1
|
Vilimelis Aceituno P, Dall'Osto D, Pisokas I. Theoretical principles explain the structure of the insect head direction circuit. eLife 2024; 13:e91533. [PMID: 38814703 PMCID: PMC11139481 DOI: 10.7554/elife.91533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/28/2024] [Indexed: 05/31/2024] Open
Abstract
To navigate their environment, insects need to keep track of their orientation. Previous work has shown that insects encode their head direction as a sinusoidal activity pattern around a ring of neurons arranged in an eight-column structure. However, it is unclear whether this sinusoidal encoding of head direction is just an evolutionary coincidence or if it offers a particular functional advantage. To address this question, we establish the basic mathematical requirements for direction encoding and show that it can be performed by many circuits, all with different activity patterns. Among these activity patterns, we prove that the sinusoidal one is the most noise-resilient, but only when coupled with a sinusoidal connectivity pattern between the encoding neurons. We compare this predicted optimal connectivity pattern with anatomical data from the head direction circuits of the locust and the fruit fly, finding that our theory agrees with experimental evidence. Furthermore, we demonstrate that our predicted circuit can emerge using Hebbian plasticity, implying that the neural connectivity does not need to be explicitly encoded in the genetic program of the insect but rather can emerge during development. Finally, we illustrate that in our theory, the consistent presence of the eight-column organisation of head direction circuits across multiple insect species is not a chance artefact but instead can be explained by basic evolutionary principles.
Collapse
Affiliation(s)
| | - Dominic Dall'Osto
- Institute of Neuroinformatics, University of Zürich and ETH ZürichZurichSwitzerland
| | - Ioannis Pisokas
- School of Informatics, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
2
|
Althaus V, Exner G, von Hadeln J, Homberg U, Rosner R. Anatomical organization of the cerebrum of the praying mantis Hierodula membranacea. J Comp Neurol 2024; 532:e25607. [PMID: 38501930 DOI: 10.1002/cne.25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Many predatory animals, such as the praying mantis, use vision for prey detection and capture. Mantises are known in particular for their capability to estimate distances to prey by stereoscopic vision. While the initial visual processing centers have been extensively documented, we lack knowledge on the architecture of central brain regions, pivotal for sensory motor transformation and higher brain functions. To close this gap, we provide a three-dimensional (3D) reconstruction of the central brain of the Asian mantis, Hierodula membranacea. The atlas facilitates in-depth analysis of neuron ramification regions and aides in elucidating potential neuronal pathways. We integrated seven 3D-reconstructed visual interneurons into the atlas. In total, 42 distinct neuropils of the cerebrum were reconstructed based on synapsin-immunolabeled whole-mount brains. Backfills from the antenna and maxillary palps, as well as immunolabeling of γ-aminobutyric acid (GABA) and tyrosine hydroxylase (TH), further substantiate the identification and boundaries of brain areas. The composition and internal organization of the neuropils were compared to the anatomical organization of the brain of the fruit fly (Drosophila melanogaster) and the two available brain atlases of Polyneoptera-the desert locust (Schistocerca gregaria) and the Madeira cockroach (Rhyparobia maderae). This study paves the way for detailed analyses of neuronal circuitry and promotes cross-species brain comparisons. We discuss differences in brain organization between holometabolous and polyneopteran insects. Identification of ramification sites of the visual neurons integrated into the atlas supports previous claims about homologous structures in the optic lobes of flies and mantises.
Collapse
Affiliation(s)
- Vanessa Althaus
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Gesa Exner
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Joss von Hadeln
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Ronny Rosner
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Department of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
- Biosciences Institute, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Beetz MJ, El Jundi B. The neurobiology of the Monarch butterfly compass. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101109. [PMID: 37660836 DOI: 10.1016/j.cois.2023.101109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Monarch butterflies (Danaus plexippus) have become a superb model system to unravel how the tiny insect brain controls an impressive navigation behavior, such as long-distance migration. Moreover, the ability to compare the neural substrate between migratory and nonmigratory Monarch butterflies provides us with an attractive model to specifically study how the insect brain is adapted for migration. We here review our current progress on the neural substrate of spatial orientation in Monarch butterflies and how their spectacular annual migration might be controlled by their brain. We also discuss open research questions, the answers to which will provide important missing pieces to obtain a full picture of insect migration - from the perception of orientation cues to the neural control of migration.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Basil El Jundi
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
4
|
Nguyen TAT, Beetz MJ, Merlin C, Pfeiffer K, el Jundi B. Weighting of Celestial and Terrestrial Cues in the Monarch Butterfly Central Complex. Front Neural Circuits 2022; 16:862279. [PMID: 35847485 PMCID: PMC9285895 DOI: 10.3389/fncir.2022.862279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Monarch butterflies rely on external cues for orientation during their annual long-distance migration from Northern US and Canada to Central Mexico. These external cues can be celestial cues, such as the sun or polarized light, which are processed in a brain region termed the central complex (CX). Previous research typically focused on how individual simulated celestial cues are encoded in the butterfly's CX. However, in nature, the butterflies perceive several celestial cues at the same time and need to integrate them to effectively use the compound of all cues for orientation. In addition, a recent behavioral study revealed that monarch butterflies can rely on terrestrial cues, such as the panoramic skyline, for orientation and use them in combination with the sun to maintain a directed flight course. How the CX encodes a combination of celestial and terrestrial cues and how they are weighted in the butterfly's CX is still unknown. Here, we examined how input neurons of the CX, termed TL neurons, combine celestial and terrestrial information. While recording intracellularly from the neurons, we presented a sun stimulus and polarized light to the butterflies as well as a simulated sun and a panoramic scene simultaneously. Our results show that celestial cues are integrated linearly in these cells, while the combination of the sun and a panoramic skyline did not always follow a linear integration of action potential rates. Interestingly, while the sun and polarized light were invariantly weighted between individual neurons, the sun stimulus and panoramic skyline were dynamically weighted when both stimuli were simultaneously presented. Taken together, this dynamic weighting between celestial and terrestrial cues may allow the butterflies to flexibly set their cue preference during navigation.
