1
|
Volotsky S, Donchin O, Segev R. The archerfish uses motor adaptation in shooting to correct for changing physical conditions. eLife 2024; 12:RP92909. [PMID: 38829209 PMCID: PMC11147504 DOI: 10.7554/elife.92909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
The archerfish is unique in its ability to hunt by shooting a jet of water from its mouth that hits insects situated above the water's surface. To aim accurately, the fish needs to overcome physical factors including changes in light refraction at the air-water interface. Nevertheless, archerfish can still hit the target with a high success rate under changing conditions. One possible explanation for this extraordinary ability is that it is learned by trial and error through a motor adaptation process. We tested this possibility by characterizing the ability of the archerfish to adapt to perturbations in the environment to make appropriate adjustments to its shots. We introduced a perturbing airflow above the water tank of the archerfish trained to shoot at a target. For each trial shot, we measured the error, i.e., the distance between the center of the target and the center of the water jet produced by the fish. Immediately after the airflow perturbation, there was an increase in shot error. Then, over the course of several trials, the error was reduced and eventually plateaued. After the removal of the perturbation, there was an aftereffect, where the error was in the opposite direction but washed out after several trials. These results indicate that archerfish can adapt to the airflow perturbation. Testing the fish with two opposite airflow directions indicated that adaptation took place within an egocentric frame of reference. These results thus suggest that the archerfish is capable of motor adaptation, as indicated by data showing that the fish produced motor commands that anticipated the perturbation.
Collapse
Affiliation(s)
- Svetlana Volotsky
- Department of Biomedical Engineering, Ben-Gurion University of the NegevBe'er ShevaIsrael
- School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBe'er ShevaIsrael
- Department of Life Sciences, Ben-Gurion University of the NegevBe'er ShevaIsrael
| | - Opher Donchin
- Department of Biomedical Engineering, Ben-Gurion University of the NegevBe'er ShevaIsrael
- School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBe'er ShevaIsrael
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the NegevBe'er ShevaIsrael
- School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBe'er ShevaIsrael
- Department of Life Sciences, Ben-Gurion University of the NegevBe'er ShevaIsrael
| |
Collapse
|
2
|
Rock CG, Kwak ST, Luo A, Yang X, Yun K, Chang YH. Realizing the gravity of the simulation: adaptation to simulated hypogravity leads to altered predictive control. Front Physiol 2024; 15:1397016. [PMID: 38854629 PMCID: PMC11157081 DOI: 10.3389/fphys.2024.1397016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Accurate predictive abilities are important for a wide variety of animal behaviors. Inherent to many of these predictions is an understanding of the physics that underlie the behavior. Humans are specifically attuned to the physics on Earth but can learn to move in other environments (e.g., the surface of the Moon). However, the adjustments made to their physics-based predictions in the face of altered gravity are not fully understood. The current study aimed to characterize the locomotor adaptation to a novel paradigm for simulated reduced gravity. We hypothesized that exposure to simulated hypogravity would result in updated predictions of gravity-based movement. Twenty participants took part in a protocol that had them perform vertically targeted countermovement jumps before (PRE), during, and after (POST) a physical simulation of hypogravity. Jumping in simulated hypogravity had different neuromechanics from the PRE condition, with reduced ground impulses (p ≤ .009) and muscle activity prior to the time of landing (i.e., preactivation; p ≤ .016). In the 1 g POST condition, muscle preactivation remained reduced (p ≤ .033) and was delayed (p ≤ .008) by up to 33% for most muscles of the triceps surae, reflecting an expectation of hypogravity. The aftereffects in muscle preactivation, along with little-to-no change in muscle dynamics during ground contact, point to a neuromechanical adaptation that affects predictive, feed-forward systems over feedback systems. As such, we conclude that the neural representation, or internal model, of gravity is updated after exposure to simulated hypogravity.
