| | - Qiong Wu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, 1 Hongjing Road, Nanjing, 211167, China.
- Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Wei Xu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, 1 Hongjing Road, Nanjing, 211167, China
| | - Zusheng Hang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, 1 Hongjing Road, Nanjing, 211167, China
| | - Weihua Zhu
- Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
2
|
Pooja, Yadav S, Pawar R. Chemistry of Cyclo[18]Carbon (C 18): A Review. CHEM REC 2024; 24:e202400055. [PMID: 38994665 DOI: 10.1002/tcr.202400055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Indexed: 07/13/2024]
Abstract
Carbon-based allotropes are propelling a technological revolution in communication, sensing, and computing, concurrently challenging fundamental theories of the previous century. Nevertheless, the demand for advanced carbon-based materials remains substantial. The crux lies in the efficient and reliable engineering of novel carbon allotrope. Although C18 has undergone theoretical and experimental investigation for an extended period, its preparation and direct observation in the condensed phase occurred only recently through STM/AFM techniques. The distinctive cyclic ring structure and the dual 18-center π delocalization character introduce various uncommon properties to C18, rendering it a subject worthy of in-depth exploration. In this context, this review delves into past developments contributing to the state-of-the-art understanding of C18 and provides insights into how future endeavours can expedite practical applications. Encompassing a broad spectrum, this review comprehensively investigates almost all facets of C18, including geometric characteristics, electron delocalization, bonding nature, aromaticity, reactivity, electronic excitation, UV/Vis spectrum, intermolecular interaction, response to external fields, electron affinity, ionization, and other molecular properties. Moreover, the review also outlines representative strategies for the direct synthesis and characterization of C18 using atom manipulation techniques. Following this, C18-based complexes are summarized, and potential applications in catalysis, electrochemical devices, optoelectronics, and sensing are discussed.
Collapse
Affiliation(s)
- Pooja
- Laboratory of Advanced Computation and Theory for Materials and Chemistry (LACTMC), Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana, 506004, India
| | - Sarita Yadav
- Laboratory of Advanced Computation and Theory for Materials and Chemistry (LACTMC), Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana, 506004, India
| | - Ravinder Pawar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry (LACTMC), Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana, 506004, India
| |
Collapse
|
3
|
Sen S, Bag A, Pal S. Mechanistic Inquisition on the Reduction of C 17Si(NH 2) 2 to NH 3: A DFT Study. Chemphyschem 2024; 25:e202300723. [PMID: 38353668 DOI: 10.1002/cphc.202300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Activation of molecular nitrogen by silicon-substituted cyclo[18]carbon and its ability to produce the C17Si-(NH2)2 derivative, as the precursor of NH3, has been recently reported. This specific acquisition has piqued an interest to investigate the possibility of NH3 formation with further addition of H2 molecules in the gaseous reaction media. The current investigations reported in this article show that two moles of molecular H2 generate two molecules of NH3 and a C17Si-H2 byproduct from its precursor. The catalyst gets restored by an in situ reaction between some unreacted C17Si-N2 and the byproduct in the media. This reaction also produces the next C17Si-(NH)2 adduct, which restarts the catalytic cycle for NH3 production again.
Collapse
Affiliation(s)
- Sobitri Sen
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, 741246, West-Bengal, India
| | - Arijit Bag
- Department of Applied Chemistry, Maulana Abdul Kalam Azad University of Technology, Simhat, Haringhata, Nadia, 741249, West Bengal, India
| | - Sourav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, 741246, West-Bengal, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, 741246, West-Bengal, India
- Ashoka University, Sonipat, Haryana, 131029, India
| |
Collapse
|
4
|
Kozáková S, Alharzali N, Černušák I. Cyclo[ n]carbons and catenanes from different perspectives: disentangling the molecular thread. Phys Chem Chem Phys 2023; 25:29386-29403. [PMID: 37901943 DOI: 10.1039/d3cp03887d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
All-carbon atomic rings, cyclo[n]carbons, have recently attracted vivid attention of experimentalists and theoreticians. Among them, cyclo[18]carbon is the most studied system. In this paper, we summarize and review various properties of cyclo[n]carbons, emphasising the aspects of their aromaticity/antiaromaticity. In the first part, the trends in bonding patterns and selected aromaticity indices with the increasing size of the rings are discussed. In the second part we explore the properties of catenane models based on interlocked cyclo[18]carbon rings from different perspectives and investigate their behaviour under the action of external force using computational experiments.
