1
|
Cassel JC, Panzer E, Guimaraes-Olmo I, Cosquer B, de Vasconcelos AP, Stephan A. The ventral midline thalamus and long-term memory: What consolidation, what retrieval, what plasticity in rodents? Neurosci Biobehav Rev 2024; 167:105932. [PMID: 39454977 DOI: 10.1016/j.neubiorev.2024.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The ventral midline thalamus, including the reuniens and rhomboid (ReRh) nuclei, connects bidirectionally with the medial prefrontal cortex (mPFC) and hippocampus (Hip), both essential for memory processes. This review compiles and discusses studies on a role for the ReRh nuclei in the system consolidation of memories, also considering their potentially limited participation in memory retrieval or early phases of consolidation. It also examines scientific literature on short- and long-term plasticity in ReRh-mPFC and ReRh-Hip connections, emphasizing plasticity's importance in understanding these nuclei's role in memory. The idea that the two nuclei are at the crossroads of information exchange between the mPFC and the Hip is not new, but the relationship between this status and the plasticity of their connections remains elusive. Since this perspective is relatively recent, our concluding section suggests conceptual and practical avenues for future research, aiming perhaps to bring more order to the apparently multi-functional implication of the ventral midline thalamus in cognition.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France.
| | - Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Isabella Guimaraes-Olmo
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg 67000, France; LNCA, UMR 7364 - CNRS, Strasbourg 67000, France
| |
Collapse
|
2
|
Yu D, Li T, Ding Q, Wu Y, Fu Z, Zhan X, Yang L, Jia Y. Maintenance of delay-period activity in working memory task is modulated by local network structure. PLoS Comput Biol 2024; 20:e1012415. [PMID: 39226309 PMCID: PMC11398668 DOI: 10.1371/journal.pcbi.1012415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
Revealing the relationship between neural network structure and function is one central theme of neuroscience. In the context of working memory (WM), anatomical data suggested that the topological structure of microcircuits within WM gradient network may differ, and the impact of such structural heterogeneity on WM activity remains unknown. Here, we proposed a spiking neural network model that can replicate the fundamental characteristics of WM: delay-period neural activity involves association cortex but not sensory cortex. First, experimentally observed receptor expression gradient along the WM gradient network is reproduced by our network model. Second, by analyzing the correlation between different local structures and duration of WM activity, we demonstrated that small-worldness, excitation-inhibition balance, and cycle structures play crucial roles in sustaining WM-related activity. To elucidate the relationship between the structure and functionality of neural networks, structural circuit gradients in brain should also be subject to further measurement. Finally, combining anatomical data, we simulated the duration of WM activity across different brain regions, its maintenance relies on the interaction between local and distributed networks. Overall, network structural gradient and interaction between local and distributed networks are of great significance for WM.
Collapse
Affiliation(s)
- Dong Yu
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| | - Tianyu Li
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| | - Qianming Ding
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| | - Yong Wu
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| | - Ziying Fu
- Institute of Biophysics, Central China Normal University, Wuhan, China
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xuan Zhan
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| | - Lijian Yang
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| | - Ya Jia
- Institute of Biophysics, Central China Normal University, Wuhan, China
- College of Physical Science and Technology, Central China Normal University, Wuhan, China
| |
Collapse
|
3
|
Roshanaei M, Bahmani Z, Clark K, Daliri MR, Noudoost B. Working memory expedites the processing of visual signals within the extrastriate cortex. iScience 2024; 27:110489. [PMID: 39100691 PMCID: PMC11295472 DOI: 10.1016/j.isci.2024.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Working memory is the ability to maintain information in the absence of sensory input. In this study, we investigated how working memory benefits processing in visual areas. Using a measure of phase consistency to detect the arrival time of visual signals to the middle temporal (MT) area, we assessed the impact of working memory on the speed of sensory processing. We recorded from MT neurons in two monkeys during a spatial working memory task with visual probes. When the memorized location closely matches the receptive field center of the recording site, visual input arrives sooner, but if the memorized location does not match the receptive field center then the arrival of visual information is delayed. Thus, working memory expedites the arrival of visual input in MT. These results reveal that even in the absence of firing rate changes, working memory can still benefit the processing of information within sensory areas.
