1
|
Zhang Y, Song B, Zhao X, Jin Z, Zhang J, Li L. Meta-analysis of experimental factors influencing single-pulse TMS effects on the early visual cortex. Front Neurosci 2024; 18:1351399. [PMID: 38894939 PMCID: PMC11185874 DOI: 10.3389/fnins.2024.1351399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Background Single-pulse transcranial magnetic stimulation (spTMS) applied to the Early Visual Cortex (EVC) has demonstrated the ability to suppress the perception on visual targets, akin to the effect of visual masking. However, the reported spTMS suppression effects across various studies have displayed inconsistency. Objective We aim to test if the heterogeneity of the spTMS effects can be attributable to variations in experimental factors. Methods We conducted a meta-analysis using data collected from the PubMed and Web of Science databases spanning from 1995 to March 2024. The meta-analysis encompassed a total of 40 independent experiments drawn from 33 original articles. Results The findings unveiled an overall significant spTMS suppression effect on visual perception. Nevertheless, there existed substantial heterogeneity among the experiments. Univariate analysis elucidated that the spTMS effects could be significantly influenced by TMS intensity, visual angle of the stimulus, coil type, and TMS stimulators from different manufacturers. Reliable spTMS suppression effects were observed within the time windows of -80 to 0 ms and 50 to 150 ms. Multivariate linear regression analyses, which included SOA, TMS intensity, visual angle of the stimulus, and coil type, identified SOA as the key factor influencing the spTMS effects. Within the 50 to 150 ms time window, optimal SOAs were identified as 112 ms and 98 ms for objective and subjective performance, respectively. Collectively, multiple experimental factors accounted for 22.9% (r = 0.3353) and 39.9% (r = 0.3724) of the variance in objective and subjective performance, respectively. Comparing univariate and multivariate analyses, it was evident that experimental factors had different impacts on objective performance and subjective performance. Conclusion The present study provided quantitative recommendations for future experiments involving the spTMS effects on visual targets, offering guidance on how to configure experimental factors to achieve the optimal masking effect.
Collapse
Affiliation(s)
| | | | | | | | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Sobolev V, Popov M. Measuring the Duration of the Phase of the Formation of a Physiological Phenomenon as a Predictor of Conscious Sensation at the Visual-Motor Reaction "Go / No-Go" – Type in the Paradigm of Backward Masking. EXPERIMENTAL PSYCHOLOGY (RUSSIA) 2022. [DOI: 10.17759/exppsy.2022150415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
<p>In a psychophysiological experiment, the effect of inhibition of the “Go/No-go” – type differential visual-motor reaction (DVMR) under the influence of a masker stimulus presented at different periods of its implementation was revealed; this effect is manifested in the range of stimulus onset asynchrony (SOA) from 40 to 100 ms. There is a relationship between the latent period of DVMR and the value of the SOA interval, described in a logarithmic scale by the equation of a straight line: the latency of the sensorimotor response is inversely proportional to the logarithm of SOA. The psychophysiological method based on measuring the degree of inhibition of the “Go/No-go” – type DVMR speed in the backward masking paradigm can be used to measure the duration of the formation of a physiological phenomenon as a predictor of conscious sensation. A possible mechanism of inhibition of the rate of realization of the “Go/No-go” – type "reaction during backward masking consists in a decrease in the intensity of the physiological phenomenon under the influence of the masker, which lengthens the latent period of the sensorimotor reaction.</p>
Collapse
Affiliation(s)
- V.I. Sobolev
- V.I. Vernadsky Crimean Federal University in Yalta
| | - M.N. Popov
- Academy of the Humanities and Pedagogics (branch) of V.I. Vernadsky Crimean Federal University in Yalta
| |
Collapse
|
3
|
Is the primary visual cortex necessary for blindsight-like behavior? Review of transcranial magnetic stimulation studies in neurologically healthy individuals. Neurosci Biobehav Rev 2021; 127:353-364. [PMID: 33965459 DOI: 10.1016/j.neubiorev.2021.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
The visual pathways that bypass the primary visual cortex (V1) are often assumed to support visually guided behavior in humans in the absence of conscious vision. This conclusion is largely based on findings on patients: V1 lesions cause blindness but sometimes leave some visually guided behaviors intact-this is known as blindsight. With the aim of examining how well the findings on blindsight patients generalize to neurologically healthy individuals, we review studies which have tried to uncover transcranial magnetic stimulation (TMS) induced blindsight. In general, these studies have failed to demonstrate a completely unconscious blindsight-like capacity in neurologically healthy individuals. A possible exception to this is TMS-induced blindsight of stimulus presence or location. Because blindsight in patients is often associated with some form of introspective access to the visual stimulus, and blindsight may be associated with neural reorganization, we suggest that rather than revealing a dissociation between visually guided behavior and conscious seeing, blindsight may reflect preservation or partial recovery of conscious visual perception after the lesion.