Collapse
Affiliation(s)
- Silvia Kozáková
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia.
| | - Nissrin Alharzali
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia.
| | - Ivan Černušák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia.
| |
Collapse
|
5
|
Sen S, Bag A, Pal S. Activation and Conversion of Molecular Nitrogen to the Precursor of Ammonia on Silicon Substituted Cyclo[18]Carbon: a DFT Design. Chemphyschem 2023; 24:e202200627. [PMID: 36129796 DOI: 10.1002/cphc.202200627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Indexed: 01/07/2023]
Abstract
Recent synthesis of sp-hybridized cyclo[18]carbon allotrope has attracted immense curiosity. Since then, a generous amount of theoretical studies concerning aromaticity, adsorption, and spectra of the molecule have been performed. However, very few stuides have been carried out concerning its reactivities and catalytic behaviour. In this article, a DFT-based inquisition has been reported regarding the reactivity of Si substituted cyclo[18]carbon molecule towards molecular N2 . Results show that the Si substituted derivative is effective in producing adducts with molecular nitrogen. Charge calculations and IRC trapping methods indicate that only the Si center of C17 Si and its (HOMO-1) level participate in N2 addition. The N-adduct so formed, is then found to spontaneously react with molecular H2 . The addition of two H2 molecules to the activated nitrogen molecule to give respective amine derivatives have also been studied. The successful generation of the precursor of NH3 by C17 Si lays a clear emphasis on its potentiality.
Collapse
Affiliation(s)
- Sobitri Sen
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West-Bengal, India
| | - Arijit Bag
- Department of Applied Chemistry, Maulana Abdul Kalam Azad University of Technology, West Bengal, Simhat, Haringhata, Nadia, West Bengal, 741249, India
| | - Sourav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West-Bengal, India.,Ashoka University, Sonipat, Haryana, 131029, India
| |
Collapse
|
6
|
Baryshnikov GV, Valiev RR, Valiulina LI, Kurtsevich AE, Kurtén T, Sundholm D, Pittelkow M, Zhang J, Ågren H. Odd-Number Cyclo[ n]Carbons Sustaining Alternating Aromaticity. J Phys Chem A 2022; 126:2445-2452. [PMID: 35420813 PMCID: PMC9059118 DOI: 10.1021/acs.jpca.1c08507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cyclo[n]carbons (n = 5, 7, 9,
..., 29) composed from an odd number of carbon atoms are studied computationally
at density functional theory (DFT) and ab initio complete
active space self-consistent field (CASSCF) levels of theory to get
insight into their electronic structure and aromaticity. DFT calculations
predict a strongly delocalized carbene structure of the cyclo[n]carbons and an aromatic character for all of them. In
contrast, calculations at the CASSCF level yield geometrically bent
and electronically localized carbene structures leading to an alternating
double aromaticity of the odd-number cyclo[n]carbons.
CASSCF calculations yield a singlet electronic ground state for the
studied cyclo[n]carbons except for C25, whereas at the DFT level the energy difference between the lowest
singlet and triplet states depends on the employed functional. The
BHandHLYP functional predicts a triplet ground state of the larger
odd-number cyclo[n]carbons starting from n = 13. Current-density calculations at the BHandHLYP level
using the CASSCF-optimized molecular structures show that there is
a through-space delocalization in the cyclo[n]carbons.
The current density avoids the carbene carbon atom, leading to an
alternating double aromaticity of the odd-number cyclo[n]carbons satisfying the antiaromatic [4k+1] and aromatic [4k+3] rules.
C11, C15, and C19 are aromatic and
can be prioritized in future synthesis. We predict a bond-shift phenomenon
for the triplet state of the cyclo[n]carbons leading
to resonance structures that have different reactivity toward dimerization.
Collapse
Affiliation(s)
- Glib V Baryshnikov
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China.,Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Rashid R Valiev
- Department of Chemistry, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Lenara I Valiulina
- Department of Optics and Spectroscopy, Tomsk State University, Tomsk 634050, Russia
| | | | - Theo Kurtén
- Department of Chemistry, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Michael Pittelkow
- Department of Chemistry, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Jinglai Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Hans Ågren
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China.,Department of Physics and Astronomy, Uppsala University, Uppsala SE-75120, Sweden
| |
Collapse
|
7
|
Lambropoulos K, Alvertis AM, Morphis A, Simserides C. Cyclo[18]carbon including zero-point motion: ground state, first singlet and triplet excitations, and hole transfer. Phys Chem Chem Phys 2022; 24:7779-7787. [PMID: 35293921 DOI: 10.1039/d2cp00343k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent synthesis of cyclo[18]carbon has spurred increasing interest in carbon rings. We focus on a comparative inspection of ground and excited states, as well as of hole transfer properties of cumulenic and polyynic cyclo[18]carbon via Density Functional Theory (DFT), time-dependent DFT (TD-DFT) and real-time time-dependent DFT (RT-TDDFT). Zero-point vibrations are also accounted for, using a Monte Carlo sampling technique and a less exact, yet mode-resolved, quadratic approximation. The inclusion of zero-point vibrations leads to a red-shift on the HOMO-LUMO gap and the first singlet and triplet excitation energies of both conformations, correcting the values of the 'static' configurations by 9% to 24%. Next, we oxidize the molecule, creating a hole at one carbon atom. Hole transfer along polyynic cyclo[18]carbon is decreased in magnitude compared to its cumulenic counterpart and lacks the symmetric features the latter displays. Contributions by each mode to energy changes and hole transfer between diametrically opposed atoms vary, with specific bond-stretching modes being dominant.
