1
|
Rivera A, Bracho-Rincón D, Miller MW. Localization of Cholecystokinin/Sulfakinin Neuropeptides in Biomphalaria glabrata, an Intermediate Host for Schistosomiasis. J Comp Neurol 2025; 533:e70016. [PMID: 39825709 DOI: 10.1002/cne.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
Snails belonging to the genus Biomphalaria serve as obligatory intermediate hosts for the trematode Schistosoma mansoni, the causative agent for the most widespread form of schistosomiasis. The simpler nervous systems of gastropod molluscs, such as Biomphalaria, provide advantageous models for investigating neural responses to infection at the cellular and network levels. The present study examined neuropeptides related to cholecystokinin (CCK), a major multifunctional regulator of central nervous system (CNS) function in mammals. A neural transcriptome generated from the CNS of Biomphalaria alexandrina included a transcript encoding two CCK-related peptides, designated Balex-CCK1 (pEGEWSYDY(SO 3 H)GLGGGRF-NH2) and Balex-CCK2 (NYGDY(SO 3 H)GIGGGRF-NH2). Peptide expression was examined in Biomphalaria glabrata at the mRNA level using the hybridization chain reaction (HCR) protocol and at the protein level using an antibody against Balex-CCK1. Expression was detected in 60-70 neurons distributed throughout the CNS, as well as in profuse fiber systems connecting the ganglia and projecting to the periphery. CCK-like immunoreactive (CCKli) fibers were also observed on organs associated with the cardiorespiratory (nephridium, mantle, gill) and male reproductive systems. A comparison of mRNA and peptide localization suggested that CCK expression could be regulated at the level of translation. A potential role of these peptides in mediating responses to infection by larval schistosomes is discussed.
Collapse
Affiliation(s)
- Alana Rivera
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Dina Bracho-Rincón
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Mark W Miller
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
2
|
Schörnig M, Ju X, Fast L, Ebert S, Weigert A, Kanton S, Schaffer T, Nadif Kasri N, Treutlein B, Peter BM, Hevers W, Taverna E. Comparison of induced neurons reveals slower structural and functional maturation in humans than in apes. eLife 2021; 10:59323. [PMID: 33470930 PMCID: PMC7870144 DOI: 10.7554/elife.59323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
We generated induced excitatory neurons (iNeurons, iNs) from chimpanzee, bonobo, and human stem cells by expressing the transcription factor neurogenin-2 (NGN2). Single-cell RNA sequencing showed that genes involved in dendrite and synapse development are expressed earlier during iNs maturation in the chimpanzee and bonobo than the human cells. In accordance, during the first 2 weeks of differentiation, chimpanzee and bonobo iNs showed repetitive action potentials and more spontaneous excitatory activity than human iNs, and extended neurites of higher total length. However, the axons of human iNs were slightly longer at 5 weeks of differentiation. The timing of the establishment of neuronal polarity did not differ between the species. Chimpanzee, bonobo, and human neurites eventually reached the same level of structural complexity. Thus, human iNs develop slower than chimpanzee and bonobo iNs, and this difference in timing likely depends on functions downstream of NGN2.
Collapse
Affiliation(s)
- Maria Schörnig
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Xiangchun Ju
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Luise Fast
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sebastian Ebert
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Weigert
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sabina Kanton
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Theresa Schaffer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nael Nadif Kasri
- Department of Human Genetics and Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboudumc, Nijmegen, Netherlands
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Wulf Hevers
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Taverna
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
3
|
Langille JJ, Ginzberg K, Sossin WS. Polysomes identified by live imaging of nascent peptides are stalled in hippocampal and cortical neurites. ACTA ACUST UNITED AC 2019; 26:351-362. [PMID: 31416908 PMCID: PMC6699411 DOI: 10.1101/lm.049965.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
In neurons, mRNAs can be repressed postinitiation and assembled into granules enabling the transport and later, regulated reactivation of the paused mRNAs. It has been suggested that a large percentage of transcripts in neuronal processes are stored in these stalled polysomes. Given this, it is predicted that nascent peptides should be abundant in these granules. Nascent peptides can be visualized in real time by the SunTag system. Using this system, we observe nascent peptides in neuronal processes that are resistant to runoff with the initiation inhibitor homoharringtonin (HHT) and to release by puromycin, properties expected from RNA granules consisting of stalled polysomes. In contrast, nascent peptides in nonneuronal cells and neuronal cell bodies were not resistant to HHT or puromycin. Stalled polysomes can also be visualized after runoff with ribopuromycylation and the RNA granules imaged with ribopuromycylation were the same as those with SunTag visualized nascent peptides. Accordingly, the ribopuromycylated puncta in neuronal dendrites were also resistant to puromycin. Thus, the SunTag technique corroborates in situ evidence of stalled polysomes and will allow for the live examination of these translational structures as a mechanism for mRNA transport and regulated protein synthesis.