Collapse
|
4
|
Allen C, Viola T, Irvine E, Sedgmond J, Castle H, Gray R, Chambers CD. Causal manipulation of feed-forward and recurrent processing differentially affects measures of consciousness. Neurosci Conscious 2020; 2020:niaa015. [PMID: 32922860 PMCID: PMC7475771 DOI: 10.1093/nc/niaa015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/30/2020] [Accepted: 05/07/2020] [Indexed: 11/12/2022] Open
Abstract
It has been theorized that cortical feed-forward and recurrent neural activity support unconscious and conscious cognitive processes, respectively. Here we causally tested this proposition by applying event-related transcranial magnetic stimulation (TMS) at early and late times relative to visual stimuli, together with a pulse designed to suppress conscious detection. Consistent with pre-registered hypotheses, early TMS affected residual, reportedly 'unseen' capacity. However, conscious perception also appeared critically dependent upon feed-forward processing to a greater extent than the later recurrent phase. Additional exploratory analyses suggested that these early effects dissociated from top-down criterion measures, which were most affected by later TMS. These findings are inconsistent with a simple dichotomy where feed-forward and recurrent processes correspond to unconscious and conscious mechanisms. Instead, different components of awareness may correspond to different phases of cortical dynamics in which initial processing is broadly perceptual whereas later recurrent processing might relate to decision to report.
Collapse
Affiliation(s)
- Christopher Allen
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Tommaso Viola
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.,Institute of Neuroscience, Medical School, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Elizabeth Irvine
- Philosophy, School of English, Communication and Philosophy, John Percival Building, Cardiff University, Colum Road, Cardiff, CF10 3EU, UK
| | - Jemma Sedgmond
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Heidi Castle
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Richard Gray
- Philosophy, School of English, Communication and Philosophy, John Percival Building, Cardiff University, Colum Road, Cardiff, CF10 3EU, UK
| | - Christopher D Chambers
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
5
|
Teixeira M, Nascimento S, Almeida V, Simões M, Amaral C, Castelo-Branco M. The conscious experience of color constancy and neural responses to subliminal deviations – A behavioral and EEG/ERP oddball study. Conscious Cogn 2020; 84:102987. [DOI: 10.1016/j.concog.2020.102987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/06/2020] [Accepted: 07/13/2020] [Indexed: 11/27/2022]
|
6
|
Janssens SEW, Sack AT, Jessen S, de Graaf TA. Can processing of face trustworthiness bypass early visual cortex? A transcranial magnetic stimulation masking study. Neuropsychologia 2020; 137:107304. [PMID: 31838099 DOI: 10.1016/j.neuropsychologia.2019.107304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022]
Abstract
As a highly social species, we constantly evaluate human faces to decide whether we can trust someone. Previous studies suggest that face trustworthiness can be processed unconsciously, but the underlying neural pathways remain unclear. Specifically, the question remains whether processing of face trustworthiness relies on early visual cortex (EVC), required for conscious perception. If processing of trustworthiness can bypass EVC, then disrupting EVC should impair subjective (conscious) trustworthiness perception while leaving objective (forced-choice) trustworthiness judgment intact. We applied double-pulse transcranial magnetic stimulation (TMS) to right EVC, at different stimulus onset asynchronies (SOAs) from presentation of a face in either the left or right hemifield. Faces were slightly rotated clockwise or counterclockwise, and were either trustworthy or untrustworthy. On each trial, participants discriminated 1) trustworthiness, 2) stimulus rotation, and 3) reported subjective visibility of trustworthiness. At early SOAs and specifically in the left hemifield, performance on the rotation task was impaired by TMS. Crucially, though TMS also impaired subjective visibility of trustworthiness, no effects on trustworthiness discrimination were obtained. Thus, conscious perception of face trustworthiness (captured by subjective visibility ratings) relies on intact EVC, while objective forced-choice trustworthiness judgments may not. These results are consistent with the hypothesis that objective trustworthiness processing can bypass EVC. For basic visual features, extrastriate pathways are well-established; but face trustworthiness depends on a complex configuration of features. Its potential processing without EVC is therefore of particular interest, further highlighting its ecological relevance.
Collapse
Affiliation(s)
- Shanice E W Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, the Netherlands.