Collapse
Affiliation(s)
| | - M. Jerome Beetz
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States
| | - Keram Pfeiffer
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Basil el Jundi
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
- Department of Biology, Animal Physiology, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Basil el Jundi
| |
Collapse
|
5
|
Liu J, Zhang R, Li Y, Guan C, Liu R, Fu J, Chu J. A bio-inspired polarization navigation sensor based on artificial compound eyes. BIOINSPIRATION & BIOMIMETICS 2022; 17:046017. [PMID: 35576917 DOI: 10.1088/1748-3190/ac7021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Insect compound eyes are optical systems with small volume and a compact structure. The ommatidia in the dorsal rim area of some insects have polarized vision, which can perceive the polarization pattern of the sky and provide them with navigation information. In this paper, inspired by the polarization-sensitive compound eyes of insects, a bio-inspired polarization navigation sensor based on artificial compound eyes is designed. The sensor consists of an artificial compound eye, an integrated polarization detector and an integrated circuit. The optical path of the sensor uses the lens defocus method, which can ensure that the sensor obtains redundant polarization information. The integrated polarization detector is used to obtain the polarization information of the incident light, and the integrated circuit is responsible for the calculation. To extract effective information from images, we propose a multi-threshold segmentation method to filter and classify effective pixels. We use the least squares method to fit the inherent error of the sensor and then compensate it. The indoor calibration accuracy of the sensor is ±0.3°, and the outdoor calibration accuracy is ±0.5°. The sensor can provide accurate direction information for general smart mobile devices. The size of the sensor is 4 × 4 × 2 cm, and the weight is only 15 g. The key components of the sensor can be mass-produced, and it is a miniaturized and low-cost polarization navigation sensor.
Collapse
Affiliation(s)
- Jianying Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Ran Zhang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yahong Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Chuanlong Guan
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Rui Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Jiaxin Fu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Jinkui Chu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
6
|
Chowdhury S, Fuller RA, Dingle H, Chapman JW, Zalucki MP. Migration in butterflies: a global overview. Biol Rev Camb Philos Soc 2021; 96:1462-1483. [PMID: 33783119 DOI: 10.1111/brv.12714] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023]
Abstract
Insect populations including butterflies are declining worldwide, and they are becoming an urgent conservation priority in many regions. Understanding which butterfly species migrate is critical to planning for their conservation, because management actions for migrants need to be coordinated across time and space. Yet, while migration appears to be widespread among butterflies, its prevalence, as well as its taxonomic and geographic distribution are poorly understood. The study of insect migration is hampered by their small size and the difficulty of tracking individuals over long distances. Here we review the literature on migration in butterflies, one of the best-known insect groups. We find that nearly 600 butterfly species show evidence of migratory movements. Indeed, the rate of 'discovery' of migratory movements in butterflies suggests that many more species might in fact be migratory. Butterfly migration occurs across all families, in tropical as well as temperate taxa; Nymphalidae has more migratory species than any other family (275 species), and Pieridae has the highest proportion of migrants (13%; 133 species). Some 13 lines of evidence have been used to ascribe migration status in the literature, but only a single line of evidence is available for 92% of the migratory species identified, with four or more lines of evidence available for only 10 species - all from the Pieridae and Nymphalidae. Migratory butterflies occur worldwide, although the geographic distribution of migration in butterflies is poorly resolved, with most data so far coming from Europe, USA, and Australia. Migration is much more widespread in butterflies than previously realised - extending far beyond the well-known examples of the monarch Danaus plexippus and the painted lady Vanessa cardui - and actions to conserve butterflies and insects in general must account for the spatial dependencies introduced by migratory movements.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Richard A Fuller
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Hugh Dingle
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Jason W Chapman
- Biosciences, Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.,College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
7
|
Lancer BH, Evans BJE, Wiederman SD. The visual neuroecology of anisoptera. CURRENT OPINION IN INSECT SCIENCE 2020; 42:14-22. [PMID: 32841784 DOI: 10.1016/j.cois.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Dragonflies belong to the oldest known lineage of flying animals, found across the globe around streams, ponds and forests. They are insect predators, specialising in ambush attack as aquatic larvae and rapid pursuit as adults. Dragonfly adults hunt amidst swarms in conditions that confuse many predatory species, and exhibit capture rates above 90%. Underlying the performance of such a remarkable predator is a finely tuned visual system capable of tracking targets amidst distractors and background clutter. The dragonfly performs a complex repertoire of flight behaviours, from near-motionless hovering to acute turns at high speeds. Here, we review the optical, neuronal, and behavioural adaptations that underlie the dragonflies' ability to achieve such remarkable predatory success.
Collapse
Affiliation(s)
- Benjamin Horatio Lancer
- Adelaide Medical School, The University of Adelaide, Adelaide, 5005 South Australia, Australia
| | | | - Steven D Wiederman
- Adelaide Medical School, The University of Adelaide, Adelaide, 5005 South Australia, Australia.
| |
Collapse
|
8
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
9
|
Merlin C, Iiams SE, Lugena AB. Monarch Butterfly Migration Moving into the Genetic Era. Trends Genet 2020; 36:689-701. [DOI: 10.1016/j.tig.2020.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
|
10
|
Held M, Le K, Pegel U, Dersch F, Beetz MJ, Pfeiffer K, Homberg U. Anatomical and ultrastructural analysis of the posterior optic tubercle in the locust Schistocerca gregaria. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 58:100971. [PMID: 32755758 DOI: 10.1016/j.asd.2020.100971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Locusts, like other insects, partly rely on a sun compass mechanism for spatial orientation during seasonal migrations. To serve as a useful guiding cue throughout the day, however, the sun's apparent movement has to be accounted for. In locusts, a neural pathway from the accessory medulla, the circadian pacemaker, via the posterior optic tubercle, to the protocerebral bridge, part of the internal sky compass, has been proposed to mediate the required time compensation. Toward a better understanding of neural connectivities within the posterior optic tubercle, we investigated this neuropil using light and electron microscopy. Based on vesicle content, four types of synaptic profile were distinguished within the posterior optic tubercle. Immunogold labeling showed that pigment-dispersing hormone immunoreactive neurons from the accessory medulla, containing large dense-core vesicles, have presynaptic terminals in the posterior optic tubercle. Ultrastructural examination of two Neurobiotin-injected tangential neurons of the protocerebral bridge revealed that these neurons are postsynaptic in the posterior optic tubercle. Our data, therefore, support a role of the posterior optic tubercles in mediating circadian input to the insect sky compass.