Collapse
Affiliation(s)
- Jesse J Langille
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal H3A-2B4, Quebec, Canada
| | - Keren Ginzberg
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal H3A-2B4, Quebec, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal H3A-2B4, Quebec, Canada
| |
Collapse
|
4
|
Sossin WS, Costa-Mattioli M. Translational Control in the Brain in Health and Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032912. [PMID: 30082469 DOI: 10.1101/cshperspect.a032912] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Translational control in neurons is crucially required for long-lasting changes in synaptic function and memory storage. The importance of protein synthesis control to brain processes is underscored by the large number of neurological disorders in which translation rates are perturbed, such as autism and neurodegenerative disorders. Here we review the general principles of neuronal translation, focusing on the particular relevance of several key regulators of nervous system translation, including eukaryotic initiation factor 2α (eIF2α), the mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1), and the eukaryotic elongation factor 2 (eEF2). These pathways regulate the overall rate of protein synthesis in neurons and have selective effects on the translation of specific messenger RNAs (mRNAs). The importance of these general and specific translational control mechanisms is considered in the normal functioning of the nervous system, particularly during synaptic plasticity underlying memory, and in the context of neurological disorders.
Collapse
Affiliation(s)
- Wayne S Sossin
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A-2B4, Canada
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
5
|
McCamphill PK, Ferguson L, Sossin WS. A decrease in eukaryotic elongation factor 2 phosphorylation is required for local translation of sensorin and long-term facilitation in Aplysia. J Neurochem 2017; 142:246-259. [PMID: 28345161 DOI: 10.1111/jnc.14030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1)-dependent protein synthesis is required for many forms of synaptic plasticity and memory, but the downstream pathways important for synaptic plasticity are poorly understood. Long-term facilitation (LTF) in Aplysia is a form of synaptic plasticity that is closely linked to behavioral memory and an attractive model system for examining the important downstream targets for mTORC1 in regulating synaptic plasticity. Although mTORC1-regulated protein synthesis has been strongly linked to translation initiation, translation elongation is also regulated by mTORC1 and LTF leads to an mTORC1-dependent decrease in eukaryotic elongation factor 2 (eEF2) phosphorylation. The purpose of this study is to test the hypothesis that the decrease in eEF2 phosphorylation is required for mTORC1-dependent translation and plasticity. We show that the LTF-induced decrease in eEF2 phosphorylation is blocked by expression of an eEF2 kinase (eEF2K) modified to be resistant to mTORC1 regulation. We found that expression of this modified kinase blocked LTF. LTF requires local protein synthesis of the neuropeptide sensorin and importantly, local sensorin synthesis can be measured using a dendra fluorescent protein containing the 5' and 3' untranslated regions (UTRs) of sensorin. Using this construct, we show that blocking eEF2 dephosphorylation also blocks the increase in local sensorin synthesis. These results identify decreases in eEF2 phosphorylation as a critical downstream effector of mTOR required for long-term plasticity and identify an important translational target regulated by decreases in eEF2 phosphorylation.
Collapse
Affiliation(s)
- Patrick K McCamphill
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Larissa Ferguson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Maity S, Rah S, Sonenberg N, Gkogkas CG, Nguyen PV. Norepinephrine triggers metaplasticity of LTP by increasing translation of specific mRNAs. ACTA ACUST UNITED AC 2015; 22:499-508. [PMID: 26373828 PMCID: PMC4579357 DOI: 10.1101/lm.039222.115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022]
Abstract
Norepinephrine (NE) is a key modulator of synaptic plasticity in the hippocampus, a brain structure crucially involved in memory formation. NE boosts synaptic plasticity mostly through initiation of signaling cascades downstream from beta (β)-adrenergic receptors (β-ARs). Previous studies demonstrated that a β-adrenergic receptor agonist, isoproterenol, can modify the threshold for long-term potentiation (LTP), a putative cellular mechanism for learning and memory, in a process known as “metaplasticity.” Metaplasticity is the ability of synaptic plasticity to be modified by prior experience. We asked whether NE itself could engage metaplastic mechanisms in area CA1 of mouse hippocampal slices. Using extracellular field potential recording and stimulation, we show that application of NE (10 µM), which did not alter basal synaptic strength, enhances the future maintenance of LTP elicited by subthreshold, high-frequency stimulation (HFS: 1 × 100 Hz, 1 sec). HFS applied 30 min after NE washout induced long-lasting (>4 h) LTP, which was significantly extended in duration relative to HFS alone. This NE-induced metaplasticity required β1-AR activation, as coapplication of the β1-receptor antagonist CGP-20712A (1 µM) attenuated maintenance of LTP. We also found that NE-mediated metaplasticity was translation- and transcription-dependent. Polysomal profiles of CA1 revealed increased translation rates for specific mRNAs during NE-induced metaplasticity. Thus, activation of β-ARs by NE primes synapses for future long-lasting plasticity on time scales extending beyond fast synaptic transmission; this may facilitate neural information processing and the subsequent formation of lasting memories.
