1
|
Carvalho SF, Custódio MH, Pereiro AB, Araújo JMM. Towards Enhanced Tunability of Aqueous Biphasic Systems: Furthering the Grasp of Fluorinated Ionic Liquids in the Purification of Proteins. Int J Mol Sci 2024; 25:5766. [PMID: 38891953 PMCID: PMC11172314 DOI: 10.3390/ijms25115766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
This work unfolds functionalized ABSs composed of FILs ([C2C1Im][C4F9SO3] and [N1112(OH)][C4F9SO3]), mere fluoro-containing ILs ([C2C1Im][CF3SO3] and [C4C1Im][CF3SO3]), known globular protein stabilizers (sucrose and [N1112(OH)][C4F9SO3]), low-molecular-weight carbohydrate (glucose), and even high-charge density salt (K3PO4). The ternary phase diagrams were determined, stressing that FILs highly increased the ability for ABS formation. The functionalized ABSs (FILs vs. mere fluoro-containing ILs) were used to extract lysozyme (Lys). The ABSs' biphasic regions were screened in terms of protein biocompatibility, analyzing the impact of ABS phase-forming components in Lys by UV-VIS spectrophotometry, CD spectroscopy, fluorescence spectroscopy, DSC, and enzyme assay. Lys partition behavior was characterized in terms of extraction efficiency (% EE). The structure, stability, and function of Lys were maintained or improved throughout the extraction step, as evaluated by CD spectroscopy, DSC, enzyme assay, and SDS-PAGE. Overall, FIL-based ABSs are more versatile and amenable to being tuned by the adequate choice of the phase-forming components and selecting the enriched phase. Binding studies between Lys and ABS phase-forming components were attained by MST, demonstrating the strong interaction between Lys and FILs aggregates. Two of the FIL-based ABSs (30 %wt [C2C1Im][C4F9SO3] + 2 %wt K3PO4 and 30 %wt [C2C1Im][C4F9SO3] + 25 %wt sucrose) allowed the simultaneous purification of Lys and BSA in a single ABS extraction step with high yield (extraction efficiency up to 100%) for both proteins. The purity of both recovered proteins was validated by SDS-PAGE analysis. Even with a high-charge density salt, the FIL-based ABSs developed in this work seem more amenable to be tuned. Lys and BSA were purified through selective partition to opposite phases in a single FIL-based ABS extraction step. FIL-based ABSs are proposed as an improved extraction step for proteins, based on their biocompatibility, customizable properties, and selectivity.
Collapse
Affiliation(s)
| | | | | | - João M. M. Araújo
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (S.F.C.); (M.H.C.); (A.B.P.)
| |
Collapse
|
2
|
Decker JS, Yano U, Melgar RM, Lynch MD. Phase separation methods for protein purification: A meta-analysis of purification performance and cost-effectiveness. Biotechnol J 2024; 19:e2400005. [PMID: 38651259 PMCID: PMC11076012 DOI: 10.1002/biot.202400005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Protein purifications based on phase separations (e.g., precipitation and liquid-liquid extraction) have seen little adoption in commercial protein drug production. To identify barriers, we analyzed the purification performance and economics of 290 phase separation purifications from 168 publications. First, we found that studies using Design of Experiments for optimization achieved significantly greater mean yield and host cell protein log10 removal values than those optimizing one factor at a time (11.5% and 53% increases, respectively). Second, by modeling each reported purification at scales from 10 to 10,000 kg product/year and comparing its cost-effectiveness versus chromatography, we found that cost-effectiveness depends strongly on scale: the fraction of phase separations predicted to be cost-effective at the 10, 100, and 1000 kg/year scales was 8%, 15%, and 43%, respectively. Total cost per unit product depends inversely on input purity, with phase separation being cheaper than chromatography at the 100 kg/year scale in 100% of cases where input purity was ≤ 1%, compared to about 25% of cases in the dataset as a whole. Finally, we identified a simple factor that strongly predicts phase separation process costs: the mass ratio of reagents versus purified product (the "direct materials usage rate"), which explains up to 58% of variation in cost per unit of purified product among all 290 reports, and up to 98% of variation within particular types of phase separation.