Collapse
Affiliation(s)
- Konstantinos Lambropoulos
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece.
| | - Antonios M Alvertis
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. .,Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| | - Andreas Morphis
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece.
| | - Constantinos Simserides
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece.
| |
Collapse
|
8
|
Hou X, Song X, Ren Y, Dong W. Theoretical investigations of the interaction between B9N9 ring and nine adamantane derivatives. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Wang X, Liu Z, Yan X, Lu T, Zheng W, Xiong W. Bonding Character, Electron Delocalization, and Aromaticity of Cyclo[18]Carbon (C 18 ) Precursors, C 18 -(CO) n (n=6, 4, and 2): Focusing on the Effect of Carbonyl (-CO) Groups. Chemistry 2021; 28:e202103815. [PMID: 34897864 DOI: 10.1002/chem.202103815] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 12/29/2022]
Abstract
The bonding character, electron delocalization, and aromaticity of the cyclo[18]carbon (C18 ) precursors, C18 -(CO)n (n=6, 4, and 2), have been studied by combining quantum chemical calculations and various electronic wavefunction analyses with different physical bases. It was found that C18 -(CO)n (n=6, 4, and 2) molecules exhibit alternating long and short C-C bonds, and have out-of-plane and in-plane dual π systems (πout and πin ) perpendicular to each other, which are consistent with the relevant characteristics of C18 . However, the presence of carbonyl (-CO) groups significantly reduced the global electron conjugation of C18 -(CO)n (n=6, 4, and 2) compared to C18 . Specifically, the -CO group largely breaks the extensive delocalization of πin system, and the πout system is also affected by it but to a much lesser extent; as a consequence, C18 -(CO)n (n=6, 4, and 2) with larger n shows weaker overall aromaticity. Mostly because of the decreased but still apparent πout electron delocalization in the C18 -(CO)n (n=6, 4, and 2), a notable diatropic induced ring current under the action of external magnetic field is observed, demonstrating the clear aromatic characteristic in the molecules. The correlation between C18 -(CO)n (n=6, 4, and 2) and C18 in terms of the gradual elimination of -CO from the precursors showed that the direct elimination of two CO molecules in C18 -(CO)n (n=6, 4, and 2) has a synergistic mechanism, but it is kinetically infeasible under normal conditions due to the high energy barrier.
Collapse
Affiliation(s)
- Xia Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, P. R. China
| | - Zeyu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, P. R. China
| | - Xiufen Yan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, P. R. China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing, 100022, P. R. China
| | - Wenlong Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, P. R. China
| | - Weiwei Xiong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, P. R. China
| |
Collapse
|
10
|
Computational and theoretical study of graphitic carbon nitride (g-C3N4) as a drug delivery carrier for lonidamine drug to treat cancer. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Asif M, Sajid H, Ayub K, Gilani MA, Akhter MS, Mahmood T. Electrochemical sensing behavior of graphdiyne nanoflake towards uric acid: a quantum chemical approach. J Mol Model 2021; 27:244. [PMID: 34373938 DOI: 10.1007/s00894-021-04860-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Though the gas sensing applications of graphdiyne have widely reported; however, the biosensing utility of graphdiyne needs to be explored. This study deals with the sensitivity of graphdiyne nanoflake (GDY) towards the uric acid (UA) within the density functional framework. The uric acid is allowed to interact with graphdiyne nanoflake from all the possible orientations. Based on these interacting geometries, the complexes are differentiated with naming, i.e., UA1@GDY, UA2@GDY, UA3@GDY, and UA4@GDY (Fig. 1). The essence of interface interactions of UA on GDY is derived by computing geometric, energetic, electronic, and optical properties. The adsorbing affinity of complexes is evaluated at ωB97XD/6-31 + G(d, p) level of theory. The stabilities of the complexes are quantified through the interaction energies (Eint) with reasonable accuracy. The calculated Eint of the UA1@GDY, UA2@GDY, UA3@GDY, and UA4@GDY complexes are - 31.13, - 25.87, - 20.59, and - 16.54 kcal/mol, respectively. In comparison with geometries, it is revealed that the higher stability of complexes is facilitated by π-π stacking. Other energetic analyses including symmetry adopted perturbation theory (SAPT), noncovalent interaction index (NCI), and quantum theory of atoms in molecule (QTAIM) provide the evidence of dominating dispersion energy in stabilizing the resultant complexes. The HOMO-LUMO energies, NBO charge transfer, and UV-vis analysis justify the higher electronic transition in UA1@GDY, plays a role of higher sensitivity of GDY towards the π-stacked geometries over all other possible interaction orientations. The present findings bestow the higher sensitivity of GDY towards uric acid via π-stacking interactions. Fig. 1 Optimized geometries (with interaction distances in Å) of UA@GDY complexes.
