Hocker D, Park IM. Myopic control of neural dynamics.
PLoS Comput Biol 2019;
15:e1006854. [PMID:
30856171 PMCID:
PMC6428347 DOI:
10.1371/journal.pcbi.1006854]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 03/21/2019] [Accepted: 02/07/2019] [Indexed: 01/29/2023] Open
Abstract
Manipulating the dynamics of neural systems through targeted stimulation is a frontier of research and clinical neuroscience; however, the control schemes considered for neural systems are mismatched for the unique needs of manipulating neural dynamics. An appropriate control method should respect the variability in neural systems, incorporating moment to moment “input” to the neural dynamics and behaving based on the current neural state, irrespective of the past trajectory. We propose such a controller under a nonlinear state-space feedback framework that steers one dynamical system to function as through it were another dynamical system entirely. This “myopic” controller is formulated through a novel variant of a model reference control cost that manipulates dynamics in a short-sighted manner that only sets a target trajectory of a single time step into the future (hence its myopic nature), which omits the need to pre-calculate a rigid and computationally costly neural feedback control solution. To demonstrate the breadth of this control’s utility, two examples with distinctly different applications in neuroscience are studied. First, we show the myopic control’s utility to probe the causal link between dynamics and behavior for cognitive processes by transforming a winner-take-all decision-making system to operate as a robust neural integrator of evidence. Second, an unhealthy motor-like system containing an unwanted beta-oscillation spiral attractor is controlled to function as a healthy motor system, a relevant clinical example for neurological disorders.
Stimulating a neural system and observing its effect through simultaneous observation offers the promise to better understand how neural systems perform computations, as well as for the treatment of neurological disorders. A powerful perspective for understanding a neural system’s behavior undergoing stimulation is to conceptualize them as dynamical systems, which considers the global effect that stimulation has on the brain, rather than only assessing what impact it has on the recorded signal from the brain. With this more comprehensive perspective comes a central challenge of determining what requirements need to be satisfied to harness neural observations and then stimulate to make one dynamical system function as another one entirely. This could lead to applications such as neural stimulators that make a diseased brain behave like its healthy counterpart, or to make a neural system previously capable of only hasty decision making to wait and accumulate more evidence for a more informed decision. In this work we explore the implications of this new perspective on neural stimulation and derive a simple prescription for using neural observations to inform stimulation protocol that makes one neural system behave like another one.
Collapse