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre, Maastricht University, Maastricht, the Netherlands; Center for Integrative Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Sarah Jessen
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Tom A de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, the Netherlands; Center for Integrative Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
7
|
Center EG, Knight R, Fabiani M, Gratton G, Beck DM. Examining the role of feedback in TMS-induced visual suppression: A cautionary tale. Conscious Cogn 2019; 75:102805. [DOI: 10.1016/j.concog.2019.102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 08/10/2019] [Indexed: 11/25/2022]
|
8
|
Does TMS on V3 block conscious visual perception? Neuropsychologia 2019; 128:223-231. [DOI: 10.1016/j.neuropsychologia.2017.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/07/2017] [Accepted: 11/10/2017] [Indexed: 11/22/2022]
|
9
|
Transcranial magnetic stimulation of early visual cortex suppresses conscious representations in a dichotomous manner without gradually decreasing their precision. Neuroimage 2017; 158:308-318. [DOI: 10.1016/j.neuroimage.2017.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 11/20/2022] Open
|
10
|
Hurme M, Koivisto M, Revonsuo A, Railo H. Early processing in primary visual cortex is necessary for conscious and unconscious vision while late processing is necessary only for conscious vision in neurologically healthy humans. Neuroimage 2017; 150:230-238. [DOI: 10.1016/j.neuroimage.2017.02.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 11/28/2022] Open
|
11
|
Bisenius S, Trapp S, Neumann J, Schroeter ML. Identifying neural correlates of visual consciousness with ALE meta-analyses. Neuroimage 2015; 122:177-87. [PMID: 26241685 DOI: 10.1016/j.neuroimage.2015.07.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 06/18/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022] Open
Abstract
Neural correlates of consciousness (NCC) have been a topic of study for nearly two decades. In functional imaging studies, several regions have been proposed to constitute possible candidates for NCC, but as of yet, no quantitative summary of the literature on NCC has been done. The question whether single (striate or extrastriate) regions or a network consisting of extrastriate areas that project directly to fronto-parietal regions are necessary and sufficient neural correlates for visual consciousness is still highly debated [e.g., Rees et al., 2002, Nat Rev. Neurosci 3, 261-270; Tong, 2003, Nat Rev. Neurosci 4, 219-229]. The aim of this work was to elucidate this issue and give a synopsis of the present state of the art by conducting systematic and quantitative meta-analyses across functional magnetic resonance imaging (fMRI) studies using several standard paradigms for conscious visual perception. In these paradigms, consciousness is operationalized via perceptual changes, while the visual stimulus remains invariant. An activation likelihood estimation (ALE) meta-analysis was performed, representing the best approach for voxel-wise meta-analyses to date. In addition to computing a meta-analysis across all paradigms, separate meta-analyses on bistable perception and masking paradigms were conducted to assess whether these paradigms show common or different NCC. For the overall meta-analysis, we found significant clusters of activation in inferior and middle occipital gyrus; fusiform gyrus; inferior temporal gyrus; caudate nucleus; insula; inferior, middle, and superior frontal gyri; precuneus; as well as in inferior and superior parietal lobules. These results suggest a subcortical-extrastriate-fronto-parietal network rather than a single region that constitutes the necessary NCC. The results of our exploratory paradigm-specific meta-analyses suggest that this subcortical-extrastriate-fronto-parietal network might be differentially activated as a function of the paradigms used to probe for NCC.
Collapse
Affiliation(s)
- Sandrine Bisenius
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany.
| | - Sabrina Trapp
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| | - Jane Neumann
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany; Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany; Clinic of Cognitive Neurology, University of Leipzig, Leipzig Research Center for Civilization Diseases, University of Leipzig & FTLD Consortium Germany, Leipzig, Germany
| |
Collapse
|
12
|
Railo H, Revonsuo A, Koivisto M. Behavioral and electrophysiological evidence for fast emergence of visual consciousness. Neurosci Conscious 2015; 2015:niv004. [PMID: 30774982 PMCID: PMC6368270 DOI: 10.1093/nc/niv004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/26/2015] [Accepted: 06/11/2015] [Indexed: 11/14/2022] Open
Abstract
A fundamental unsettled dispute concerns how fast the brain generates subjective visual experiences. Both early visual cortical activation and later activity in fronto-parietal global neuronal workspace correlate with conscious vision, but resolving which of the correlates causally triggers conscious vision has proved a methodological impasse. We show that participants can report whether or not they consciously perceived a stimulus in just over 200 ms. These fast consciousness reports were extremely reliable, and did not include reflexive, unconscious responses. The neural events that causally generate conscious vision must have occurred before these behavioral reports. Analyses on single-trial neural correlates of consciousness revealed that the late cortical processing in fronto-parietal global neuronal workspace (∼300 ms) started after the fastest consciousness reports, ruling out the possibility that this late activity directly reflects the emergence of visual consciousness. The consciousness reports were preceded by a negative amplitude difference (∼160-220 ms) that spread from occipital to frontal cortex, suggesting that this correlate underlies the emergence of conscious vision.