Collapse
Affiliation(s)
- Misbah Asif
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Hasnain Sajid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | | | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan. .,Department of Chemistry, College of Science, University of Bahrain, Zallaq, Bahrain.
| |
Collapse
|
12
|
Chen J, Sun L, Zhang R. Reaction mechanisms of cyclo[18]carbon and triplet oxygen. Phys Chem Chem Phys 2021; 23:17545-17552. [PMID: 34369534 DOI: 10.1039/d1cp02605d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recently, a new carbon allotrope, cyclo[18]carbon, of alternating short and long carbon-carbon bonds has been synthesized and characterized in the condensed phase. Inspired by experiments, a lot of theoretical studies involving adsorption, aromaticity, catalysis and spectra have been performed. Although cyclo[18]carbon is generally regarded as an unstable molecule, the theoretical explanation of its instability is still inadequate. In this work, we studied the intermediate process of reactions between cyclo[18]carbon and triplet oxygen by density functional theory calculations. The reaction is expected to happen easily because the maximal reaction energy barrier is less than 1 eV, and cyclo[16]carbon, cyclo[17]carbon and straight-chain C18O2 molecules have been considered as possible products. Infrared and Raman spectra were calculated to help in differentiating the final products. The thermal stability of cyclo[17]carbon is rather weak according to ab initio molecular dynamics simulations. This work sheds light on the synthesis of other cyclo[n]carbons and cumulenes by utilizing cyclo[18]carbon.
Collapse
Affiliation(s)
- Jialu Chen
- Department of Physics, City University of Hong Kong, Hong Kong SAR, People's Republic of China.
| | | | | |
Collapse
|
13
|
Chen JL, Zhang RQ. Strong Interaction between Cyclo[18]Carbon and Graphene. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jialu L. Chen
- Department of Physics City University of Hong Kong Hong Kong SAR P. R. China
| | - Ruiqin Q. Zhang
- Department of Physics City University of Hong Kong Hong Kong SAR P. R. China
- Beijing Computational Science Research Center Beijing 100193 P. R. China
| |
Collapse
|
14
|
Baryshnikov GV, Valiev RR, Nasibullin RT, Sundholm D, Kurten T, Ågren H. Aromaticity of Even-Number Cyclo[ n]carbons ( n = 6-100). J Phys Chem A 2020; 124:10849-10855. [PMID: 33301674 PMCID: PMC7770816 DOI: 10.1021/acs.jpca.0c09692] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
recently synthesized cyclo[18]carbon molecule has been characterized
in a number of studies by calculating electronic, spectroscopic, and
mechanical properties. However, cyclo[18]carbon is only one member
of the class of cyclo[n]carbons—standalone
carbon allotrope representatives. Many of the larger members of this
class of molecules have not been thoroughly investigated. In this
work, we calculate the magnetically induced current density of cyclo[n]carbons in order to elucidate how electron delocalization
and aromatic properties change with the size of the molecular ring
(n), where n is an even number between
6 and 100. We find that the Hückel rules for aromaticity (4k + 2) and antiaromaticity (4k) become
degenerate for large Cn rings (n > 50), which can be understood as a transition from
a
delocalized electronic structure to a nonaromatic structure with localized
current density fluxes in the triple bonds. Actually, the calculations
suggest that cyclo[n]carbons with n > 50 are nonaromatic cyclic polyalkynes. The influence of the
amount
of nonlocal exchange and the asymptotic behavior of the exchange–correlation
potential of the employed density functionals on the strength of the
magnetically induced ring current and the aromatic character of the
large cyclo[n]carbons is also discussed.
Collapse
Affiliation(s)
- Glib V Baryshnikov
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.,Department of Chemistry and Nanomaterials Science, Bohdan Khmelnytsky National University, Cherkasy 18031, Ukraine
| | - Rashid R Valiev
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia.,Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FIN-00014, Finland
| | | | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FIN-00014, Finland
| | - Theo Kurten
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FIN-00014, Finland
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.,College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|