Collapse
Affiliation(s)
- Martina Held
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany.
| | - Kim Le
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uta Pegel
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Florian Dersch
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - M Jerome Beetz
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Keram Pfeiffer
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
11
|
Franzke M, Kraus C, Dreyer D, Pfeiffer K, Beetz MJ, Stöckl AL, Foster JJ, Warrant EJ, El Jundi B. Spatial orientation based on multiple visual cues in non-migratory monarch butterflies. J Exp Biol 2020; 223:jeb223800. [PMID: 32341174 DOI: 10.1242/jeb.223800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022]
Abstract
Monarch butterflies (Danaus plexippus) are prominent for their annual long-distance migration from North America to their overwintering area in Central Mexico. To find their way on this long journey, they use a sun compass as their main orientation reference but will also adjust their migratory direction with respect to mountain ranges. This indicates that the migratory butterflies also attend to the panorama to guide their travels. Although the compass has been studied in detail in migrating butterflies, little is known about the orientation abilities of non-migrating butterflies. Here, we investigated whether non-migrating butterflies - which stay in a more restricted area to feed and breed - also use a similar compass system to guide their flights. Performing behavioral experiments on tethered flying butterflies in an indoor LED flight simulator, we found that the monarchs fly along straight tracks with respect to a simulated sun. When a panoramic skyline was presented as the only orientation cue, the butterflies maintained their flight direction only during short sequences, suggesting that they potentially use it for flight stabilization. We further found that when we presented the two cues together, the butterflies incorporate both cues in their compass. Taken together, we show here that non-migrating monarch butterflies can combine multiple visual cues for robust orientation, an ability that may also aid them during their migration.
Collapse
Affiliation(s)
- Myriam Franzke
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - Christian Kraus
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - David Dreyer
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Keram Pfeiffer
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - M Jerome Beetz
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - Anna L Stöckl
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - James J Foster
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Eric J Warrant
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| |
Collapse
|
12
|
Multimodal interactions in insect navigation. Anim Cogn 2020; 23:1129-1141. [PMID: 32323027 PMCID: PMC7700066 DOI: 10.1007/s10071-020-01383-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023]
Abstract
Animals travelling through the world receive input from multiple sensory modalities that could be important for the guidance of their journeys. Given the availability of a rich array of cues, from idiothetic information to input from sky compasses and visual information through to olfactory and other cues (e.g. gustatory, magnetic, anemotactic or thermal) it is no surprise to see multimodality in most aspects of navigation. In this review, we present the current knowledge of multimodal cue use during orientation and navigation in insects. Multimodal cue use is adapted to a species’ sensory ecology and shapes navigation behaviour both during the learning of environmental cues and when performing complex foraging journeys. The simultaneous use of multiple cues is beneficial because it provides redundant navigational information, and in general, multimodality increases robustness, accuracy and overall foraging success. We use examples from sensorimotor behaviours in mosquitoes and flies as well as from large scale navigation in ants, bees and insects that migrate seasonally over large distances, asking at each stage how multiple cues are combined behaviourally and what insects gain from using different modalities.
Collapse
|
13
|
Abstract
Preference for spatial locations to maximize favorable outcomes and minimize aversive experiences helps animals survive and adapt to the changing environment. Both visual and non-visual cues play a critical role in spatial navigation and memory of a place supports and guides these strategies. Here we present the neural, genetic and behavioral processes involved in place memory formation using Drosophila melanogaster with a focus on non-visual cue based spatial memories. The work presented here highlights the work done by Dr. Troy Zars and his colleagues with an emphasis on role of biogenic amines in learning, cell biological mechanisms of neural systems and behavioral plasticity of place conditioning.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Psychology, College of Science, California State University-East Bay, Hayward, CA, USA
| | - Holly LaFerriere
- Department of Biology, Bemidji State University, Bemidji, MN, USA
| |
Collapse
|
14
|
von Hadeln J, Hensgen R, Bockhorst T, Rosner R, Heidasch R, Pegel U, Quintero Pérez M, Homberg U. Neuroarchitecture of the central complex of the desert locust: Tangential neurons. J Comp Neurol 2019; 528:906-934. [PMID: 31625611 DOI: 10.1002/cne.24796] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
The central complex (CX) comprises a group of midline neuropils in the insect brain, consisting of the protocerebral bridge (PB), the upper (CBU) and lower division (CBL) of the central body and a pair of globular noduli. It receives prominent input from the visual system and plays a major role in spatial orientation of the animals. Vertical slices and horizontal layers of the CX are formed by columnar, tangential, and pontine neurons. While pontine and columnar neurons have been analyzed in detail, especially in the fruit fly and desert locust, understanding of the organization of tangential cells is still rudimentary. As a basis for future functional studies, we have studied the morphologies of tangential neurons of the CX of the desert locust Schistocerca gregaria. Intracellular dye injections revealed 43 different types of tangential neuron, 8 of the PB, 5 of the CBL, 24 of the CBU, 2 of the noduli, and 4 innervating multiple substructures. Cell bodies of these neurons were located in 11 different clusters in the cell body rind. Judging from the presence of fine versus beaded terminals, the vast majority of these neurons provide input into the CX, especially from the lateral complex (LX), the superior protocerebrum, the posterior slope, and other surrounding brain areas, but not directly from the mushroom bodies. Connections are largely subunit- and partly layer-specific. No direct connections were found between the CBU and the CBL. Instead, both subdivisions are connected in parallel with the PB and distinct layers of the noduli.
Collapse
Affiliation(s)
- Joss von Hadeln
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronja Hensgen
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Tobias Bockhorst
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronny Rosner
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronny Heidasch
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uta Pegel
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Manuel Quintero Pérez
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uwe Homberg
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
15
|
Abstract
Every fall, millions of North American monarch butterflies undergo a stunning long-distance migration to reach their overwintering grounds in Mexico. Migration allows the butterflies to escape freezing temperatures and dying host plants, and reduces infections with a virulent parasite. We discuss the multigenerational migration journey and its evolutionary history, and highlight the navigational mechanisms of migratory monarchs. Monarchs use a bidirectional time-compensated sun compass for orientation, which is based on a time-compensating circadian clock that resides in the antennae, and which has a distinctive molecular mechanism. Migrants can also use a light-dependent inclination magnetic compass for orientation under overcast conditions. Additional environmental features, e.g., atmospheric conditions, geologic barriers, and social interactions, likely augment navigation. The publication of the monarch genome and the development of gene-editing strategies have enabled the dissection of the genetic and neurobiological basis of the migration. The monarch butterfly has emerged as an excellent system to study the ecological, neural, and genetic basis of long-distance animal migration.