Collapse
Affiliation(s)
- Henry Railo
- Department of Psychology, University of Turku, 20014, Finland
- Centre for Cognitive Neuroscience, University of Turku, 20014, Finland
- Brain and Mind Centre, University of Turku, 20014, Finland
| | - Antti Revonsuo
- Department of Psychology, University of Turku, 20014, Finland
- Centre for Cognitive Neuroscience, University of Turku, 20014, Finland
- Brain and Mind Centre, University of Turku, 20014, Finland
- School of Bioscience, University of Skövde, SE-54128, Sweden
| | - Mika Koivisto
- Department of Psychology, University of Turku, 20014, Finland
- Centre for Cognitive Neuroscience, University of Turku, 20014, Finland
- Brain and Mind Centre, University of Turku, 20014, Finland
| |
Collapse
|
13
|
Key B. Fish do not feel pain and its implications for understanding phenomenal consciousness. BIOLOGY & PHILOSOPHY 2014; 30:149-165. [PMID: 25798021 PMCID: PMC4356734 DOI: 10.1007/s10539-014-9469-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 12/06/2014] [Indexed: 05/28/2023]
Abstract
Phenomenal consciousness or the subjective experience of feeling sensory stimuli is fundamental to human existence. Because of the ubiquity of their subjective experiences, humans seem to readily accept the anthropomorphic extension of these mental states to other animals. Humans will typically extrapolate feelings of pain to animals if they respond physiologically and behaviourally to noxious stimuli. The alternative view that fish instead respond to noxious stimuli reflexly and with a limited behavioural repertoire is defended within the context of our current understanding of the neuroanatomy and neurophysiology of mental states. Consequently, a set of fundamental properties of neural tissue necessary for feeling pain or experiencing affective states in vertebrates is proposed. While mammals and birds possess the prerequisite neural architecture for phenomenal consciousness, it is concluded that fish lack these essential characteristics and hence do not feel pain.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072 Australia
| |
Collapse
|
14
|
Tapia E, Beck DM. Probing feedforward and feedback contributions to awareness with visual masking and transcranial magnetic stimulation. Front Psychol 2014; 5:1173. [PMID: 25374548 PMCID: PMC4204434 DOI: 10.3389/fpsyg.2014.01173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/26/2014] [Indexed: 11/13/2022] Open
Abstract
A number of influential theories posit that visual awareness relies not only on the initial, stimulus-driven (i.e., feedforward) sweep of activation but also on recurrent feedback activity within and between brain regions. These theories of awareness draw heavily on data from masking paradigms in which visibility of one stimulus is reduced due to the presence of another stimulus. More recently transcranial magnetic stimulation (TMS) has been used to study the temporal dynamics of visual awareness. TMS over occipital cortex affects performance on visual tasks at distinct time points and in a manner that is comparable to visual masking. We draw parallels between these two methods and examine evidence for the neural mechanisms by which visual masking and TMS suppress stimulus visibility. Specifically, both methods have been proposed to affect feedforward as well as feedback signals when applied at distinct time windows relative to stimulus onset and as a result modify visual awareness. Most recent empirical evidence, moreover, suggests that while visual masking and TMS impact stimulus visibility comparably, the processes these methods affect may not be as similar as previously thought. In addition to reviewing both masking and TMS studies that examine feedforward and feedback processes in vision, we raise questions to guide future studies and further probe the necessary conditions for visual awareness.
Collapse
Affiliation(s)
- Evelina Tapia
- Beckman Institute, University of Illinois Urbana-Champaign Urbana, IL USA
| | - Diane M Beck
- Beckman Institute, University of Illinois Urbana-Champaign Urbana, IL USA ; Department of Psychology, University of Illinois Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
15
|
Jacobs C, de Graaf TA, Sack AT. Two distinct neural mechanisms in early visual cortex determine subsequent visual processing. Cortex 2014; 59:1-11. [DOI: 10.1016/j.cortex.2014.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/26/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
|
16
|
de Graaf TA, Sack AT. Using brain stimulation to disentangle neural correlates of conscious vision. Front Psychol 2014; 5:1019. [PMID: 25295015 PMCID: PMC4171988 DOI: 10.3389/fpsyg.2014.01019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/26/2014] [Indexed: 02/03/2023] Open
Abstract
Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs.