Collapse
Affiliation(s)
- Chase G. Rock
- Comparative Neuromechanics Laboratory, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | | | | | | | | | - Young-Hui Chang
- Comparative Neuromechanics Laboratory, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
3
|
Volotsky S, Segev R. Figure-ground segmentation based on motion in the archerfish. Anim Cogn 2024; 27:33. [PMID: 38616235 PMCID: PMC11016505 DOI: 10.1007/s10071-024-01873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Figure-ground segmentation is a fundamental process in visual perception that involves separating visual stimuli into distinct meaningful objects and their surrounding context, thus allowing the brain to interpret and understand complex visual scenes. Mammals exhibit varying figure-ground segmentation capabilities, ranging from primates that can perform well on figure-ground segmentation tasks to rodents that perform poorly. To explore figure-ground segmentation capabilities in teleost fish, we studied how the archerfish, an expert visual hunter, performs figure-ground segmentation. We trained archerfish to discriminate foreground objects from the background, where the figures were defined by motion as well as by discontinuities in intensity and texture. Specifically, the figures were defined by grating, naturalistic texture, and random noise moving in counterphase with the background. The archerfish performed the task well and could distinguish between all three types of figures and grounds. Their performance was comparable to that of primates and outperformed rodents. These findings suggest the existence of a complex visual process in the archerfish visual system that enables the delineation of figures as distinct from backgrounds, and provide insights into object recognition in this animal.
Collapse
Affiliation(s)
- Svetlana Volotsky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
- School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beersheba, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel.
- School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beersheba, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.
| |
Collapse
|
4
|
Payne M, Mali I, Mueller T, Cain M, Segev R, Bossmann SH. Super-resolution reconstruction in ultrahigh-field MRI. BIOPHYSICAL REPORTS 2023; 3:100107. [PMID: 37114210 PMCID: PMC10126864 DOI: 10.1016/j.bpr.2023.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023]
Abstract
Magnetic resonance imaging (MRI) is a highly significant imaging platform for a variety of medical and research applications. However, the low spatiotemporal resolution of conventional MRI limits its applicability toward rapid acquisition of ultrahigh-resolution scans. Current aims at high-resolution MRI focus on increasing the accuracy of tissue delineation, assessments of structural integrity, and early identification of malignancies. Unfortunately, high-resolution imaging often leads to decreased signal/noise (SNR) and contrast/noise (CNR) ratios and increased time cost, which are unfeasible in many clinical and academic settings, offsetting any potential benefits. In this study, we apply and assess the efficacy of super-resolution reconstruction (SRR) through iterative back-projection utilizing through-plane voxel offsets. SRR allows for high-resolution imaging in condensed time frames. Rat skulls and archerfish samples, typical models in academic settings, were used to demonstrate the impact of SRR on varying sample sizes and applicability for translational and comparative neuroscience. The SNR and CNR increased in samples that did not fully occupy the imaging probe and in instances where the low-resolution data were acquired in three dimensions, while the CNR was found to increase with both 3D and 2D low-resolution data reconstructions when compared with directly acquired high-resolution images. Limitations to the applied SRR algorithm were investigated to determine the maximum ratios between low-resolution inputs and high-resolution reconstructions and the overall cost effectivity of the strategy. Overall, the study revealed that SRR could be used to decrease image acquisition time, increase the CNR in nearly all instances, and increase the SNR in small samples.
Collapse
Affiliation(s)
- Macy Payne
- Department of Chemistry, Kansas State University, Manhattan, Kansas
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Ivina Mali
- Department of Chemistry, Kansas State University, Manhattan, Kansas
| | - Thomas Mueller
- Department of Biology, Kansas State University, Manhattan, Kansas
| | - Mary Cain
- Department of Psychological Sciences, Kansas State University, Manhattan, Kansas
| | - Ronen Segev
- Life Sciences Department, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Stefan H. Bossmann
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
5
|
Givon S, Samina M, Ben-Shahar O, Segev R. From fish out of water to new insights on navigation mechanisms in animals. Behav Brain Res 2022; 419:113711. [PMID: 34896210 DOI: 10.1016/j.bbr.2021.113711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/26/2023]
Abstract
Navigation is a critical ability for animal survival and is important for food foraging, finding shelter, seeking mates and a variety of other behaviors. Given their fundamental role and universal function in the animal kingdom, it makes sense to explore whether space representation and navigation mechanisms are dependent on the species, ecological system, brain structures, or whether they share general and universal properties. One way to explore this issue behaviorally is by domain transfer methodology, where one species is embedded in another species' environment and must cope with an otherwise familiar (in our case, navigation) task. Here we push this idea to the limit by studying the navigation ability of a fish in a terrestrial environment. For this purpose, we trained goldfish to use a Fish Operated Vehicle (FOV), a wheeled terrestrial platform that reacts to the fish's movement characteristics, location and orientation in its water tank to change the vehicle's; i.e., the water tank's, position in the arena. The fish were tasked to "drive" the FOV towards a visual target in the terrestrial environment, which was observable through the walls of the tank, and indeed were able to operate the vehicle, explore the new environment, and reach the target regardless of the starting point, all while avoiding dead-ends and correcting location inaccuracies. These results demonstrate how a fish was able to transfer its space representation and navigation skills to a wholly different terrestrial environment, thus supporting the hypothesis that the former possess a universal quality that is species-independent.