Collapse
Affiliation(s)
- Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
16
|
Pegel U, Pfeiffer K, Zittrell F, Scholtyssek C, Homberg U. Two Compasses in the Central Complex of the Locust Brain. J Neurosci 2019; 39:3070-3080. [PMID: 30755489 PMCID: PMC6468101 DOI: 10.1523/jneurosci.0940-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 11/21/2022] Open
Abstract
Many migratory insects rely on a celestial compass for spatial orientation. Several features of the daytime sky, all generated by the sun, can be exploited for navigation. Two of these are the position of the sun and the pattern of polarized skylight. Neurons of the central complex (CX), a group of neuropils in the central brain of insects, have been shown to encode sky compass cues. In desert locusts, the CX holds a topographic, compass-like representation of the plane of polarized light (E-vector) presented from dorsal direction. In addition, these neurons also encode the azimuth of an unpolarized light spot, likely representing the sun. Here, we investigate whether, in addition to E-vector orientation, the solar azimuth is represented topographically in the CX. We recorded intracellularly from eight types of CX neuron while stimulating animals of either sex with polarized blue light from zenithal direction and an unpolarized green light spot rotating around the animal's head at different elevations. CX neurons did not code for elevation of the unpolarized light spot. However, two types of columnar neuron showed a linear correlation between innervated slice in the CX and azimuth tuning to the unpolarized green light spot, consistent with an internal compass representation of solar azimuth. Columnar outputs of the CX also showed a topographic representation of zenithal E-vector orientation, but the two compasses were not linked to each other. Combined stimulation with unpolarized green and polarized blue light suggested that the two compasses interact in a nonlinear way.SIGNIFICANCE STATEMENT In the brain of the desert locust, neurons sensitive to the plane of celestial polarization are arranged like a compass in the slices of the central complex (CX). These neurons, in addition, code for the horizontal direction of an unpolarized light cue possibly representing the sun. We show here that horizontal directions are, in addition to E-vector orientations from the dorsal direction, represented in a compass-like manner across the slices of the CX. However, the two compasses are not linked to each other, but rather seem to interact in a cell-specific, nonlinear way. Our study confirms the role of the CX in signaling heading directions and shows that different cues are used for this task.
Collapse
Affiliation(s)
- Uta Pegel
- Animal Physiology, Department of Biology and Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and
| | - Frederick Zittrell
- Animal Physiology, Department of Biology and Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Christine Scholtyssek
- School of Experimental Psychology, University of Bristol, Bristol BS8 1TU, United Kingdom
| | - Uwe Homberg
- Animal Physiology, Department of Biology and Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany,
| |
Collapse
|
17
|
Chae KS, Oh IT, Lee SH, Kim SC. Blue light-dependent human magnetoreception in geomagnetic food orientation. PLoS One 2019; 14:e0211826. [PMID: 30763322 PMCID: PMC6375564 DOI: 10.1371/journal.pone.0211826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/22/2019] [Indexed: 02/03/2023] Open
Abstract
The Earth's geomagnetic field (GMF) is known to influence magnetoreceptive creatures, from bacteria to mammals as a sensory cue or a physiological modulator, despite it is largely thought that humans cannot sense the GMF. Here, we show that humans sense the GMF to orient their direction toward food in a self-rotatory chair experiment. Starved men, but not women, significantly oriented toward the ambient/modulated magnetic north or east, directions which had been previously food-associated, without any other helpful cues, including sight and sound. The orientation was reproduced under blue light but was abolished under a blindfold or a longer wavelength light (> 500 nm), indicating that blue light is necessary for magnetic orientation. Importantly, inversion of the vertical component of the GMF resulted in orientation toward the magnetic south and blood glucose levels resulting from food appeared to act as a motivator for sensing a magnetic field direction. The results demonstrate that male humans sense GMF in a blue light-dependent manner and suggest that the geomagnetic orientations are mediated by an inclination compass.
Collapse
Affiliation(s)
- Kwon-Seok Chae
- Department of Biology Education Kyungpook National University, Daegu, Republic of Korea
- Department of Nanoscience & Nanotechnology, Kyungpook National University, Daegu, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - In-Taek Oh
- Department of Biology Education Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Hyup Lee
- Department of Biology Education Kyungpook National University, Daegu, Republic of Korea
| | - Soo-Chan Kim
- Department of Electrical and Electronic Engineering, Institute for IT Convergence, Hankyong National University, Anseong, Republic of Korea
| |
Collapse
|
18
|
Honkanen A, Adden A, da Silva Freitas J, Heinze S. The insect central complex and the neural basis of navigational strategies. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb188854. [PMID: 30728235 DOI: 10.1242/jeb.188854] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oriented behaviour is present in almost all animals, indicating that it is an ancient feature that has emerged from animal brains hundreds of millions of years ago. Although many complex navigation strategies have been described, each strategy can be broken down into a series of elementary navigational decisions. In each moment in time, an animal has to compare its current heading with its desired direction and compensate for any mismatch by producing a steering response either to the right or to the left. Different from reflex-driven movements, target-directed navigation is not only initiated in response to sensory input, but also takes into account previous experience and motivational state. Once a series of elementary decisions are chained together to form one of many coherent navigation strategies, the animal can pursue a navigational target, e.g. a food source, a nest entrance or a constant flight direction during migrations. Insects show a great variety of complex navigation behaviours and, owing to their small brains, the pursuit of the neural circuits controlling navigation has made substantial progress over the last years. A brain region as ancient as insects themselves, called the central complex, has emerged as the likely navigation centre of the brain. Research across many species has shown that the central complex contains the circuitry that might comprise the neural substrate of elementary navigational decisions. Although this region is also involved in a wide range of other functions, we hypothesize in this Review that its role in mediating the animal's next move during target-directed behaviour is its ancestral function, around which other functions have been layered over the course of evolution.
Collapse
Affiliation(s)
- Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | | | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
19
|
El Jundi B, Baird E, Byrne MJ, Dacke M. The brain behind straight-line orientation in dung beetles. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb192450. [PMID: 30728239 DOI: 10.1242/jeb.192450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For many insects, celestial compass cues play an important role in keeping track of their directional headings. One well-investigated group of celestial orientating insects are the African ball-rolling dung beetles. After finding a dung pile, these insects detach a piece, form it into a ball and roll it away along a straight path while facing backwards. A brain region, termed the central complex, acts as an internal compass that constantly updates the ball-rolling dung beetle about its heading. In this review, we give insights into the compass network behind straight-line orientation in dung beetles and place it in the context of the orientation mechanisms and neural networks of other insects. We find that the neuronal network behind straight-line orientation in dung beetles has strong similarities to the ones described in path-integrating and migrating insects, with the central complex being the key control point for this behavior. We conclude that, despite substantial differences in behavior and navigational challenges, dung beetles encode compass information in a similar way to other insects.