Collapse
Affiliation(s)
- Majid Roshanaei
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Zahra Bahmani
- Department of Electrical & Computer Engineering, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Mohammad Reza Daliri
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
4
|
Ingram R, Volianskis R, Georgiou J, Jane DE, Michael-Titus AT, Collingridge GL, Volianskis A. Incremental induction of NMDAR-STP and NMDAR-LTP in the CA1 area of ventral hippocampal slices relies on graded activation of discrete NMDA receptors. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230239. [PMID: 38853568 PMCID: PMC11343233 DOI: 10.1098/rstb.2023.0239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024] Open
Abstract
N-methyl-d-aspartate receptor (NMDAR)-dependent short- and long-term types of potentiation (STP and LTP, respectively) are frequently studied in the CA1 area of dorsal hippocampal slices (DHS). Far less is known about the NMDAR dependence of STP and LTP in ventral hippocampal slices (VHS), where both types of potentiation are smaller in magnitude than in the DHS. Here, we first briefly review our knowledge about the NMDAR dependence of STP and LTP and some other forms of synaptic plasticity. We then show in new experiments that the decay of NMDAR-STP in VHS, similar to dorsal hippocampal NMDAR-STP, is not time- but activity-dependent. We also demonstrate that the induction of submaximal levels of NMDAR-STP and NMDAR-LTP in VHS differs from the induction of saturated levels of plasticity in terms of their sensitivity to subunit-preferring NMDAR antagonists. These data suggest that activation of distinct NMDAR subtypes in a population of neurons results in an incremental increase in the induction of different phases of potentiation with changing sensitivity to pharmacological agents. Differences in pharmacological sensitivity, which arise due to differences in the levels of agonist-evoked biological response, might explain the disparity of the results concerning NMDAR subunit involvement in the induction of NMDAR-dependent plasticity.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rachael Ingram
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rasa Volianskis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - David E. Jane
- Hello Bio Limited, Cabot Park, Avonmouth, Bristol, UK
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Arturas Volianskis
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| |
Collapse
|
5
|
Ingram R, Volianskis A. Promiscuous involvement of metabotropic glutamate receptors in the storage of N-methyl-d-aspartate receptor-dependent short-term potentiation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230445. [PMID: 38853548 PMCID: PMC11343307 DOI: 10.1098/rstb.2023.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024] Open
Abstract
Short- and long-term forms of N-methyl-d-aspartate receptor (NMDAR)-dependent potentiation (most commonly termed short-term potentiation (STP) and long-term potentiation (LTP)) are co-induced in hippocampal slices by theta-burst stimulation, which mimics naturally occurring patterns of neuronal activity. While NMDAR-dependent LTP (NMDAR-LTP) is said to be the cellular correlate of long-term memory storage, NMDAR-dependent STP (NMDAR-STP) is thought to underlie the encoding of shorter-lasting memories. The mechanisms of NMDAR-LTP have been researched much more extensively than those of NMDAR-STP, which is characterized by its extreme stimulation dependence. Thus, in the absence of low-frequency test stimulation, which is used to test the magnitude of potentiation, NMDAR-STP does not decline until the stimulation is resumed. NMDAR-STP represents, therefore, an inverse variant of Hebbian synaptic plasticity, illustrating that inactive synapses can retain their strength unchanged until they become active again. The mechanisms, by which NMDAR-STP is stored in synapses without a decrement, are unknown and we report here that activation of metabotropic glutamate receptors may be critical in maintaining the potentiated state of synaptic transmission. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rachael Ingram
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, LondonE1 2AT, UK
| | - Arturas Volianskis
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, LondonE1 2AT, UK
- School of Biosciences, Cardiff University, Museum Avenue, CardiffCF10 3AX, UK
| |
Collapse
|
6
|
Volianskis R, Lundbye CJ, Petroff GN, Jane DE, Georgiou J, Collingridge GL. Cage effects on synaptic plasticity and its modulation in a mouse model of fragile X syndrome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230484. [PMID: 38853552 PMCID: PMC11343313 DOI: 10.1098/rstb.2023.0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Fragile X syndrome (FXS) is characterized by impairments in executive function including different types of learning and memory. Long-term potentiation (LTP), thought to underlie the formation of memories, has been studied in the Fmr1 mouse model of FXS. However, there have been many discrepancies in the literature with inconsistent use of littermate and non-littermate Fmr1 knockout (KO) and wild-type (WT) control mice. Here, the influence of the breeding strategy (cage effect) on short-term potentiation (STP), LTP, contextual fear conditioning (CFC), expression of N-methyl-d-aspartate receptor (NMDAR) subunits and the modulation of NMDARs, were examined. The largest deficits in STP, LTP and CFC were found in KO mice compared with non-littermate WT. However, the expression of NMDAR subunits was unchanged in this comparison. Rather, NMDAR subunit (GluN1, 2A, 2B) expression was sensitive to the cage effect, with decreased expression in both WT and KO littermates compared with non-littermates. Interestingly, an NMDAR-positive allosteric modulator, UBP714, was only effective in potentiating the induction of LTP in non-littermate KO mice and not the littermate KO mice. These results suggest that commonly studied phenotypes in Fmr1 KOs are sensitive to the cage effect and therefore the breeding strategy may contribute to discrepancies in the literature.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rasa Volianskis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Camilla J. Lundbye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Gillian N. Petroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - David. E. Jane