Collapse
Affiliation(s)
- Shachar Givon
- Department of Life Sciences, Ben-Gurion University of the Negev, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Israel
| | - Matan Samina
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Israel
| | - Ohad Ben-Shahar
- Department of Computer Science, Ben-Gurion University of the Negev, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Israel
| | - Ronen Segev
- Department of Life Sciences, Ben-Gurion University of the Negev, Israel; Department of Biomedical Engineering, Ben-Gurion University of the Negev, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
6
|
Volotsky S, Ben-Shahar O, Donchin O, Segev R. Recognition of natural objects in the archerfish. J Exp Biol 2022; 225:274265. [PMID: 35142811 PMCID: PMC8918800 DOI: 10.1242/jeb.243237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022]
Abstract
Recognition of individual objects and their categorization is a complex computational task. Nevertheless, visual systems can perform this task in a rapid and accurate manner. Humans and other animals can efficiently recognize objects despite countless variations in their projection on the retina due to different viewing angles, distance, illumination conditions and other parameters. To gain a better understanding of the recognition process in teleosts, we explored it in archerfish, a species that hunts by shooting a jet of water at aerial targets and thus can benefit from ecologically relevant recognition of natural objects. We found that archerfish not only can categorize objects into relevant classes but also can do so for novel objects, and additionally they can recognize an individual object presented under different conditions. To understand the mechanisms underlying this capability, we developed a computational model based on object features and a machine learning classifier. The analysis of the model revealed that a small number of features was sufficient for categorization, and the fish were more sensitive to object contours than textures. We tested these predictions in additional behavioral experiments and validated them. Our findings suggest the existence of a complex visual process in the archerfish visual system that enables object recognition and categorization. Highlighted Article: Archerfish are capable of natural object recognition and categorization based on a small number of visual features.
Collapse
Affiliation(s)
- Svetlana Volotsky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Ohad Ben-Shahar
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Department of Computer Science, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Opher Donchin
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| |
Collapse
|
7
|
Jones NAR, Klump BC, Abaurrea TM, Harrower S, Marr C, Scott L, Rendell L, Webster MM. Short-range hunters: exploring the function and constraints of water shooting in dwarf gouramis. J Exp Biol 2021; 224:273833. [PMID: 34854924 DOI: 10.1242/jeb.243477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/24/2021] [Indexed: 02/04/2023]
Abstract
Ballistic predation is a rare foraging adaptation: in fishes, most attention has focused on a single genus, the archerfish, known to manipulate water to shoot down prey above the water surface. However, several gourami species also exhibit apparently similar 'shooting' behaviour, spitting water up to 5 cm above the surface. In a series of experiments, we explored the shooting behaviour and aspects of its significance as a foraging ability in the dwarf gourami (Trichogaster lalius). We investigated sex differences in shooting abilities to determine whether gourami shooting is related to the sex-specific bubble nest manufacture where males mix air and water at the surface to form bubbles. We found that, actually, both sexes were equally able to shoot and could learn to shoot a novel target. In a second experiment, we presented untrained gouramis with opportunities to shoot at live prey and found they successfully shot down both fruit flies and crickets. Finally, we explored the effect of target height on shooting performance to establish potential constraints of shooting as a foraging ability. The frequency of attempted shots and success of hitting targets decreased with height, whereas latency to shoot increased. We also observed that repeatable individual differences account for variation in these measures of shooting performance. Together, our results provide evidence that gourami shooting has a foraging function analogous to that of archerfish. Gourami shooting may serve as an example of convergent evolution and provide opportunities for comparative studies into the, as yet unexplored, ecology and evolution of shooting in fishes.