Collapse
Affiliation(s)
- Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, Emmy-Noether Group, 97074 Würzburg, Germany
| | - Emily Baird
- Stockholm University, Faculty of Science, Department of Zoology, Division of Functional Morphology, 10691 Stockholm, Sweden
| | - Marcus J Byrne
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa
| | - Marie Dacke
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa.,Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| |
Collapse
|
20
|
Minter M, Pearson A, Lim KS, Wilson K, Chapman JW, Jones CM. The tethered flight technique as a tool for studying life-history strategies associated with migration in insects. ECOLOGICAL ENTOMOLOGY 2018; 43:397-411. [PMID: 30046219 PMCID: PMC6055614 DOI: 10.1111/een.12521] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 05/02/2023]
Abstract
1. Every year billions of insects engage in long-distance, seasonal mass migrations which have major consequences for agriculture, ecosystem services and insect-vectored diseases. Tracking this movement in the field is difficult, with mass migrations often occurring at high altitudes and over large spatial scales. 2. As such, tethered flight provides a valuable tool for studying the flight behaviour of insects, giving insights into flight propensity (e.g. distance, duration and velocity) and orientation under controlled laboratory settings. By experimentally manipulating a variety of environmental and physiological traits, numerous studies have used this technology to study the flight behaviour of migratory insects ranging in size from aphids to butterflies. Advances in functional genomics promise to extend this to the identification of genetic factors associated with flight. Tethered flight techniques have been used to study migratory flight characteristics in insects for more than 50 years, but have never been reviewed. 3. This study summarises the key findings of this technology, which has been employed in studies of species from six Orders. By providing detailed descriptions of the tethered flight systems, the present study also aims to further the understanding of how tethered flight studies support field observations, the situations under which the technology is useful and how it might be used in future studies. 4. The aim is to contextualise the available tethered flight studies within the broader knowledge of insect migration and to describe the significant contribution these systems have made to the literature.
Collapse
Affiliation(s)
- Melissa Minter
- Department of BiologyUniversity of York, Heslington WayYorkU.K.
- Biointeractions and Crop Protection, Rothamsted ResearchHertfordshireU.K.
| | - Aislinn Pearson
- Computational and Analytical Sciences, Rothamsted ResearchHertfordshireU.K.
| | - Ka S. Lim
- Computational and Analytical Sciences, Rothamsted ResearchHertfordshireU.K.
| | - Kenneth Wilson
- Lancaster Environment CentreLancaster UniversityLancasterU.K.
| | - Jason W. Chapman
- Centre for Ecology and ConservationUniversity of ExeterCornwallU.K.
| | - Christopher M. Jones
- Biointeractions and Crop Protection, Rothamsted ResearchHertfordshireU.K.
- Vector Biology, Liverpool School of Tropical MedicineLiverpoolU.K.
| |
Collapse
|
21
|
Wang Y, Chu J, Zhang R, Shi C. Orthogonal vector algorithm to obtain the solar vector using the single-scattering Rayleigh model. APPLIED OPTICS 2018; 57:594-601. [PMID: 29400721 DOI: 10.1364/ao.57.000594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
Information obtained from a polarization pattern in the sky provides many animals like insects and birds with vital long-distance navigation cues. The solar vector can be derived from the polarization pattern using the single-scattering Rayleigh model. In this paper, an orthogonal vector algorithm, which utilizes the redundancy of the single-scattering Rayleigh model, is proposed. We use the intersection angles between the polarization vectors as the main criteria in our algorithm. The assumption that all polarization vectors can be considered coplanar is used to simplify the three-dimensional (3D) problem with respect to the polarization vectors in our simulation. The surface-normal vector of the plane, which is determined by the polarization vectors after translation, represents the solar vector. Unfortunately, the two-directionality of the polarization vectors makes the resulting solar vector ambiguous. One important result of this study is, however, that this apparent disadvantage has no effect on the complexity of the algorithm. Furthermore, two other universal least-squares algorithms were investigated and compared. A device was then constructed, which consists of five polarized-light sensors as well as a 3D attitude sensor. Both the simulation and experimental data indicate that the orthogonal vector algorithms, if used with a suitable threshold, perform equally well or better than the other two algorithms. Our experimental data reveal that if the intersection angles between the polarization vectors are close to 90°, the solar-vector angle deviations are small. The data also support the assumption of coplanarity. During the 51 min experiment, the mean of the measured solar-vector angle deviations was about 0.242°, as predicted by our theoretical model.
Collapse
|
22
|
de Vries L, Pfeiffer K, Trebels B, Adden AK, Green K, Warrant E, Heinze S. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths. Front Behav Neurosci 2017; 11:158. [PMID: 28928641 PMCID: PMC5591330 DOI: 10.3389/fnbeh.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species-thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in the detailed wiring characteristics of the neural circuits underlying navigation-differences that are only accessible through detailed physiological and ultrastructural investigations. The presented results aid this task in two ways. First, the identified differences in neuropil volumes serve as promising initial targets for electrophysiology. Second, the new standard atlases provide an anatomical reference frame for embedding all functional data obtained from the brains of the Bogong and the Turnip moth.
Collapse
Affiliation(s)
- Liv de Vries
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Keram Pfeiffer
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Björn Trebels
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Andrea K Adden
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Ken Green
- New South Wales National Parks and Wildlife ServiceJindabyne, NSW, Australia
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| |
Collapse
|
23
|
Abstract
The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, 'color-blind' humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert 'water below!' to water-seeking bugs.