Collapse
Affiliation(s)
- Sabyasachi Maity
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | - Sean Rah
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Christos G Gkogkas
- Patrick Wild Centre and Centre for Integrative Biology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Peter V Nguyen
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada Department of Psychiatry, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada Neuroscience and Mental Health Institute, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
7
|
Smalheiser NR. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0504. [PMID: 25135965 PMCID: PMC4142025 DOI: 10.1098/rstb.2013.0504] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
If mRNAs were the only RNAs made by a neuron, there would be a simple mapping of mRNAs to proteins. However, microRNAs and other non-coding RNAs (ncRNAs; endo-siRNAs, piRNAs, BC1, BC200, antisense and long ncRNAs, repeat-related transcripts, etc.) regulate mRNAs via effects on protein translation as well as transcriptional and epigenetic mechanisms. Not only are genes ON or OFF, but their ability to be translated can be turned ON or OFF at the level of synapses, supporting an enormous increase in information capacity. Here, I review evidence that ncRNAs are expressed pervasively within dendrites in mammalian brain; that some are activity-dependent and highly enriched near synapses; and that synaptic ncRNAs participate in plasticity responses including learning and memory. Ultimately, ncRNAs can be viewed as the post-it notes of the neuron. They have no literal meaning of their own, but derive their functions from where (and to what) they are stuck. This may explain, in part, why ncRNAs differ so dramatically from protein-coding genes, both in terms of the usual indicators of functionality and in terms of evolutionary constraints. ncRNAs do not appear to be direct mediators of synaptic transmission in the manner of neurotransmitters or receptors, yet they orchestrate synaptic plasticity—and may drive species-specific changes in cognition.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Bidirectional regulation of eEF2 phosphorylation controls synaptic plasticity by decoding neuronal activity patterns. J Neurosci 2015; 35:4403-17. [PMID: 25762683 DOI: 10.1523/jneurosci.2376-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At the sensory-motor neuron synapse of Aplysia, either spaced or continuous (massed) exposure to serotonin (5-HT) induces a form of intermediate-term facilitation (ITF) that requires new protein synthesis but not gene transcription. However, spaced and massed ITF use distinct molecular mechanisms to maintain increased synaptic strength. Synapses activated by spaced applications of 5-HT generate an ITF that depends on persistent protein kinase A (PKA) activity, whereas an ITF produced by massed 5-HT depends on persistent protein kinase C (PKC) activity. In this study, we demonstrate that eukaryotic elongation factor 2 (eEF2), which catalyzes the GTP-dependent translocation of the ribosome during protein synthesis, acts as a biochemical sensor that is tuned to the pattern of neuronal stimulation. Specifically, we find that massed training leads to a PKC-dependent increase in phosphorylation of eEF2, whereas spaced training results in a PKA-dependent decrease in phosphorylation of eEF2. Importantly, by using either pharmacological or dominant-negative strategies to inhibit eEF2 kinase (eEF2K), we were able to block massed 5-HT-dependent increases in eEF2 phosphorylation and subsequent PKC-dependent ITF. In contrast, pharmacological inhibition of eEF2K during the longer period of time required for spaced training was sufficient to reduce eEF2 phosphorylation and induce ITF. Finally, we find that the massed 5-HT-dependent increase in synaptic strength requires translation elongation, but not translation initiation, whereas the spaced 5-HT-dependent increase in synaptic strength is partially dependent on translation initiation. Thus, bidirectional regulation of eEF2 is critical for decoding distinct activity patterns at synapses by activating distinct modes of translation regulation.
Collapse
|
9
|
Ryan B, Joilin G, Williams JM. Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation. Front Mol Neurosci 2015; 8:4. [PMID: 25755632 PMCID: PMC4337328 DOI: 10.3389/fnmol.2015.00004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/04/2015] [Indexed: 12/24/2022] Open
Abstract
Long-term potentiation (LTP) is a form of synaptic plasticity that is an excellent model for the molecular mechanisms that underlie memory. LTP, like memory, is persistent, and both are widely believed to be maintained by a coordinated genomic response. Recently, a novel class of non-coding RNA, microRNA, has been implicated in the regulation of LTP. MicroRNA negatively regulate protein synthesis by binding to specific messenger RNA response elements. The aim of this review is to summarize experimental evidence for the proposal that microRNA play a major role in the regulation of LTP. We discuss a growing body of research which indicates that specific microRNA regulate synaptic proteins relevant to LTP maintenance, as well as studies that have reported differential expression of microRNA in response to LTP induction. We conclude that microRNA are ideally suited to contribute to the regulation of LTP-related gene expression; microRNA are pleiotropic, synaptically located, tightly regulated, and function in response to synaptic activity. The potential impact of microRNA on LTP maintenance as regulators of gene expression is enormous.