Collapse
Affiliation(s)
- John S. Decker
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Utsuki Yano
- Department of Chemistry, Duke University, Durham, NC
| | | | - Michael D. Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC
- Department of Chemistry, Duke University, Durham, NC
| |
Collapse
|
3
|
Carvalho SF, Pereiro AB, Araújo JMM. Simultaneous Purification of Human Interferon Alpha-2b and Serum Albumin Using Bioprivileged Fluorinated Ionic Liquid-Based Aqueous Biphasic Systems. Int J Mol Sci 2024; 25:2751. [PMID: 38473998 PMCID: PMC10931833 DOI: 10.3390/ijms25052751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Interferon alpha-2b (IFN-α2b) is an essential cytokine widely used in the treatment of chronic hepatitis C and hairy cell leukemia, and serum albumin is the most abundant plasma protein with numerous physiological functions. Effective single-step aqueous biphasic system (ABS) extraction for the simultaneous purification of IFN-α2b and BSA (serum albumin protein) was developed in this work. Effects of the ionic liquid (IL)-based ABS functionalization, fluorinated ILs (FILs; [C2C1Im][C4F9SO3] and [N1112(OH)][C4F9SO3]) vs. mere fluoro-containing IL ([C4C1Im][CF3SO3]), in combination with sucrose or [N1112(OH)][H2PO4] (well-known globular protein stabilizers), or high-charge-density salt K3PO4 were investigated. The effects of phase pH, phase water content (%wt), phase composition (%wt), and phase volume ratio were investigated. The phase pH was found to have a significant effect on IFN-α2b and BSA partition. Experimental results show that simultaneous single-step purification was achieved with a high yield (extraction efficiency up to 100%) for both proteins and a purification factor of IFN-α2b high in the enriched IFN-α2b phase (up to 23.22) and low in the BSA-enriched phase (down to 0.00). SDS-PAGE analysis confirmed the purity of both recovered proteins. The stability and structure of IFN-α2b and BSA were preserved or even improved (FIL-rich phase) during the purification step, as evaluated by CD spectroscopy and DSC. Binding studies of IFN-α2b and BSA with the ABS phase-forming components were assessed by MST, showing the strong interaction between FILs aggregates and both proteins. In view of their biocompatibility, customizable properties, and selectivity, FIL-based ABSs are suggested as an improved purification step that could facilitate the development of biologics.
Collapse
Affiliation(s)
| | | | - João M. M. Araújo
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (S.F.C.); (A.B.P.)
| |
Collapse
|
4
|
Decker JS, Yano U, Melgar RM, Lynch MD. Precipitation and Extraction Methods for Protein Purification: A Meta-Analysis of Purification Performance and Cost-Effectiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571684. [PMID: 38168161 PMCID: PMC10760113 DOI: 10.1101/2023.12.14.571684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
For protein drug purification, packed-bed chromatography often remains both the predominant method and a bottleneck for cost and scalability. Accordingly, extensive efforts have been made to develop alternatives, such as precipitation and liquid-liquid extraction. Despite decades of development, such methods have been slow to see adoption in commercial processes. To diagnose the key barriers to implementation and guide future work, we have systematically reviewed studies of protein precipitation and liquid-liquid extraction. We classify the products, methods, and results of 168 publications representing 290 unique purification operations and analyze these operations in terms of both process economics and purification performance. Whereas it is generally assumed that precipitation and extraction methods will have lower costs than chromatography, we find that this is only the case under specific process conditions such as at a large manufacturing scale and low initial sample purity. Furthermore, we find that only a small number of the many precipitation and extraction methods reported to date have shown readiness for implementation in protein drug purification processes. Finally, we identify key factors governing both the economic and purification performance of this class of methods: first, that operating costs are almost entirely predictable by the ratio between the mass of phase-forming materials used and the mass of product protein yielded; second, that use of modern optimization techniques such as Design of Experiments is associated with significantly better purification performance and cost-effectiveness. Highlights Alternative separation purification methods are not always cheaper than chromatographyThe use of a combination of phase separating agents remains largely underexplored/underutilizedLower initial purity and increasing production scale favor phase-separation over chromatographyThe direct material usage rate is an important predictor of alternative separation cost-effectivenessCurrent alternative separation method development has largely ignored optimization of direct material usage rate.