Collapse
Affiliation(s)
- Thomas Labhart
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zürich CH 8057, Switzerland
| |
Collapse
|
24
|
Flight Morphology, Compound Eye Structure and Dispersal in the Bog and the Cranberry Fritillary Butterflies: An Inter- and Intraspecific Comparison. PLoS One 2016; 11:e0158073. [PMID: 27336590 PMCID: PMC4919012 DOI: 10.1371/journal.pone.0158073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
Understanding dispersal is of prime importance in conservation and population biology. Individual traits related to motion and navigation during dispersal may differ: (1) among species differing in habitat distribution, which in turn, may lead to interspecific differences in the potential for and costs of dispersal, (2) among populations of a species that experiences different levels of habitat fragmentation; (3) among individuals differing in their dispersal strategy and (4) between the sexes due to sexual differences in behaviour and dispersal tendencies. In butterflies, the visual system plays a central role in dispersal, but exactly how the visual system is related to dispersal has received far less attention than flight morphology. We studied two butterfly species to explore the relationships between flight and eye morphology, and dispersal. We predicted interspecific, intraspecific and intersexual differences for both flight and eye morphology relative to i) species-specific habitat distribution, ii) variation in dispersal strategy within each species and iii) behavioural differences between sexes. However, we did not investigate for potential population differences. We found: (1) sexual differences that presumably reflect different demands on both male and female visual and flight systems, (2) a higher wing loading (i.e. a proxy for flight performance), larger eyes and larger facet sizes in the frontal and lateral region of the eye (i.e. better navigation capacities) in the species inhabiting naturally fragmented habitat compared to the species inhabiting rather continuous habitat, and (3) larger facets in the frontal region in dispersers compared to residents within a species. Hence, dispersers may have similar locomotory capacity but potentially better navigation capacity. Dispersal ecology and evolution have attracted much attention, but there are still significant gaps in our understanding of the mechanisms of dispersal. Unfortunately, for many species we lack detailed information on the role of behavioural, morphological and physiological traits for dispersal. Our novel study supports the existence of inter- and intra-specific evolutionary responses in both motion and navigation capacities (i.e. flight and eye morphology) linked to dispersal.
Collapse
|
25
|
El Jundi B, Foster JJ, Khaldy L, Byrne MJ, Dacke M, Baird E. A Snapshot-Based Mechanism for Celestial Orientation. Curr Biol 2016; 26:1456-62. [PMID: 27185557 DOI: 10.1016/j.cub.2016.03.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 10/21/2022]
Abstract
In order to protect their food from competitors, ball-rolling dung beetles detach a piece of dung from a pile, shape it into a ball, and roll it away along a straight path [1]. They appear to rely exclusively on celestial compass cues to maintain their bearing [2-8], but the mechanism that enables them to use these cues for orientation remains unknown. Here, we describe the orientation strategy that allows dung beetles to use celestial cues in a dynamic fashion. We tested the underlying orientation mechanism by presenting beetles with a combination of simulated celestial cues (sun, polarized light, and spectral cues). We show that these animals do not rely on an innate prediction of the natural geographical relationship between celestial cues, as other navigating insects seem to [9, 10]. Instead, they appear to form an internal representation of the prevailing celestial scene, a "celestial snapshot," even if that scene represents a physical impossibility for the real sky. We also find that the beetles are able to maintain their bearing with respect to the presented cues only if the cues are visible when the snapshot is taken. This happens during the "dance," a behavior in which the beetle climbs on top of its ball and rotates about its vertical axis [11]. This strategy for reading celestial signals is a simple but efficient mechanism for straight-line orientation.
Collapse
Affiliation(s)
- Basil El Jundi
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden.
| | - James J Foster
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Emily Baird
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
26
|
Abstract
Studies of the migration of the eastern North American monarch butterfly (Danaus plexippus) have revealed mechanisms behind its navigation. The main orientation mechanism uses a time-compensated sun compass during both the migration south and the remigration north. Daylight cues, such as the sun itself and polarized light, are processed through both eyes and integrated through intricate circuitry in the brain's central complex, the presumed site of the sun compass. Monarch circadian clocks have a distinct molecular mechanism, and those that reside in the antennae provide time compensation. Recent evidence shows that migrants can also use a light-dependent inclination magnetic compass for orientation in the absence of directional daylight cues. The monarch genome has been sequenced, and genetic strategies using nuclease-based technologies have been developed to edit specific genes. The monarch butterfly has emerged as a model system to study the neural, molecular, and genetic basis of long-distance animal migration.
Collapse
Affiliation(s)
- Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605; ,
| | - Patrick A Guerra
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605; ,
| | - Christine Merlin
- Department of Biology, Texas A&M University, College Station, Texas 77843;
| |
Collapse
|
27
|
Compass Cells in the Brain of an Insect Are Sensitive to Novel Events in the Visual World. PLoS One 2015; 10:e0144501. [PMID: 26636334 PMCID: PMC4670205 DOI: 10.1371/journal.pone.0144501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/19/2015] [Indexed: 11/29/2022] Open
Abstract
The central complex of the insect brain comprises a group of neuropils involved in spatial orientation and memory. In fruit flies it mediates place learning based on visual landmarks and houses neurons that encode the orientation for goal-directed locomotion, based on landmarks and self-motion cues for angular path-integration. In desert locusts, the central complex holds a compass-like representation of head directions, based on the polarization pattern of skylight. Through intracellular recordings from immobilized locusts, we investigated whether sky compass neurons of the central complex also represent the position or any salient feature of possible landmarks, in analogy to the observations in flies. Neurons showed strongest responses to the novel appearance of a small moving square, but we found no evidence for a topographic representation of object positions. Responses to an individual square were independent of direction of motion and trajectory, but showed rapid adaptation to successive stimulation, unaffected by changing the direction of motion. Responses reappeared, however, if the moving object changed its trajectory or if it suddenly reversed moving direction against the movement of similar objects that make up a coherent background-flow as induced by ego-motion. Response amplitudes co-varied with the precedent state of dynamic background activity, a phenomenon that has been related to attention-dependent saliency coding in neurons of the mammalian primary visual cortex. The data show that neurons of the central complex of the locust brain are visually bimodal, signaling sky compass direction and the novelty character of moving objects. These response properties might serve to attune compass-aided locomotor control to unexpected events in the environment. The difference to data obtained in fruit flies might relate to differences in the lifestyle of landmark learners (fly) and compass navigators (locust), point to the existence of parallel networks for the two orientation strategies, or reflect differences in experimental conditions.
Collapse
|
28
|
Zeller M, Held M, Bender J, Berz A, Heinloth T, Hellfritz T, Pfeiffer K. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input. PLoS One 2015; 10:e0143244. [PMID: 26630286 PMCID: PMC4667876 DOI: 10.1371/journal.pone.0143244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/02/2015] [Indexed: 01/27/2023] Open
Abstract
Honeybees are known for their ability to use the sun's azimuth and the sky's polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian clock.