Collapse
Affiliation(s)
- Tom A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands ; Maastricht Brain Imaging Centre Maastricht, Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands ; Maastricht Brain Imaging Centre Maastricht, Netherlands
| |
Collapse
|
17
|
de Graaf TA, Koivisto M, Jacobs C, Sack AT. The chronometry of visual perception: review of occipital TMS masking studies. Neurosci Biobehav Rev 2014; 45:295-304. [PMID: 25010557 DOI: 10.1016/j.neubiorev.2014.06.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 11/17/2022]
Abstract
Transcranial magnetic stimulation (TMS) continues to deliver on its promise as a research tool. In this review article we focus on the application of TMS to early visual cortex (V1, V2, V3) in studies of visual perception and visual awareness. Depending on the asynchrony between visual stimulus onset and TMS pulse (SOA), TMS can suppress visual perception, allowing one to track the time course of functional relevance (chronometry) of early visual cortex for vision. This procedure has revealed multiple masking effects ('dips'), some consistently (∼+100ms SOA) but others less so (∼-50ms, ∼-20ms, ∼+30ms, ∼+200ms SOA). We review the state of TMS masking research, focusing on the evidence for these multiple dips, the relevance of several experimental parameters to the obtained 'masking curve', and the use of multiple measures of visual processing (subjective measures of awareness, objective discrimination tasks, priming effects). Lastly, we consider possible future directions for this field. We conclude that while TMS masking has yielded many fundamental insights into the chronometry of visual perception already, much remains unknown. Not only are there several temporal windows when TMS pulses can induce visual suppression, even the well-established 'classical' masking effect (∼+100ms) may reflect more than one functional visual process.
Collapse
Affiliation(s)
- Tom A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200MD Maastricht, The Netherlands; Maastricht Brain Imaging Center, PO Box 616, 6200MD Maastricht, The Netherlands.
| | - Mika Koivisto
- Centre for Cognitive Neuroscience and Department of Psychology, University of Turku, FIN-20014 Turku, Finland
| | - Christianne Jacobs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200MD Maastricht, The Netherlands; Maastricht Brain Imaging Center, PO Box 616, 6200MD Maastricht, The Netherlands; Department of Psychology, Faculty of Science and Technology, University of Westminster, 309 Regent Street, W1B 2HW London, United Kingdom
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200MD Maastricht, The Netherlands; Maastricht Brain Imaging Center, PO Box 616, 6200MD Maastricht, The Netherlands
| |
Collapse
|
18
|
Railo H, Andersson E, Kaasinen V, Laine T, Koivisto M. Unlike in Clinical Blindsight Patients, Unconscious Processing of Chromatic Information Depends on Early Visual Cortex in Healthy Humans. Brain Stimul 2014; 7:415-20. [DOI: 10.1016/j.brs.2014.01.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 11/27/2022] Open
|
19
|
Tapia E, Mazzi C, Savazzi S, Beck DM. Phosphene-guided transcranial magnetic stimulation of occipital but not parietal cortex suppresses stimulus visibility. Exp Brain Res 2014; 232:1989-97. [PMID: 24584900 DOI: 10.1007/s00221-014-3888-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Transcranial magnetic stimulation (TMS) applied over the occipital lobe approximately 100 ms after the onset of a stimulus decreases its visibility if it appears in the location of the phosphene. Because phosphenes can also be elicited by stimulation of the parietal regions, we asked if the same procedure that is used to reduce visibility of stimuli with occipital TMS will lead to decreased stimulus visibility when TMS is applied to parietal regions. TMS was randomly applied at 0-130 ms after the onset of the stimulus in steps of 10 ms in occipital and parietal regions. Participants responded to the orientation of the line stimulus and rated its visibility. We replicate previous reports of phosphenes from both occipital and parietal TMS. As previously reported, we also observed visual suppression around the classical 100 ms window both in the objective line orientation and subjective visibility responses with occipital TMS. Parietal stimulation, on the other hand, did not consistently reduce stimulus visibility in any time window.
