1
|
Hadi H, Aouled Dlala N, Cherif I, Gassoumi B, Abdelaziz B, Safari R, Caccamo MT, Magazù S, Patanè S, Ghalla H, Ayachi S. Exploring Nano-optical Molecular Switch Systems for Potential Electronic Devices: Understanding Electric and Electronic Properties through DFT-QTAIM Assembly. ACS OMEGA 2024; 9:37702-37715. [PMID: 39281953 PMCID: PMC11391465 DOI: 10.1021/acsomega.4c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
The design and synthesis of molecular nanoswitches using organic molecules represent a crucial research field within molecular electronics. To understand the switching mechanisms, it is essential to investigate various factors, such as charge/energy transfer, electron transfer, nonlinear optical properties (NLO), current-voltage (I-V) curves, Joule-like (LJL) and Peltier-like (LPL) intramolecular phenomenological coefficients, as well as the energy levels of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) boundary orbitals. In this Article, a novel approach to designing a molecular nanoswitch and understanding its ON/OFF mechanism is presented, utilizing the quantum theory of atoms in molecules (QTAIM), density functional theory (DFT), and Landauer theory (LT). These analyses contribute significantly to a deep understanding of switching effects within molecular electronic systems.
Collapse
Affiliation(s)
- Hamid Hadi
- Department of Chemistry, Physical Chemistry Group, Lorestan University, Khorramabad 6815144316, Iran
| | - Najet Aouled Dlala
- Quantum and Statistical Physics Laboratory, Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| | - Imen Cherif
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
- Department of Industrial Chemistry and Engineering of Materials and CASPE-INSTM, University of Messina, V. le F. Stagno d' Alcontres 31, 98166 Messina, Italy
| | - Bouzid Gassoumi
- Laboratory of Advanced Materials and Interfaces (LIMA), Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, 5000 Monastir, Tunisia
| | - Balkis Abdelaziz
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Reza Safari
- Department of Chemistry, Physical Chemistry Group, University of Qom, Qom 3716146611, Iran
| | - Maria Teresa Caccamo
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Salvatore Magazù
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Salvatore Patanè
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Houcine Ghalla
- Quantum and Statistical Physics Laboratory, Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| | - Sahbi Ayachi
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| |
Collapse
|
2
|
Rocha KML, Nascimento ÉCM, de Jesus RCC, Martins JBL. In Silico Molecular Modeling of Four New Afatinib Derived Molecules Targeting the Inhibition of the Mutated Form of BCR-ABL T315I. Molecules 2024; 29:4254. [PMID: 39275102 PMCID: PMC11397288 DOI: 10.3390/molecules29174254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Four afatinib derivatives were designed and modeled. These derivatives were compared to the known tyrosine-kinase inhibitors in treating Chronic Myeloid Leukemia, i.e., imatinib and ponatinib. The molecules were evaluated through computational methods, including docking studies, the non-covalent interaction index, Electron Localization and Fukui Functions, in silico ADMET analysis, QTAIM, and Heat Map analysis. The AFA(IV) candidate significantly increases the score value compared to afatinib. Furthermore, AFA(IV) was shown to be relatively similar to the ponatinib profile when evaluating a range of molecular descriptors. The addition of a methylpiperazine ring seems to be well distributed in the structure of afatinib when targeting the BCR-ABL enzyme, providing an important hydrogen bond interaction with the Asp381 residue of the DFG-switch of BCR-ABL active site residue and the AFA(IV) new chemical entities. Finally, in silico toxicity predictions show a favorable index, with some molecules presenting the loss of the irritant properties associated with afatinib in theoretical predictions.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/chemistry
- Afatinib/chemistry
- Afatinib/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Molecular Docking Simulation
- Humans
- Models, Molecular
- Computer Simulation
- Mutation
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Hydrogen Bonding
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Imidazoles/chemistry
- Imidazoles/pharmacology
- Pyridazines
Collapse
Affiliation(s)
- Kelvyn M. L. Rocha
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.M.L.R.); (É.C.M.N.); (R.C.C.d.J.)
| | - Érica C. M. Nascimento
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.M.L.R.); (É.C.M.N.); (R.C.C.d.J.)
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Rafael C. C. de Jesus
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.M.L.R.); (É.C.M.N.); (R.C.C.d.J.)
| | - João B. L. Martins
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.M.L.R.); (É.C.M.N.); (R.C.C.d.J.)
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasília, Brasília 70910-900, DF, Brazil
| |
Collapse
|
3
|
Ju Y, Zhang H, Wang X, Liu Y, Yang Y, Kan G, Yu K, Jiang J. Abiotic synthesis with plausible emergence for primitive phospholipid in aqueous microdroplets. J Colloid Interface Sci 2023; 634:535-542. [PMID: 36549202 DOI: 10.1016/j.jcis.2022.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Phospholipids are the protective layer of modern cells, but it is challenging for the formation of phospholipids that require a simple abiotic synthesis before the advent of primitive cells. Here, we reported the abiotic synthesis for lysophosphatidic acids (LPAs) with prebiotically plausible reactants in aqueous microdroplets under ambient conditions. The LPAs formation is carried out by fusing two microdroplets streams: one contains glycerol and pyrophosphate in water and the other one contains fatty acids in acetonitrile. Compared with the bulk solution, LPAs were generated in microdroplets without the addition of catalyst and heating. Conditions of reactant concentrations and microdroplet size varied and suggested that LPAs formation occurred near or at the microdroplet surface. The LPAs formation also showed chemoselective toward on chain-length of fatty acids. Finally, the formation of LPAs underwent two-step reactions with glycerol phosphorylation eliminating one water molecule followed by esterification with fatty acids. These results also implicated that pyrophosphate functioned as both catalysts and precursors in prebiotic LPAs synthesis. The approach using fusion aqueous microdroplets has desirable features in studying the substance exchange and interaction in atmosphere.
Collapse
Affiliation(s)
- Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China.
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Yaqi Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Yali Yang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China.
| |
Collapse
|
4
|
Huang Y, Li WD, Wei YX, Wang L, Dong WK. Structural, theoretical and optical investigations of two lateral twisting trinuclear Co(II) and Ni(II) salamo type complexes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|