Collapse
Affiliation(s)
- Maximilian Zeller
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Martina Held
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Julia Bender
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Annuska Berz
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Tanja Heinloth
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Timm Hellfritz
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Keram Pfeiffer
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
29
|
Arendt A, Neupert S, Schendzielorz J, Predel R, Stengl M. The neuropeptide SIFamide in the brain of three cockroach species. J Comp Neurol 2015; 524:1337-60. [DOI: 10.1002/cne.23910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Andreas Arendt
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Susanne Neupert
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Julia Schendzielorz
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Reinhard Predel
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Monika Stengl
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| |
Collapse
|
30
|
|
31
|
Tian LX, Pan YX, Metzner W, Zhang JS, Zhang BF. Bats respond to very weak magnetic fields. PLoS One 2015; 10:e0123205. [PMID: 25922944 PMCID: PMC4414586 DOI: 10.1371/journal.pone.0123205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 03/01/2015] [Indexed: 11/18/2022] Open
Abstract
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.
Collapse
Affiliation(s)
- Lan-Xiang Tian
- Biogeomagnetism Group, PGL, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China
| | - Yong-Xin Pan
- Biogeomagnetism Group, PGL, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| | - Walter Metzner
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Jin-Shuo Zhang
- National Zoological Museum, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing-Fang Zhang
- Biogeomagnetism Group, PGL, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Guerra PA, Reppert SM. Sensory basis of lepidopteran migration: focus on the monarch butterfly. Curr Opin Neurobiol 2015; 34:20-8. [PMID: 25625216 DOI: 10.1016/j.conb.2015.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 01/27/2023]
Abstract
In response to seasonal habitats, migratory lepidopterans, exemplified by the monarch butterfly, have evolved migration to deal with dynamic conditions. During migration, monarchs use orientation mechanisms, exploiting a time-compensated sun compass and a light-sensitive inclination magnetic compass to facilitate fall migration south. The sun compass is bidirectional with overwintering coldness triggering the change in orientation direction for remigration northward in the spring. The timing of the remigration and milkweed emergence in the southern US have co-evolved for propagation of the migration. Current research is uncovering the anatomical and molecular substrates that underlie migratory-relevant sensory mechanisms with the antennae being critical components. Orientation mechanisms may be detrimentally affected by environmental factors such as climate change and sensory interference from human-generated sources.
Collapse
Affiliation(s)
- Patrick A Guerra
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
33
|
Bockhorst T, Homberg U. Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain. J Neurophysiol 2015; 113:3291-311. [PMID: 25609107 DOI: 10.1152/jn.00742.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/20/2015] [Indexed: 11/22/2022] Open
Abstract
The polarization pattern of skylight provides a compass cue that various insect species use for allocentric orientation. In the desert locust, Schistocerca gregaria, a network of neurons tuned to the electric field vector (E-vector) angle of polarized light is present in the central complex of the brain. Preferred E-vector angles vary along slices of neuropils in a compasslike fashion (polarotopy). We studied how the activity in this polarotopic population is modulated in ways suited to control compass-guided locomotion. To this end, we analyzed tuning profiles using measures of correlation between spike rate and E-vector angle and, furthermore, tested for adaptation to stationary angles. The results suggest that the polarotopy is stabilized by antagonistic integration across neurons with opponent tuning. Downstream to the input stage of the network, responses to stationary E-vector angles adapted quickly, which may correlate with a tendency to steer a steady course previously observed in tethered flying locusts. By contrast, rotating E-vectors corresponding to changes in heading direction under a natural sky elicited nonadapting responses. However, response amplitudes were particularly variable at the output stage, covarying with the level of ongoing activity. Moreover, the responses to rotating E-vector angles depended on the direction of rotation in an anticipatory manner. Our observations support a view of the central complex as a substrate of higher-stage processing that could assign contextual meaning to sensory input for motor control in goal-driven behaviors. Parallels to higher-stage processing of sensory information in vertebrates are discussed.
Collapse
Affiliation(s)
- Tobias Bockhorst
- Animal Physiology, Department of Biology, Philipps University, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps University, Marburg, Germany
| |
Collapse
|
34
|
Ma T, Hu X, Lian J, Zhang L. Compass information extracted from a polarization sensor using a least-squares algorithm. APPLIED OPTICS 2014; 53:6735-6741. [PMID: 25322376 DOI: 10.1364/ao.53.006735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
Skylight polarization provides a significant navigation cue for certain polarization-sensitive animals. We designed a polarization navigation sensor based on the polarization sensitivity mechanism of insects. In this paper, the principle of our polarization navigation sensor is introduced. The relationship between the degree of polarization (DOP) and the error of the angle of polarization (AOP) is examined. A new DOP and AOP calculation algorithm using a linear least-squares algorithm is presented. The results of simulation and experiments reveal the essentiality of DOP calculation and demonstrate the efficiency and accuracy of the proposed algorithm.
Collapse
|
35
|
Wan GJ, Jiang SL, Zhao ZC, Xu JJ, Tao XR, Sword GA, Gao YB, Pan WD, Chen FJ. Bio-effects of near-zero magnetic fields on the growth, development and reproduction of small brown planthopper, Laodelphax striatellus and brown planthopper, Nilaparvata lugens. JOURNAL OF INSECT PHYSIOLOGY 2014; 68:7-15. [PMID: 24995837 DOI: 10.1016/j.jinsphys.2014.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/04/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Magnetic fields markedly affect the growth and development of many species of organisms potentially due to cryptochrome and endogenous presence of magnetic materials. Sensitivity to magnetic fields can also be involved in geomagnetic orientation by some long-distance migratory insects. In this study, near-zero magnetic fields (NZMF) in relation to normal geomagnetic fields (GMF) were setup using the Hypomagnetic Field Space System (HMFs) to investigate the effects of magnetic fields on the growth, development and reproduction of two species of migratory planthopper, the small brown planthopper (abbr. SBPH), Laodelphax striatellus, and the brown planthopper (abbr. BPH), Nilaparvata lugens. Exposure of both L. striatellus and N. lugens to NZMF delayed egg and nymphal developmental durations and decreased adult weight and female fecundity. The 1st-5th instars of SBPH and BPH showed different responses to NZMF. The 4th instar was significantly affected by NZMF, especially for BPH males, in which NZMF exposure reduced the difference in development duration between females and males. Compared with GMF, the vitellogenin transcript levels of newly molted female adults and the number of eggs per female were significantly reduced in both planthopper species, indicating a negative effect on fertility under NZMF. Our findings provided experimental evidence that NZMF negatively affected the growth and development of SBPH and BPH, with particularly strong effects on reproduction.