Collapse
Affiliation(s)
- Evelina Tapia
- Department of Psychology, Beckman Institute, University of Illinois, 405 N. Mathews Ave., Urbana, IL, 61801, USA,
| | | | | | | |
Collapse
|
20
|
Overlapping activity periods in early visual cortex and posterior intraparietal area in conscious visual shape perception: A TMS study. Neuroimage 2014; 84:765-74. [DOI: 10.1016/j.neuroimage.2013.09.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/15/2013] [Accepted: 09/20/2013] [Indexed: 11/23/2022] Open
|
21
|
Abstract
People are extremely efficient at detecting relevant objects in complex natural scenes. In three experiments, we used functional magnetic resonance imaging-guided transcranial magnetic stimulation (TMS) to investigate the role of the extrastriate body area (EBA) in the detection of people in scenes. In Experiment 1, participants reported, in different blocks, whether people or cars were present in a briefly presented scene. Detection (d-prime) of people, but not of cars, was impaired after TMS over right EBA (rEBA; five pulses at -200, -100, 0, 100, 200 ms) compared with sham stimulation. In Experiment 2, we applied TMS either before (-200, -100 ms) or after (+100, +200) the scene onset. Poststimulus EBA stimulation impaired people detection relative to prestimulus EBA stimulation, while timing had no effect during sham stimulation. In Experiment 3, we examined anatomical specificity by comparing TMS over EBA with TMS over scene-selective transverse occipital sulcus (TOS). Two scenes were presented side by side, and response times to detect which scene contained people (or cars) were measured. For people detection, but not for car detection, response times during EBA stimulation were significantly slower than during TOS stimulation. Furthermore, rEBA stimulation led to an equivalent slowing of response times to left and right lateralized targets. These findings are the first to demonstrate the causal involvement of a category-selective human brain region in detecting its preferred stimulus category in natural scenes. They shed light on the nature of such regions, and help us understand how we efficiently extract socially relevant information from a complex input.
Collapse
|
22
|
Jacobs C, de Graaf TA, Goebel R, Sack AT. The temporal dynamics of early visual cortex involvement in behavioral priming. PLoS One 2012; 7:e48808. [PMID: 23155408 PMCID: PMC3498241 DOI: 10.1371/journal.pone.0048808] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/05/2012] [Indexed: 12/15/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) allows for non-invasive interference with ongoing neural processing. Applied in a chronometric design over early visual cortex (EVC), TMS has proved valuable in indicating at which particular time point EVC must remain unperturbed for (conscious) vision to be established. In the current study, we set out to examine the effect of EVC TMS across a broad range of time points, both before (pre-stimulus) and after (post-stimulus) the onset of symbolic visual stimuli. Behavioral priming studies have shown that the behavioral impact of a visual stimulus can be independent from its conscious perception, suggesting two independent neural signatures. To assess whether TMS-induced suppression of visual awareness can be dissociated from behavioral priming in the temporal domain, we thus implemented three different measures of visual processing, namely performance on a standard visual discrimination task, a subjective rating of stimulus visibility, and a visual priming task. To control for non-neural TMS effects, we performed electrooculographical recordings, placebo TMS (sham), and control site TMS (vertex). Our results suggest that, when considering the appropriate control data, the temporal pattern of EVC TMS disruption on visual discrimination, subjective awareness and behavioral priming are not dissociable. Instead, TMS to EVC disrupts visual perception holistically, both when applied before and after the onset of a visual stimulus. The current findings are discussed in light of their implications on models of visual awareness and (subliminal) priming.
Collapse
Affiliation(s)
- Christianne Jacobs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Salminen-Vaparanta N, Koivisto M, Noreika V, Vanni S, Revonsuo A. Neuronavigated transcranial magnetic stimulation suggests that area V2 is necessary for visual awareness. Neuropsychologia 2012; 50:1621-7. [DOI: 10.1016/j.neuropsychologia.2012.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 02/17/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
|
24
|
Jacobs C, Sack AT. Behavior in oblivion: the neurobiology of subliminal priming. Brain Sci 2012; 2:225-41. [PMID: 24962773 PMCID: PMC4061795 DOI: 10.3390/brainsci2020225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 11/23/2022] Open
Abstract
Subliminal priming refers to behavioral modulation by an unconscious stimulus, and can thus be regarded as a form of unconscious visual processing. Theories on recurrent processing have suggested that the neural correlate of consciousness (NCC) comprises of the non-hierarchical transfer of stimulus-related information. According to these models, the neural correlate of subliminal priming (NCSP) corresponds to the visual processing within the feedforward sweep. Research from cognitive neuroscience on these two concepts and the relationship between them is discussed here. Evidence favoring the necessity of recurrent connectivity for visual awareness is accumulating, although some questions, such as the need for global versus local recurrent processing, are not clarified yet. However, this is not to say that recurrent processing is sufficient for consciousness, as a neural definition of consciousness in terms of recurrent connectivity would imply. We argue that the limited interest cognitive neuroscience currently has for the NCSP is undeserved, because the discovery of the NCSP can give insight into why people do (and do not) express certain behavior.