Collapse
Affiliation(s)
- Brigid Ryan
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| | - Greig Joilin
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| | - Joanna M Williams
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| |
Collapse
|
10
|
Panja D, Kenney J, D’Andrea L, Zalfa F, Vedeler A, Wibrand K, Fukunaga R, Bagni C, Proud C, Bramham C. Two-Stage Translational Control of Dentate Gyrus LTP Consolidation Is Mediated by Sustained BDNF-TrkB Signaling to MNK. Cell Rep 2014; 9:1430-45. [DOI: 10.1016/j.celrep.2014.10.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/18/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022] Open
|
11
|
Dong C, Vashisht A, Hegde AN. Proteasome regulates the mediators of cytoplasmic polyadenylation signaling during late-phase long-term potentiation. Neurosci Lett 2014; 583:199-204. [PMID: 25263789 DOI: 10.1016/j.neulet.2014.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/30/2014] [Accepted: 09/17/2014] [Indexed: 11/29/2022]
Abstract
The ubiquitin-proteasome pathway is essential for long-term synaptic plasticity, but its exact roles remain unclear. Previously we established that proteasome inhibition increased the early, induction part of late-phase long-term potentiation (L-LTP) but blocks the late, maintenance part. Our prior work also showed that the proteasome modulates components of the mammalian target of rapamycin pathway for translation. In this study, we tested the possible role of the proteasome in regulating the cytoplasmic polyadenylation signaling required for translation during L-LTP. We found that a polyadenylation inhibitor cordycepin diminishes the enhancement of early L-LTP mediated by proteasome inhibition. Furthermore, blocking Aurora-A kinase and calcium-calmodulin-dependent kinase II reduces the increase in early L-LTP brought about by proteasome inhibition. Our results suggest a link between polyadenylation-mediated translational control and protein degradation during induction of long-term synaptic plasticity.
Collapse
Affiliation(s)
- Chenghai Dong
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Anirudh Vashisht
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Ashok N Hegde
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
12
|
Grønli J, Soulé J, Bramham CR. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress. Front Behav Neurosci 2014; 7:224. [PMID: 24478645 PMCID: PMC3896837 DOI: 10.3389/fnbeh.2013.00224] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/23/2013] [Indexed: 01/08/2023] Open
Abstract
Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function.
Collapse
Affiliation(s)
- Janne Grønli
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway ; Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital Bergen, Norway
| | - Jonathan Soulé
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| |
Collapse
|
13
|
Santini E, Huynh TN, Klann E. Mechanisms of translation control underlying long-lasting synaptic plasticity and the consolidation of long-term memory. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:131-67. [PMID: 24484700 DOI: 10.1016/b978-0-12-420170-5.00005-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complexity of memory formation and its persistence is a phenomenon that has been studied intensely for centuries. Memory exists in many forms and is stored in various brain regions. Generally speaking, memories are reorganized into broadly distributed cortical networks over time through systems level consolidation. At the cellular level, storage of information is believed to initially occur via altered synaptic strength by processes such as long-term potentiation. New protein synthesis is required for long-lasting synaptic plasticity as well as for the formation of long-term memory. The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of cap-dependent protein synthesis and is required for numerous forms of long-lasting synaptic plasticity and long-term memory. As such, the study of mTORC1 and protein factors that control translation initiation and elongation has enhanced our understanding of how the process of protein synthesis is regulated during memory formation. Herein we discuss the molecular mechanisms that regulate protein synthesis as well as pharmacological and genetic manipulations that demonstrate the requirement for proper translational control in long-lasting synaptic plasticity and long-term memory formation.
Collapse
Affiliation(s)
| | - Thu N Huynh
- Center for Neural Science, New York University, New York, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, USA
| |
Collapse
|
14
|
Graber TE, McCamphill PK, Sossin WS. A recollection of mTOR signaling in learning and memory. Learn Mem 2013; 20:518-30. [PMID: 24042848 DOI: 10.1101/lm.027664.112] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mechanistic target of rapamcyin (mTOR) is a central player in cell growth throughout the organism. However, mTOR takes on an additional, more specialized role in the developed neuron, where it regulates the protein synthesis-dependent, plastic changes underlying learning and memory. mTOR is sequestered in two multiprotein complexes (mTORC1 and mTORC2) that have different substrate specificities, thus allowing for distinct functions at synapses. We will examine how learning activates the mTOR complexes, survey the critical effectors of this pathway in the context of synaptic plasticity, and assess whether mTOR plays an instructive or permissive role in generating molecular memory traces.