Collapse
|
5
|
Trinh THT, Ye L, Hajizadeh S. Impact of double cryogelation process on a macroporous dye-affinity hydrogel. J Sep Sci 2023; 46:e2300017. [PMID: 36780629 DOI: 10.1002/jssc.202300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Cryogels with interconnected channels allow high flow-through properties and mass transfer when dealing with complex mixtures such as non-clarified crude extracts. However, their mechanical strength can be challenged due to a large void volume inside the polymeric network. We have addressed this problem by forming a double-layer cryogel applied as a dye-affinity chromatography gel. In this study, poly(acrylamide-co-allyl glycidyl ether) cryogel was prepared at sub-zero temperature. The second layer was then prepared inside the primary cryogel under the same conditions to form a double-layer network. Cibacron Blue F3GA, a dye molecule, was immobilized on the surface of the cryogels. Bovine serum albumin was used as a model molecule to study the adsorption/elution procedure in batch and continuous modes. The maximum batch binding capacity and the dynamic binding capacity for the single-layer cryogel were 18 and 0.11, and for the double-layer cryogel were 7.5 and 0.9 mg/g of gel, respectively. However, the mechanical stability of the double-layer cryogel increased 7-fold (144 kPa). It was found that the kinetic and adsorption isotherms follow pseudo-second-order and Freundlich models, respectively. The regeneration of the columns after adsorption/elution cycles was evaluated, and no significant loss of capacity was observed after 10 cycles.
Collapse
Affiliation(s)
- Thi Hoai Thu Trinh
- Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden.,Chemical laboratory, Ejendals AB, Leksand, Sweden
| | - Lei Ye
- Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Solmaz Hajizadeh
- Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Lam SF, Shang X, Ghosh R. Membrane-Based Hybrid Method for Purifying PEGylated Proteins. MEMBRANES 2023; 13:182. [PMID: 36837684 PMCID: PMC9966431 DOI: 10.3390/membranes13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
PEGylated proteins are usually purified using chromatographic methods, which are limited in terms of both speed and scalability. In this paper, we describe a microfiltration membrane-based hybrid method for purifying PEGylated proteins. Polyethylene glycol (or PEG) is a lower critical solution temperature polymer which undergoes phase transition in the presence of a lyotropic salt and forms micelle-like structures which are several microns in size. In the proposed hybrid method, the PEGylated proteins are first converted to their micellar form by the addition of a lyotropic salt (1.65 M ammonium sulfate). While the micelles are retained using a microfiltration membrane, soluble impurities such as the unmodified protein are washed out through the membrane. The PEGylated proteins thus retained by the membrane are recovered by solubilizing them by removing the lyotropic salt. Further, by precisely controlling the salt removal, the different PEGylated forms of the protein, i.e., mono-PEGylated and di-PEGylated forms, are fractionated from each other. Hybrid separation using two different types of microfiltration membrane devices, i.e., a stirred cell and a tangential flow filtration device, are examined in this paper. The membrane-based hybrid method for purifying PEGylated proteins is both fast and scalable.
Collapse
Affiliation(s)
| | | | - Raja Ghosh
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 27415)
| |
Collapse
|
7
|
Nyande BW, Thomas KM, Takarianto AA, Lakerveld R. Control of crystal size distribution in batch protein crystallization by integrating a gapped Kenics static mixer to flexibly produce seed crystals. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Li P, Hu Y, Li Y, Bao Y, Wang X, Piao C. Co‐production of Nattokinase and
α
‐Amylase
from
Bacillus natto
Fermentation Using Okara. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pengcheng Li
- College of Food Science and Technology Jilin Agricultural University, Changchun Jilin China
| | - Yang Hu
- College of Food Science and Technology Jilin Agricultural University, Changchun Jilin China
| | - Yunbo Li
- College of Food Science and Technology Jilin Agricultural University, Changchun Jilin China
| | - Yue Bao
- College of Food Science and Technology Jilin Agricultural University, Changchun Jilin China
| | - Xiujuan Wang
- College of Food Science and Technology Jilin Agricultural University, Changchun Jilin China
| | - Chunhong Piao
- College of Food Science and Technology Jilin Agricultural University, Changchun Jilin China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun Jilin China
| |
Collapse
|
9
|
Biodegradable Solvents: A Promising Tool to Recover Proteins from Microalgae. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The world will face a significant protein demand in the next few decades, and due to the environmental concerns linked to animal protein, new sustainable protein sources must be found. In this regard, microalgae stand as an outstanding high-quality protein source. However, different steps are needed to separate the proteins from the microalgae biomass and other biocompounds. The protein recovery from the disrupted biomass is usually the bottleneck of the process, and it typically employs organic solvents or harsh conditions, which are both detrimental to protein stability and planet health. Different techniques and methods are applied for protein recovery from various matrices, such as precipitation, filtration, chromatography, electrophoresis, and solvent extraction. Those methods will be reviewed in this work, discussing their advantages, drawbacks, and applicability to the microalgae biorefinery process. Special attention will be paid to solvent extraction performed with ionic liquids (ILs) and deep eutectic solvents (DESs), which stand as promising solvents to perform efficient protein separations with reduced environmental costs compared to classical alternatives. Finally, several solvent recovery options will be analyzed to reuse the solvent employed and isolate the proteins from the solvent phase.