Collapse
Affiliation(s)
- Christianne Jacobs
- Department of Cognitive Neuroscience, FPN, Maastricht University, Maastricht, 6200 MD, The Netherlands.
| | - Alexander T Sack
- Department of Cognitive Neuroscience, FPN, Maastricht University, Maastricht, 6200 MD, The Netherlands.
| |
Collapse
|
25
|
Railo H, Salminen-Vaparanta N, Henriksson L, Revonsuo A, Koivisto M. Unconscious and Conscious Processing of Color Rely on Activity in Early Visual Cortex: A TMS Study. J Cogn Neurosci 2012; 24:819-29. [DOI: 10.1162/jocn_a_00172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Chromatic information is processed by the visual system both at an unconscious level and at a level that results in conscious perception of color. It remains unclear whether both conscious and unconscious processing of chromatic information depend on activity in the early visual cortex or whether unconscious chromatic processing can also rely on other neural mechanisms. In this study, the contribution of early visual cortex activity to conscious and unconscious chromatic processing was studied using single-pulse TMS in three time windows 40–100 msec after stimulus onset in three conditions: conscious color recognition, forced-choice discrimination of consciously invisible color, and unconscious color priming. We found that conscious perception and both measures of unconscious processing of chromatic information depended on activity in early visual cortex 70–100 msec after stimulus presentation. Unconscious forced-choice discrimination was above chance only when participants reported perceiving some stimulus features (but not color).
Collapse
Affiliation(s)
| | | | | | - Antti Revonsuo
- 1University of Turku, Finland
- 3University of Skövde, Sweden
| | | |
Collapse
|
26
|
Rahnev DA, Maniscalco B, Luber B, Lau H, Lisanby SH. Direct injection of noise to the visual cortex decreases accuracy but increases decision confidence. J Neurophysiol 2012; 107:1556-63. [DOI: 10.1152/jn.00985.2011] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationship between accuracy and confidence in psychophysical tasks traditionally has been assumed to be mainly positive, i.e., the two typically increase or decrease together. However, recent studies have reported examples of exceptions, where confidence and accuracy dissociate from each other. Explanations for such dissociations often involve dual-channel models, in which a cortical channel contributes to both accuracy and confidence, whereas a subcortical channel only contributes to accuracy. Here, we show that a single-channel model derived from signal detection theory (SDT) can also account for such dissociations. We applied transcranial magnetic stimulation (TMS) to the occipital cortex to disrupt the internal representation of a visual stimulus. The results showed that consistent with previous research, occipital TMS decreased accuracy. However, counterintuitively, it also led to an increase in confidence ratings. The data were predicted well by a single-channel SDT model, which posits that occipital TMS increased the variance of the internal stimulus distributions. A formal model comparison analysis that used information theoretic methods confirmed that this model was preferred over single-channel models, in which occipital TMS changed the signal strength or dual-channel models, which assume two different processing routes. Thus our results show that dissociations between accuracy and confidence can, at least in some cases, be accounted for by a single-channel model.
Collapse
Affiliation(s)
| | - Brian Maniscalco
- Columbia University, Department of Psychology, New York, New York
| | - Bruce Luber
- Duke University, Department of Psychiatry, Durham, North Carolina; and
| | - Hakwan Lau
- Columbia University, Department of Psychology, New York, New York
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Netherlands
| | - Sarah H. Lisanby
- Duke University, Department of Psychiatry, Durham, North Carolina; and
| |
Collapse
|
27
|
Salminen-Vaparanta N, Noreika V, Revonsuo A, Koivisto M, Vanni S. Is selective primary visual cortex stimulation achievable with TMS? Hum Brain Mapp 2012; 33:652-65. [PMID: 21416561 PMCID: PMC6870472 DOI: 10.1002/hbm.21237] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/28/2010] [Accepted: 11/24/2010] [Indexed: 11/10/2022] Open
Abstract
The primary visual cortex (V1) has been the target of stimulation in a number of transcranial magnetic stimulation (TMS) studies. In this study, we estimated the actual sites of stimulation by modeling the cortical location of the TMS-induced electric field when participants reported visual phosphenes or scotomas. First, individual retinotopic areas were identified by multifocal functional magnetic resonance imaging (mffMRI). Second, during the TMS stimulation, the cortical stimulation sites were derived from electric field modeling. When an external anatomical landmark for V1 was used (2 cm above inion), the cortical stimulation landed in various functional areas in different individuals, the dorsal V2 being the most affected area at the group level. When V1 was specifically targeted based on the individual mffMRI data, V1 could be selectively stimulated in half of the participants. In the rest, the selective stimulation of V1 was obstructed by the intermediate position of the dorsal V2. We conclude that the selective stimulation of V1 is possible only if V1 happens to be favorably located in the individual anatomy. Selective and successful targeting of TMS pulses to V1 requires MRI-navigated stimulation, selection of participants and coil positions based on detailed retinotopic maps of individual functional anatomy, and computational modeling of the TMS-induced electric field distribution in the visual cortex. It remains to be resolved whether even more selective stimulation of V1 could be achieved by adjusting the coil orientation according to sulcal orientation of the target site.