Collapse
Affiliation(s)
- Tyson E Graber
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A-2B4, Canada
| | | | | |
Collapse
|
15
|
Jablonka S, Dombert B, Asan E, Sendtner M. Mechanisms for axon maintenance and plasticity in motoneurons: alterations in motoneuron disease. J Anat 2013; 224:3-14. [PMID: 24007389 DOI: 10.1111/joa.12097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2013] [Indexed: 12/12/2022] Open
Abstract
In motoneuron disease and other neurodegenerative disorders, the loss of synapses and axon branches occurs early but is compensated by sprouting of neighboring axon terminals. Defective local axonal signaling for maintenance and dynamics of the axonal microtubule and actin cytoskeleton plays a central role in this context. The molecular mechanisms that lead to defective cytoskeleton architecture in two mouse models of motoneuron disease are summarized and discussed in this manuscript. In the progressive motor neuropathy (pmn) mouse model of motoneuron disease that is caused by a mutation in the tubulin-specific chaperone E gene, death of motoneuron cell bodies appears as a consequence of axonal degeneration. Treatment with bcl-2 overexpression or with glial-derived neurotrophic factor prevents loss of motoneuron cell bodies but does not influence the course of disease. In contrast, treatment with ciliary neurotrophic factor (CNTF) significantly delays disease onset and prolongs survival of pmn mice. This difference is due to the activation of Stat-3 via the CNTF receptor complex in axons of pmn mutant motoneurons. Most of the activated Stat-3 protein is not transported to the nucleus to activate transcription, but interacts locally in axons with stathmin, a protein that destabilizes microtubules. This interaction plays a major role in CNTF signaling for microtubule dynamics in axons. In Smn-deficient mice, a model of spinal muscular atrophy, defects in axonal translocation of β-actin mRNA and possibly other mRNA species have been observed. Moreover, the regulation of local protein synthesis in response to signals from neurotrophic factors and extracellular matrix proteins is altered in motoneurons from this model of motoneuron disease. These findings indicate that local signals are important for maintenance and plasticity of axonal branches and neuromuscular endplates, and that disturbances in these signaling mechanisms could contribute to the pathophysiology of motoneuron diseases.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute for Clinical Neurobiology, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | |
Collapse
|
16
|
Dyer J, Sossin WS. Characterization of the role of eIF4G in stimulating cap- and IRES-dependent translation in aplysia neurons. PLoS One 2013; 8:e74085. [PMID: 24019950 PMCID: PMC3760813 DOI: 10.1371/journal.pone.0074085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/25/2013] [Indexed: 01/04/2023] Open
Abstract
The rate-limiting step(s) of translation in the nervous system have not been clearly identified. We have been examining this question in the cell body of the Aplysia sensory neuron, where translational regulation is important for the regulation of synaptic strength. In the present study, we examined the role of the adaptor protein eIF4G. We cloned Aplysia eIF4G (Ap4G) and Ap4G contains all the standard metazoan eIF4G protein–protein interaction domains. Overexpressing Ap4G in Aplysia sensory neurons caused an increase in both cap-dependent and internal ribosome entry site (IRES)-dependent translation using a previously characterized bicistronic fluorescent reporter. Unexpectedly, measurement of overall translation using the methionine analog, L-azidohomoalanine, revealed that overexpression of Ap4G did not lead to an increase in overall translation rates. Indeed, the effect of Ap4G on the bicistronic reporter depended on the presence of an upstream open reading frame (uORF) in the 5’ UTR encoded by the vector. We have previously shown that Mnk strongly decreased cap-dependent translation and this depended on a putative 4G binding domain. Here we extend these results showing that even in the absence of the uORF, overexpression of Mnk strongly decreases cap-dependent translation and this depends on the Mnk binding site in eIF4G. Similarly, an increase in cap-dependent translation seen with overexpression of elongation factor 2 kinase did not depend on the uORF. Overall, we show that eIF4G is rate limiting for translation of an mRNA encoding an uORF, but is not generally a rate-limiting step for translation.