Collapse
|
10
|
Lin TN, Lin SC. Metal chelate-epoxy bifunctional membranes for selective adsorption and covalent immobilization of a His-tagged protein. J Biosci Bioeng 2021; 133:258-264. [PMID: 34930669 DOI: 10.1016/j.jbiosc.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
The preparation and application of metal chelate-epoxy bifunctional membranes for the selective adsorption and covalent immobilization of His-tagged protein switch RG13 were shown in this study. By controlling the concentration of iminodiacetic acid (IDA) and reaction time during the conjugation of IDA on to the epichlorohydrin-activated regenerated cellulose membrane, 5 metal chelate-epoxy bifunctional membranes, with degrees of IDA conjugation in the range of 20%-81%, were prepared. The bifunctional membrane with an IDA conjugation degree of 30%, designated as BFM30, exhibited a sound adsorption capacity of 0.203 mg/cm2 with a relatively high content of epoxy groups for covalent immobilization, were selected. The concomitant selective adsorption and covalent immobilization of the His-tagged RG13 with BFM30 were carried out by 2-h incubation for protein adsorption and subsequent 16-h incubation for covalent immobilization after the removal of undesired proteins with wash buffer, giving an immobilization yield of 63% and a global activity yield 40%. The RG13 immobilized on the metal chelate-epoxy bifunctional membrane exhibited superior operational stability in a repeated batch process, retaining 94% of its initial activity after 20 cycles. The employment of the bifunctional membranes could significant facilitate enzyme immobilization processes by eliminating the need for prior protein purification.
Collapse
Affiliation(s)
- Tzu-Ning Lin
- Department of Chemical Engineering, National Chung Hsing University, 145 Xinda Road, South District, Taichung 402, Taiwan
| | - Sung-Chyr Lin
- Department of Chemical Engineering, National Chung Hsing University, 145 Xinda Road, South District, Taichung 402, Taiwan.
| |
Collapse
|
11
|
Khaparde A, Lokesh Kumar S, Vijayalakshmi MA, Tetala KKR. A conjoint multi metal-ion iminodiacetic acid monolith microfluidic chip for structural-based protein pre-fractionation. Electrophoresis 2021; 42:2647-2655. [PMID: 34687221 DOI: 10.1002/elps.202100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/12/2021] [Accepted: 10/18/2021] [Indexed: 11/06/2022]
Abstract
PDMS-based multichannel microfluidic chip was designed and fabricated in a simple approach using readily available tools. UV-initiated in situ polymerization of poly(2-hydroxy ethyl methacrylate-co-di(ethylene glycol) diacrylate-co-N,N'-diallyl l-tartardiamide) in an Eppendorf tube was achieved within 40 min. This polymerization process was successfully translated to a microfluidic chip format without any further modifications. Iminodiacetic acid was successfully immobilized on aldehyde functional monoliths via Schiff base reaction and confirmed by FT-IR spectroscopy. Four transition metal ions (Co (II), Zn (II), Ni (II), and Cu (II)) were chelated individually on four IDA-monolith microfluidic chips. The conjoint metal-ion monolith microfluidic chip has displayed high permeability (9.40 × 10-13 m2 ) and a porosity of 32.8%. This affinity microfluidic chip has pre-fractioned four human plasma proteins (fibrinogen, immunoglobulin, transferrin, and human serum albumin) based on their surface-exposed histidine surface topography. A protein recovery of approximately 95% (Bradford assay data) was achieved. The multimonolith microchip can be reusable even after three protein adsorption-desorption cycles.
Collapse
Affiliation(s)
- Ashish Khaparde
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - S Lokesh Kumar
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - M A Vijayalakshmi
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
12
|
Zhao G, Zhao H, Shi L, Cheng B, Xu X, Zhuang X. In situ loading MnO 2 onto 3D Aramid nanofiber aerogel as High-Performance lead adsorbent. J Colloid Interface Sci 2021; 600:403-411. [PMID: 34023701 DOI: 10.1016/j.jcis.2021.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 11/26/2022]
Abstract
Fabricating a high-performance adsorbent as a desirable candidate for removing Pb2+ from aqueous water remains a challenge. Aramid nanofibers (ANFs) are promising building blocks that have realized multifunctional applications due to their intrinsic mechanical and chemical stability. Herein, an in situ loading strategy for preparing nanofiber composite aerogel was proposed by assembling ANFs into a 3D aerogel and applying it as host media for the in situ polymerization of pyrrole followed by facile redox reaction between the polypyrrole (PPy) and MnO4-1 to load manganese dioxide (MnO2). The idea was to fully exploit the structural advantages of ultra-low bulk density, large specific surface area, and high porosity of ANFs, and the possible chemical adsorption characteristics of MnO2 on the basis of ion exchange reaction. The adsorption capacity of 3D ANF/MnO2 composite aerogel was as large as 554.36 mg/g for Pb2+. The adsorption mechanism based on an exchange reaction between Pb2+ and protons on the surface of MnO2 was also investigated. The desorption results showed that the adsorption performance could remain up to 90% after five times of usage. In conclusion, this research provides promising insights into the preparation of high-performance lead adsorbent for water treatment.