Collapse
|
28
|
Two means of suppressing visual awareness: A direct comparison of visual masking and transcranial magnetic stimulation. Cortex 2012; 48:333-43. [DOI: 10.1016/j.cortex.2010.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/08/2010] [Accepted: 12/06/2010] [Indexed: 11/21/2022]
|
29
|
Koivisto M, Henriksson L, Revonsuo A, Railo H. Unconscious response priming by shape depends on geniculostriate visual projection. Eur J Neurosci 2012; 35:623-33. [DOI: 10.1111/j.1460-9568.2011.07973.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Koivisto M, Silvanto J. Visual feature binding: The critical time windows of V1/V2 and parietal activity. Neuroimage 2012; 59:1608-14. [PMID: 21925610 DOI: 10.1016/j.neuroimage.2011.08.089] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022] Open
|
31
|
de Graaf TA, Goebel R, Sack AT. Feedforward and quick recurrent processes in early visual cortex revealed by TMS? Neuroimage 2011; 61:651-9. [PMID: 22032946 DOI: 10.1016/j.neuroimage.2011.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 09/01/2011] [Accepted: 10/07/2011] [Indexed: 12/21/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) can be applied to occipital cortex to abolish (conscious) perception of visual stimuli. TMS research has revealed several time windows of masking relative to visual stimulus onset, most consistently a time window around 100ms post-stimulus. However, the exact nature of visual processing in this 'classical' time window, e.g. whether it represents the feedforward processing of the visual information, or rather a feedback projection from higher visual areas, remains unclear. Here, we used TMS to mask in the same participants two types of stimuli of different complexities (orientation Gratings and Faces) over different time windows. Interestingly, the masking functions were not the same for both stimulus types. We found an earlier peak masking latency for orientation stimuli, and a slower recovery for Faces. In a second, follow-up experiment, we superimposed both types of stimuli to create one composite stimulus set. Depending on the instruction, participants could then perform orientation or face discrimination tasks on the exact same stimuli. In addition, for each participant, stimuli were calibrated to equate task difficulties. The peak masking latency was now identical for both tasks, but the masking function revealed again a slower recovery during the face discrimination task, suggesting top-down (recurrent) effects in the second half of the masking function. Hence, rather than this masking window reflecting either feedforward or feedback processing, the early part of what is traditionally considered one masking window may reflect feedforward processing, while the latter part may already reflect recurrent processing. These findings shed new light on recurrent models of vision and related theoretical accounts of visual awareness.
Collapse
Affiliation(s)
- Tom A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | |
Collapse
|
32
|
Jacobs C, Goebel R, Sack AT. Visual awareness suppression by pre-stimulus brain stimulation; a neural effect. Neuroimage 2011; 59:616-24. [PMID: 21840406 DOI: 10.1016/j.neuroimage.2011.07.090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has established the functional relevance of early visual cortex (EVC) for visual awareness with great temporal specificity non-invasively in conscious human volunteers. Many studies have found a suppressive effect when TMS was applied over EVC 80-100 ms after the onset of the visual stimulus (post-stimulus TMS time window). Yet, few studies found task performance to also suffer when TMS was applied even before visual stimulus presentation (pre-stimulus TMS time window). This pre-stimulus TMS effect, however, remains controversially debated and its origin had mainly been ascribed to TMS-induced eye-blinking artifacts. Here, we applied chronometric TMS over EVC during the execution of a visual discrimination task, covering an exhaustive range of visual stimulus-locked TMS time windows ranging from -80 pre-stimulus to 300 ms post-stimulus onset. Electrooculographical (EoG) recordings, sham TMS stimulation, and vertex TMS stimulation controlled for different types of non-neural TMS effects. Our findings clearly reveal TMS-induced masking effects for both pre- and post-stimulus time windows, and for both objective visual discrimination performance and subjective visibility. Importantly, all effects proved to be still present after post hoc removal of eye blink trials, suggesting a neural origin for the pre-stimulus TMS suppression effect on visual awareness. We speculate based on our data that TMS exerts its pre-stimulus effect via generation of a neural state which interacts with subsequent visual input.
Collapse
Affiliation(s)
- Christianne Jacobs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands.
| | | | | |
Collapse
|