Collapse
Affiliation(s)
- John Dyer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
17
|
Panja D, Bramham CR. BDNF mechanisms in late LTP formation: A synthesis and breakdown. Neuropharmacology 2013; 76 Pt C:664-76. [PMID: 23831365 DOI: 10.1016/j.neuropharm.2013.06.024] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/21/2013] [Accepted: 06/23/2013] [Indexed: 12/12/2022]
Abstract
Unraveling the molecular mechanisms governing long-term synaptic plasticity is a key to understanding how the brain stores information in neural circuits and adapts to a changing environment. Brain-derived neurotrophic factor (BDNF) has emerged as a regulator of stable, late phase long-term potentiation (L-LTP) at excitatory glutamatergic synapses in the adult brain. However, the mechanisms by which BDNF triggers L-LTP are controversial. Here, we distill and discuss the latest advances along three main lines: 1) TrkB receptor-coupled translational control underlying dendritic protein synthesis and L-LTP, 2) Mechanisms for BDNF-induced rescue of L-LTP when protein synthesis is blocked, and 3) BDNF-TrkB regulation of actin cytoskeletal dynamics in dendritic spines. Finally, we explore the inter-relationships between BDNF-regulated mechanisms, how these mechanisms contribute to different forms of L-LTP in the hippocampus and dentate gyrus, and outline outstanding issues for future research. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Debabrata Panja
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | |
Collapse
|
18
|
Gal-Ben-Ari S, Kenney JW, Ounalla-Saad H, Taha E, David O, Levitan D, Gildish I, Panja D, Pai B, Wibrand K, Simpson TI, Proud CG, Bramham CR, Armstrong JD, Rosenblum K. Consolidation and translation regulation. Learn Mem 2012; 19:410-22. [PMID: 22904372 PMCID: PMC3418764 DOI: 10.1101/lm.026849.112] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
mRNA translation, or protein synthesis, is a major component of the transformation of the genetic code into any cellular activity. This complicated, multistep process is divided into three phases: initiation, elongation, and termination. Initiation is the step at which the ribosome is recruited to the mRNA, and is regarded as the major rate-limiting step in translation, while elongation consists of the elongation of the polypeptide chain; both steps are frequent targets for regulation, which is defined as a change in the rate of translation of an mRNA per unit time. In the normal brain, control of translation is a key mechanism for regulation of memory and synaptic plasticity consolidation, i.e., the off-line processing of acquired information. These regulation processes may differ between different brain structures or neuronal populations. Moreover, dysregulation of translation leads to pathological brain function such as memory impairment. Both normal and abnormal function of the translation machinery is believed to lead to translational up-regulation or down-regulation of a subset of mRNAs. However, the identification of these newly synthesized proteins and determination of the rates of protein synthesis or degradation taking place in different neuronal types and compartments at different time points in the brain demand new proteomic methods and system biology approaches. Here, we discuss in detail the relationship between translation regulation and memory or synaptic plasticity consolidation while focusing on a model of cortical-dependent taste learning task and hippocampal-dependent plasticity. In addition, we describe a novel systems biology perspective to better describe consolidation.
Collapse
Affiliation(s)
- Shunit Gal-Ben-Ari
- Sagol Department of Neurobiology, University of Haifa, Haifa 31905, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Grønli J, Dagestad G, Milde AM, Murison R, Bramham CR. Post-transcriptional effects and interactions between chronic mild stress and acute sleep deprivation: regulation of translation factor and cytoplasmic polyadenylation element-binding protein phosphorylation. Behav Brain Res 2012; 235:251-62. [PMID: 22917528 DOI: 10.1016/j.bbr.2012.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 08/02/2012] [Accepted: 08/06/2012] [Indexed: 12/26/2022]
Abstract
Stress and restricted or disrupted sleep trigger adaptive responses in the brain at the level of gene transcription. We investigated the possible impact of chronic mild stress (CMS), acute sleep deprivation, and a combination of these in male rats on post-transcriptional mechanisms important for cognitive function and synaptic plasticity. Relationships between sleep architecture and translational regulators were also assessed. After four weeks of CMS, phosphorylation of two key translation factors, eukaryotic initiation factor 4E (eIF4E) and elongation factor 2 (eEF2), was enhanced in the prefrontal cortex, but unchanged in the hippocampus and dentate gyrus. Sleep deprivation decreased phosphorylated eIF4E in the dentate gyrus. In contrast, eEF2 phosphorylation was elevated in all brain regions after sleep deprivation. Thus, CMS and sleep deprivation, when given alone, have distinct region-specific effects. Furthermore, the combined treatment revealed striking interactions with eEF2 phosphorylation in which sleep deprivation counteracts the effect of CMS cortically and CMS modulates the effects of sleep deprivation in the hippocampus proper. Although CMS exposure alone had no effect in the hippocampus, it inhibited the sleep deprivation-induced eIF4E phosphorylation, while inducing phosphorylation of a major regulatory RNA-binding protein, cytoplasmic polyadenylation element-binding protein (CPEB) in the combined treatment. CMS had no effect on plasma corticosterone, but led to disruption of sleep. Sleep quality and sleep quantity in non-stressed animals showed predictive changes in eIF4E and eEF2 phosphorylation cortically. Prior exposure to CMS abolishes this relationship. We conclude that CMS and acute sleep deprivation have interactive and brain region-specific effects on translational regulators of relevance to mechanisms of stress responsiveness and sleep homeostasis.