- Hello Bio Limited, Cabot Park, Avonmouth, BristolBS11 0QL, UK
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| |
Collapse
|
7
|
Hosoda K, Nishida K, Seno S, Mashita T, Kashioka H, Ohzawa I. A single fast Hebbian-like process enabling one-shot class addition in deep neural networks without backbone modification. Front Neurosci 2024; 18:1344114. [PMID: 38933813 PMCID: PMC11202076 DOI: 10.3389/fnins.2024.1344114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
One-shot learning, the ability to learn a new concept from a single instance, is a distinctive brain function that has garnered substantial interest in machine learning. While modeling physiological mechanisms poses challenges, advancements in artificial neural networks have led to performances in specific tasks that rival human capabilities. Proposing one-shot learning methods with these advancements, especially those involving simple mechanisms, not only enhance technological development but also contribute to neuroscience by proposing functionally valid hypotheses. Among the simplest methods for one-shot class addition with deep learning image classifiers is "weight imprinting," which uses neural activity from a new class image data as the corresponding new synaptic weights. Despite its simplicity, its relevance to neuroscience is ambiguous, and it often interferes with original image classification, which is a significant drawback in practical applications. This study introduces a novel interpretation where a part of the weight imprinting process aligns with the Hebbian rule. We show that a single Hebbian-like process enables pre-trained deep learning image classifiers to perform one-shot class addition without any modification to the original classifier's backbone. Using non-parametric normalization to mimic brain's fast Hebbian plasticity significantly reduces the interference observed in previous methods. Our method is one of the simplest and most practical for one-shot class addition tasks, and its reliance on a single fast Hebbian-like process contributes valuable insights to neuroscience hypotheses.
Collapse
Affiliation(s)
- Kazufumi Hosoda
- Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Kobe, Japan
| | - Keigo Nishida
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research, Suita, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Japan
| | | | - Hideki Kashioka
- Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| | - Izumi Ohzawa
- Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| |
Collapse
|
8
|
Chen TJ, Wang DC, Liu PC, Hung HS, Cheng TL. Enhanced expression of activity-regulated cytoskeleton-associated protein in the medial prefrontal cortex is involved in working memory performance. Kaohsiung J Med Sci 2024; 40:553-560. [PMID: 38623867 DOI: 10.1002/kjm2.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Working memory (WM) is a cognitive function important for guiding the on-going or upcoming behavior. A memory-related protein Arc (activity-regulated cytoskeleton-associated protein) is implicated in long-term memory consolidation. Recent evidence further suggests the involvement of hippocampal Arc in spatial WM. The medial prefrontal cortex (mPFC) is a key brain region mediating WM. However, the role of mPFC Arc in WM is still uncertain. To investigate whether mPFC Arc protein is involved in WM performance, delayed non-match to sample (DNMS) T-maze task was performed in rats with or without blocking new synthesis of mPFC Arc. In DNMS task, a 10-s or 30-s delay between the sample run and the choice run was given to evaluate WM performance. To block new Arc protein synthesis during the DNMS task, Arc antisense oligodeoxynucleotides (ODNs) were injected to the bilateral mPFC. The results show that, in rats without surgery for cannula implantation and subsequent intracerebral injection of ODNs, WM was functioning well during the DNMS task with a delay of 10 s but not 30 s, which was accompanied with a significantly increased level of mPFC Arc protein, indicating a possible link between enhanced Arc protein expression and the performance of WM. After preventing the enhancement of mPFC Arc protein expression with Arc antisense ODNs, rat's WM performance was impaired. These findings support enhanced mPFC Arc protein expression playing a role during WM performance.
Collapse
Affiliation(s)
- Tsan-Ju Chen
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Dean-Chuan Wang
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Chun Liu
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Shan Hung
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Lin Cheng
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Verzelli P, Tchumatchenko T, Kotaleski JH. Editorial overview: Computational neuroscience as a bridge between artificial intelligence, modeling and data. Curr Opin Neurobiol 2024; 84:102835. [PMID: 38183889 DOI: 10.1016/j.conb.2023.102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Affiliation(s)
- Pietro Verzelli
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany. https://twitter.com/FascinoMaligno
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany.
| | - Jeanette Hellgren Kotaleski
- Department of Computer Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|