Collapse
Affiliation(s)
- Nick A R Jones
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Barbara C Klump
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell am Bodensee, Germany
| | - Teresa M Abaurrea
- Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Sophie Harrower
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Clare Marr
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Louise Scott
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Luke Rendell
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Mike M Webster
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
8
|
Individual behavioural traits not social context affects learning about novel objects in archerfish. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02996-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Learning can enable rapid behavioural responses to changing conditions but can depend on the social context and behavioural phenotype of the individual. Learning rates have been linked to consistent individual differences in behavioural traits, especially in situations which require engaging with novelty, but the social environment can also play an important role. The presence of others can modulate the effects of individual behavioural traits and afford access to social information that can reduce the need for ‘risky’ asocial learning. Most studies of social effects on learning are focused on more social species; however, such factors can be important even for less-social animals, including non-grouping or facultatively social species which may still derive benefit from social conditions. Using archerfish, Toxotes chatareus, which exhibit high levels of intra-specific competition and do not show a strong preference for grouping, we explored the effect of social contexts on learning. Individually housed fish were assayed in an ‘open-field’ test and then trained to criterion in a task where fish learnt to shoot a novel cue for a food reward—with a conspecific neighbour visible either during training, outside of training or never (full, partial or no visible presence). Time to learn to shoot the novel cue differed across individuals but not across social context. This suggests that social context does not have a strong effect on learning in this non-obligatory social species; instead, it further highlights the importance that inter-individual variation in behavioural traits can have on learning.
Significance statement
Some individuals learn faster than others. Many factors can affect an animal’s learning rate—for example, its behavioural phenotype may make it more or less likely to engage with novel objects. The social environment can play a big role too—affecting learning directly and modifying the effects of an individual’s traits. Effects of social context on learning mostly come from highly social species, but recent research has focused on less-social animals. Archerfish display high intra-specific competition, and our study suggests that social context has no strong effect on their learning to shoot novel objects for rewards. Our results may have some relevance for social enrichment and welfare of this increasingly studied species, suggesting there are no negative effects of short- to medium-term isolation of this species—at least with regards to behavioural performance and learning tasks.
Collapse
|
9
|
Mendelson L, Techet AH. Jumping archer fish exhibit multiple modes of fin-fin interaction. BIOINSPIRATION & BIOMIMETICS 2020; 16:016006. [PMID: 32916673 DOI: 10.1088/1748-3190/abb78e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Aquatic organisms jumping for aerial prey require high-performance propulsion, accurate aim, and trajectory control to succeed. Archer fish, capable of jumping up to twice their body length out of the water, address these considerations through multifaceted fin and body kinematics. In this study, we utilized 3D synthetic aperture particle image velocimetry to visualize the wakes of archer fish throughout the jumping process. We found that multiple modes of interaction between the anal and caudal fins occur during jump behaviors. Time-resolved volumetric measurements presented herein illustrate the hydrodynamics of each interaction mode in detail. Additionally, regardless of which fin uses and interactions were exhibited during a jump, we found similar relationships between the cumulative impulse of multiple propulsive vortices in the wake and the instantaneous ballistic momentum of the fish. Our results suggests that fin use may compensate for variations in individual kinematic events and in the aiming posture assumed prior to jumping and highlight how interactions between tailbeats and other fins help the archer fish reach necessary prey heights in a spatially- and visually-constrained environment. In the broader context of bioinspired propulsion, the archer fish exemplifies that multiple beneficial hydrodynamic interactions can be generated in a high-performance scenario using a single set of actuators.
Collapse
Affiliation(s)
- Leah Mendelson
- Experimental Hydrodynamics Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Engineering, Harvey Mudd College, Claremont, CA 91711, United States of America
| | - Alexandra H Techet
- Experimental Hydrodynamics Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| |
Collapse
|
10
|
Abstract
The ability to visually search, quickly and accurately, for designated items in cluttered environments is crucial for many species to ensure survival. Feature integration theory, one of the most influential theories of attention, suggests that certain visual features that facilitate this search are extracted pre-attentively in a parallel fashion across the visual field during early visual processing. Hence, if some objects of interest possess such a feature uniquely, it will pop out from the background during the integration stage and draw visual attention immediately and effortlessly. For years, visual search research has explored these ideas by investigating the conditions (and visual features) that characterize efficient versus inefficient visual searches. The bulk of research has focused on human vision, though ecologically there are many reasons to believe that feature integration theory is applicable to other species as well. Here we review the main findings regarding the relevance of feature integration theory to non-human species and expand it to new research on one particular animal model - the archerfish. Specifically, we study both archerfish and humans in an extensive and comparative set of visual-search experiments. The findings indicate that both species exhibit similar behavior in basic feature searches and in conjunction search tasks. In contrast, performance differed in searches defined by shape. These results suggest that evolution pressured many visual features to pop out for both species despite cardinal differences in brain anatomy and living environment, and strengthens the argument that aspects of feature integration theory may be generalizable across the animal kingdom.