Collapse
Affiliation(s)
- Janne Grønli
- Department of Biological and Medical Psychology, University of Bergen, Jonas Lies Vei 91, N-5009 Bergen, Norway.
| | | | | | | | | |
Collapse
|
20
|
Seibt J, Dumoulin MC, Aton SJ, Coleman T, Watson A, Naidoo N, Frank MG. Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr Biol 2012; 22:676-82. [PMID: 22386312 DOI: 10.1016/j.cub.2012.02.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/16/2012] [Accepted: 02/07/2012] [Indexed: 01/12/2023]
Abstract
Sleep consolidates experience-dependent brain plasticity, but the precise cellular mechanisms mediating this process are unknown [1]. De novo cortical protein synthesis is one possible mechanism. In support of this hypothesis, sleep is associated with increased brain protein synthesis [2, 3] and transcription of messenger RNAs (mRNAs) involved in protein synthesis regulation [4, 5]. Protein synthesis in turn is critical for memory consolidation and persistent forms of plasticity in vitro and in vivo [6, 7]. However, it is unknown whether cortical protein synthesis in sleep serves similar functions. We investigated the role of protein synthesis in the sleep-dependent consolidation of a classic form of cortical plasticity in vivo (ocular dominance plasticity, ODP; [8, 9]) in the cat visual cortex. We show that intracortical inhibition of mammalian target of rapamycin (mTOR)-dependent protein synthesis during sleep abolishes consolidation but has no effect on plasticity induced during wakefulness. Sleep also promotes phosphorylation of protein synthesis regulators (i.e., 4E-BP1 and eEF2) and the translation (but not transcription) of key plasticity related mRNAs (ARC and BDNF). These findings show that sleep promotes cortical mRNA translation. Interruption of this process has functional consequences, because it abolishes the consolidation of experience in the cortex.
Collapse
Affiliation(s)
- Julie Seibt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6074, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Capossela S, Muzio L, Bertolo A, Bianchi V, Dati G, Chaabane L, Godi C, Politi LS, Biffo S, D'Adamo P, Mallamaci A, Pannese M. Growth defects and impaired cognitive-behavioral abilities in mice with knockout for Eif4h, a gene located in the mouse homolog of the Williams-Beuren syndrome critical region. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1121-1135. [PMID: 22234171 DOI: 10.1016/j.ajpath.2011.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/14/2011] [Accepted: 12/02/2011] [Indexed: 01/09/2023]
Abstract
Protein synthesis is a tightly regulated, energy-consuming process. The control of mRNA translation into protein is fundamentally important for the fine-tuning of gene expression; additionally, precise translational control plays a critical role in many cellular processes, including development, cellular growth, proliferation, differentiation, synaptic plasticity, memory, and learning. Eukaryotic translation initiation factor 4h (Eif4h) encodes a protein involved in the process of protein synthesis, at the level of initiation phase. Its human homolog, WBSCR1, maps on 7q11.23, inside the 1.6 Mb region that is commonly deleted in patients affected by the Williams-Beuren syndrome, which is a complex neurodevelopmental disorder characterized by cardiovascular defects, cerebral dysplasias and a peculiar cognitive-behavioral profile. In this study, we generated knockout mice deficient in Eif4h. These mice displayed growth retardation with a significant reduction of body weight that began from the first week of postnatal development. Neuroanatomical profiling results generated by magnetic resonance imaging analysis revealed a smaller brain volume in null mice compared with controls as well as altered brain morphology, where anterior and posterior brain regions were differentially affected. The inactivation of Eif4h also led to a reduction in both the number and complexity of neurons. Behavioral studies revealed severe impairments of fear-related associative learning and memory formation. These alterations suggest that Eif4h might contribute to certain deficits associated with Williams-Beuren syndrome.