Collapse
Affiliation(s)
- Gui-jun Wan
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shou-lin Jiang
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zong-chao Zhao
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing-jing Xu
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-rong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Yue-bo Gao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun 130124, China
| | - Wei-dong Pan
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fa-jun Chen
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
36
|
Pfeiffer K, Homberg U. Organization and functional roles of the central complex in the insect brain. ANNUAL REVIEW OF ENTOMOLOGY 2014; 59:165-84. [PMID: 24160424 DOI: 10.1146/annurev-ento-011613-162031] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The central complex is a group of modular neuropils across the midline of the insect brain. Hallmarks of its anatomical organization are discrete layers, an organization into arrays of 16 slices along the right-left axis, and precise inter-hemispheric connections via chiasmata. The central complex is connected most prominently with the adjacent lateral complex and the superior protocerebrum. Its developmental appearance corresponds with the appearance of compound eyes and walking legs. Distinct dopaminergic neurons control various forms of arousal. Electrophysiological studies provide evidence for roles in polarized light vision, sky compass orientation, and integration of spatial information for locomotor control. Behavioral studies on mutant and transgenic flies indicate roles in spatial representation of visual cues, spatial visual memory, directional control of walking and flight, and place learning. The data suggest that spatial azimuthal directions (i.e., where) are represented in the slices, and cue information (i.e., what) are represented in different layers of the central complex.
Collapse
Affiliation(s)
- Keram Pfeiffer
- Faculty of Biology, Animal Physiology, University of Marburg, 35032 Marburg, Germany; ,
| | | |
Collapse
|
37
|
Homberg U, Seyfarth J, Binkle U, Monastirioti M, Alkema MJ. Identification of distinct tyraminergic and octopaminergic neurons innervating the central complex of the desert locust, Schistocerca gregaria. J Comp Neurol 2013; 521:2025-41. [PMID: 23595814 DOI: 10.1002/cne.23269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/12/2012] [Accepted: 11/20/2012] [Indexed: 01/22/2023]
Abstract
The central complex is a group of modular neuropils in the insect brain with a key role in visual memory, spatial orientation, and motor control. In desert locusts the neurochemical organization of the central complex has been investigated in detail, including the distribution of dopamine-, serotonin-, and histamine-immunoreactive neurons. In the present study we identified neurons immunoreactive with antisera against octopamine, tyramine, and the enzymes required for their synthesis, tyrosine decarboxylase (TDC) and tyramine β-hydroxylase (TBH). Octopamine- and tyramine immunostaining in the central complex differed strikingly. In each brain hemisphere tyramine immunostaining was found in four neurons innervating the noduli, 12-15 tangential neurons of the protocerebral bridge, and about 17 neurons that supplied the anterior lip region and parts of the central body. In contrast, octopamine immunostaining was present in two bilateral pairs of ascending fibers innervating the upper division of the central body and a single pair of neurons with somata near the esophageal foramen that gave rise to arborizations in the protocerebral bridge. Immunostaining for TDC, the enzyme converting tyrosine to tyramine, combined the patterns seen with the tyramine- and octopamine antisera. Immunostaining for TBH, the enzyme converting tyramine to octopamine, in contrast, was strikingly similar to octopamine immunolabeling. We conclude that tyramine and octopamine act as neurotransmitters/modulators in distinct sets of neurons of the locust central complex with TBH likely being the rate-limiting enzyme for octopamine synthesis in a small subpopulation of TDC-containing neurons.
Collapse
Affiliation(s)
- Uwe Homberg
- Fachbereich Biologie, Tierphysiologie, Philipps-Universität Marburg, D-35032 Marburg, Germany.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Most experiments on the flight behavior of Drosophila melanogaster have been performed within confined laboratory chambers, yet the natural history of these animals involves dispersal that takes place on a much larger spatial scale. Thirty years ago, a group of population geneticists performed a series of mark-and-recapture experiments on Drosophila flies, which demonstrated that even cosmopolitan species are capable of covering 10 km of open desert, probably in just a few hours and without the possibility of feeding along the way. In this review I revisit these fascinating and informative experiments and attempt to explain how-from takeoff to landing-the flies might have made these journeys based on our current knowledge of flight behavior. This exercise provides insight into how animals generate long behavioral sequences using sensory-motor modules that may have an ancient evolutionary origin.
Collapse
|
39
|
Narendra A, Reid SF, Raderschall CA. Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels. PLoS One 2013; 8:e58801. [PMID: 23484052 PMCID: PMC3590162 DOI: 10.1371/journal.pone.0058801] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/08/2013] [Indexed: 11/21/2022] Open
Abstract
Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available.
Collapse
Affiliation(s)
- Ajay Narendra
- ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | |
Collapse
|
40
|
Galindo-Cardona A, Monmany AC, Moreno-Jackson R, Rivera-Rivera C, Huertas-Dones C, Caicedo-Quiroga L, Giray T. Landscape analysis of drone congregation areas of the honey bee, Apis mellifera. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:122. [PMID: 23451901 PMCID: PMC3635128 DOI: 10.1673/031.012.12201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
Male honey bees fly and gather at Drone Congregation Areas (DCAs), where drones and queens mate in flight. DCAs occur in places with presumably characteristic features. Using previously described landscape characteristics and observations on flight direction of drones in nearby apiaries, 36 candidate locations were chosen across the main island of Puerto Rico. At these locations, the presence or absence of DCAs was tested by lifting a helium balloon equipped with queen-sex-pheromone-impregnated bait, and visually determining the presence of high numbers of drones. Because of the wide distribution of honey bees in Puerto Rico, it was expected that most of the potential DCAs would be used as such by drones and queens from nearby colonies. Eight DCAs were found in the 36 candidate locations. Locations with and without DCAs were compared in a landscape analysis including characteristics that were described to be associated with DCAs and others. Aspect (direction of slope) and density of trails were found to be significantly associated with the presence of DCAs.
Collapse
Affiliation(s)
| | - A. Carolina Monmany
- Department of Biology, University of Puerto Rico, JGD 202 PO Box. San Juan, PR 00931
| | - Rafiné Moreno-Jackson
- Department of Biology, University of Puerto Rico, JGD 202 PO Box. San Juan, PR 00931
| | - Carlos Rivera-Rivera
- Department of Biology, University of Puerto Rico, JGD 202 PO Box. San Juan, PR 00931
| | - Carlos Huertas-Dones
- Department of Biology, University of Puerto Rico, JGD 202 PO Box. San Juan, PR 00931
| | - Laura Caicedo-Quiroga
- Department of Biology, University of Puerto Rico, JGD 202 PO Box. San Juan, PR 00931
| | - Tugrul Giray
- Department of Biology, University of Puerto Rico, JGD 202 PO Box. San Juan, PR 00931
| |
Collapse
|