Collapse
|
11
|
Newport C, Schuster S. Archerfish vision: Visual challenges faced by a predator with a unique hunting technique. Semin Cell Dev Biol 2020; 106:53-60. [PMID: 32522409 DOI: 10.1016/j.semcdb.2020.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 11/28/2022]
Abstract
Archerfish are well-known for their ballistic hunting behaviour, in which they shoot down aerial prey with a well-aimed jet of water. This unique hunting strategy poses several challenges for visual systems. Archerfish face significant distortion to the appearance of targets due to refraction at the air/water interface, they search for prey against a complex background of foliage, they change prey targeting behaviour as conditions change, and they must make high speed decisions to avoid competition. By studying how archerfish have overcome these challenges, we have been able to understand more about fundamental problems faced by visual systems and the mechanisms used to solve them. In some cases, such as when searching for targets, the visual capabilities of archerfish are functionally similar to those of humans, despite significant differences in neuroanatomy. In other cases, the particular challenge faced by archerfish magnifies fundamental problems generally faced by visual systems, such as recognizing objects given strong viewpoint dependent changes to appearance. The efficiency of archerfish retrieving fallen prey to avoid kleptoparasitism, demonstrates that their visual processing excels in both speed and accuracy. In this review, we attempt to provide an overview of the many facets of visually driven behaviour of archerfish, and how they have been studied. In addition to their hunting technique, archerfish are ideal for visual processing experiments as they can be quickly trained to perform a range of non-ecologically relevant tasks. Their behavioural flexibility moreover, introduces the opportunity to study how experience-dependence and choice affects visual processing.
Collapse
Affiliation(s)
- Cait Newport
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom.
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
12
|
Gancedo B, Salido C, Tomsic D. Visual determinants of prey chasing behavior in a mudflat crab. J Exp Biol 2020; 223:jeb217299. [PMID: 32098883 DOI: 10.1242/jeb.217299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/14/2020] [Indexed: 12/22/2022]
Abstract
The crab Neohelice granulata inhabits mudflats where it is preyed upon by gulls and, conversely, preys on smaller crabs. Therefore, on seeing moving stimuli, this crab can behave as prey or predator. The crab escape response to visual stimuli has been extensively investigated from the behavioral to the neuronal level. The predatory response (PR), however, has not yet been explored. Here, we show that this response can be reliably elicited and investigated in a laboratory arena. By using dummies of three different sizes moved on the ground at three different velocities over multiple trials, we identified important stimulation conditions that boost the occurrence of PR and its chances of ending in successful prey capture. PR probability was sustained during the first 10 trials of our experiments but then declined. PR was elicited with high probability by the medium size dummy, less effectively by the small dummy, and hardly brought about by the large dummy, which mostly elicited avoidance responses. A GLMM analysis indicated that the dummy size and the tracking line distance were two strong determinants for eliciting PR. The rate of successful captures, however, mainly depended on the dummy velocity. Our results suggest that crabs are capable of assessing the distance to the dummy and its absolute size. The PR characterized here, in connection with the substantial knowledge of the visual processing associated with the escape response, provides excellent opportunities for comparative analyses of the organization of two distinct visually guided behaviors in a single animal.
Collapse
Affiliation(s)
- Brian Gancedo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Carla Salido
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| |
Collapse
|
13
|
|
14
|
Reichenthal A, Ben-Tov M, Ben-Shahar O, Segev R. What pops out for you pops out for fish: Four common visual features. J Vis 2019; 19:1. [PMID: 30601571 DOI: 10.1167/19.1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Visual search is the ability to detect a target of interest against a background of distracting objects. For many animals, performing this task fast and accurately is crucial for survival. Typically, visual-search performance is measured by the time it takes the observer to detect a target against a backdrop of distractors. The efficiency of a visual search depends fundamentally on the features of the target, the distractors, and the interaction between them. Substantial efforts have been devoted to investigating the influence of different visual features on visual-search performance in humans. In particular, it has been demonstrated that color, size, orientation, and motion are efficient visual features to guide attention in humans. However, little is known about which features are efficient and which are not in other vertebrates. Given earlier observations that moving targets elicit pop-out and parallel search in the archerfish during visual-search tasks, here we investigate and confirm that all four of these visual features also facilitate efficient search in the archerfish in a manner comparable to humans. In conjunction with results reported for other species, these finding suggest universality in the way visual search is carried out by animals despite very different brain anatomies and living environments.
Collapse
Affiliation(s)
- Adam Reichenthal
- Life Sciences Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mor Ben-Tov
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Ohad Ben-Shahar
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronen Segev
- Life Sciences Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|