Collapse
Affiliation(s)
- Simona Capossela
- Gene Expression Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Luca Muzio
- Neuroimmunology Unit - INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Bertolo
- Gene Expression Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Bianchi
- Molecular Genetics of Mental Retardation Unit, Division of Neuroscience, Dulbecco Telethon Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Gabriele Dati
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Linda Chaabane
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Godi
- Neuroradiology Research Group, Center for Imaging, San Raffaele Scientific Institute, Milan, Italy
| | - Letterio S Politi
- Neuroradiology Research Group, Center for Imaging, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Biffo
- Molecular Histology and Cell Growth Unit, Division of Molecular Oncology, San Raffaele Scientific Institute, Milan, Italy; Department of Science of Environment and Life (DISAV), University of Eastern Piedmont, Alessandria, Italy
| | - Patrizia D'Adamo
- Molecular Genetics of Mental Retardation Unit, Division of Neuroscience, Dulbecco Telethon Institute, San Raffaele Scientific Institute, Milan, Italy
| | | | - Maria Pannese
- Gene Expression Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
22
|
Tonic dopamine induces persistent changes in the transient potassium current through translational regulation. J Neurosci 2011; 31:13046-56. [PMID: 21917788 DOI: 10.1523/jneurosci.2194-11.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neuromodulatory effects can vary with their mode of transmission. Phasic release produces local and transient increases in dopamine (DA) up to micromolar concentrations. Additionally, since DA is released from open synapses and reuptake mechanisms are not nearby, tonic nanomolar DA exists in the extracellular space. Do phasic and tonic transmissions similarly regulate voltage-dependent ionic conductances in a given neuron? It was previously shown that DA could immediately alter the transient potassium current (I(A)) of identified neurons in the stomatogastric ganglion of the spiny lobster Panulirus interruptus. Here we show that DA can also persistently alter I(A), and that the immediate and persistent effects of DA oppose one another. The lateral pyloric (LP) neuron exclusively expresses type 1 DA receptors (D1Rs). Micromolar DA produces immediate depolarizing shifts in the voltage dependence of LP I(A), whereas tonic nanomolar DA produces a persistent increase in LP I(A) maximal conductance (G(max)) through a translation-dependent mechanism involving target of rapamycin (TOR). The pyloric dilator (PD) neuron exclusively expresses D2Rs. Micromolar DA produces an immediate hyperpolarizing shift in PD I(A) voltage dependence of activation, whereas tonic DA persistently decreases PD I(A) G(max) through a translation-dependent mechanism not involving TOR. The persistent effects on I(A) G(max) do not depend on LP or PD activity. These data suggest a role for tonic modulators in the regulation of voltage-gated ion channel number; and furthermore, that dopaminergic systems may be organized to limit the amount of change they can impose on a circuit.
Collapse
|
23
|
Santini E, Klann E. Dysregulated mTORC1-Dependent Translational Control: From Brain Disorders to Psychoactive Drugs. Front Behav Neurosci 2011; 5:76. [PMID: 22073033 PMCID: PMC3210466 DOI: 10.3389/fnbeh.2011.00076] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/21/2011] [Indexed: 01/09/2023] Open
Abstract
In the last decade, a plethora of studies utilizing pharmacological, biochemical, and genetic approaches have shown that precise translational control is required for long-lasting synaptic plasticity and the formation of long-term memory. Moreover, more recent studies indicate that alterations in translational control are a common pathophysiological feature of human neurological disorders, including developmental disorders, neuropsychiatric disorders, and neurodegenerative diseases. Finally, translational control mechanisms are susceptible to modification by psychoactive drugs. Taken together, these findings point to a central role for translational control in the regulation of synaptic function and behavior.
Collapse
Affiliation(s)
- Emanuela Santini
- Center for Neural Science, New York University New York, NY, USA
| | | |
Collapse
|
24
|
GLD-2/RNP-8 cytoplasmic poly(A) polymerase is a broad-spectrum regulator of the oogenesis program. Proc Natl Acad Sci U S A 2010; 107:17445-50. [PMID: 20855596 DOI: 10.1073/pnas.1012611107] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Regulated polyadenylation is a broadly conserved mechanism that controls key events during oogenesis. Pivotal to that mechanism is GLD-2, a catalytic subunit of cytoplasmic poly(A) polymerase (PAP). Caenorhabditis elegans GLD-2 forms an active PAP with multiple RNA-binding partners to regulate diverse aspects of germline and early embryonic development. One GLD-2 partner, RNP-8, was previously shown to influence oocyte fate specification. Here we use a genomic approach to identify transcripts selectively associated with both GLD-2 and RNP-8. Among the 335 GLD-2/RNP-8 potential targets, most were annotated as germline mRNAs and many as maternal mRNAs. These targets include gld-2 and rnp-8 themselves, suggesting autoregulation. Removal of either GLD-2 or RNP-8 resulted in shortened poly(A) tails and lowered abundance of four target mRNAs (oma-2, egg-1, pup-2, and tra-2); GLD-2 depletion also lowered the abundance of most GLD-2/RNP-8 putative target mRNAs when assayed on microarrays. Therefore, GLD-2/RNP-8 appears to polyadenylate and stabilize its target mRNAs. We also provide evidence that rnp-8 influences oocyte development; rnp-8 null mutants have more germ cell corpses and fewer oocytes than normal. Furthermore, RNP-8 appears to work synergistically with another GLD-2-binding partner, GLD-3, to ensure normal oogenesis. We propose that the GLD-2/RNP-8 enzyme is a broad-spectrum regulator of the oogenesis program that acts within an RNA regulatory network to specify and produce fully functional oocytes.
Collapse
|