Collapse
Affiliation(s)
- Guodong Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Huijuan Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Lei Shi
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Bowen Cheng
- Tianjin University of Science &Technology, Tianjin 300222, PR China
| | - Xianlin Xu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, PR China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
13
|
Scaled preparation of extracellular vesicles from conditioned media. Adv Drug Deliv Rev 2021; 177:113940. [PMID: 34419502 DOI: 10.1016/j.addr.2021.113940] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) especially of mesenchymal stem/stomal cells (MSCs) are increasingly considered as biotherapeutic agents for a variety of different diseases. For translating them effectively into the clinics, scalable production processes fulfilling good manufacturing practice (GMP) are needed. Like for other biotherapeutic agents, the manufacturing of EV products can be subdivided in the upstream and downstream processing and the subsequent quality control, each of them containing several unit operations. During upstream processing (USP), cells are isolated, stored (cell banking) and expanded; furthermore, EV-containing conditioned media are produced. During downstream processing (DSP), conditioned media (CM) are processed to obtain concentrated and purified EV products. CM are either stored until DSP or are directly processed. As first unit operation in DSP, clarification removes remaining cells, debris and other larger impurities. The key operations of each EV DSP is volume-reduction combined with purification of the concentrated EVs. Most of the EV preparation methods used in conventional research labs including differential centrifugation procedures are limited in their scalability. Consequently, it is a major challenge in the therapeutic EV field to identify appropriate EV concentration and purification methods allowing scale up. As EVs share several features with enveloped viruses, that are used for more than two decades in the clinics now, several principles can be adopted to EV manufacturing. Here, we introduce and discuss volume reducing and purification methods frequently used for viruses and analyze their value for the manufacturing of EV-based therapeutics.
Collapse
|
14
|
Sánchez-Trasviña C, Flores-Gatica M, Enriquez-Ochoa D, Rito-Palomares M, Mayolo-Deloisa K. Purification of Modified Therapeutic Proteins Available on the Market: An Analysis of Chromatography-Based Strategies. Front Bioeng Biotechnol 2021; 9:717326. [PMID: 34490225 PMCID: PMC8417561 DOI: 10.3389/fbioe.2021.717326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/09/2021] [Indexed: 02/02/2023] Open
Abstract
Proteins, which have inherent biorecognition properties, have long been used as therapeutic agents for the treatment of a wide variety of clinical indications. Protein modification through covalent attachment to different moieties improves the therapeutic's pharmacokinetic properties, affinity, stability, confers protection against proteolytic degradation, and increases circulation half-life. Nowadays, several modified therapeutic proteins, including PEGylated, Fc-fused, lipidated, albumin-fused, and glycosylated proteins have obtained regulatory approval for commercialization. During its manufacturing, the purification steps of the therapeutic agent are decisive to ensure the quality, effectiveness, potency, and safety of the final product. Due to the robustness, selectivity, and high resolution of chromatographic methods, these are recognized as the gold standard in the downstream processing of therapeutic proteins. Moreover, depending on the modification strategy, the protein will suffer different physicochemical changes, which must be considered to define a purification approach. This review aims to deeply analyze the purification methods employed for modified therapeutic proteins that are currently available on the market, to understand why the selected strategies were successful. Emphasis is placed on chromatographic methods since they govern the purification processes within the pharmaceutical industry. Furthermore, to discuss how the modification type strongly influences the purification strategy, the purification processes of three different modified versions of coagulation factor IX are contrasted.
Collapse
Affiliation(s)
- Calef Sánchez-Trasviña
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Miguel Flores-Gatica
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Daniela Enriquez-Ochoa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| |
Collapse
|
15
|
Winderl J, Bürkle S, Hubbuch J. High throughput screening of fiber-based adsorbents for material and process development. J Chromatogr A 2021; 1653:462387. [PMID: 34375899 DOI: 10.1016/j.chroma.2021.462387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
There has been a growing interest in fibers and fiber-based adsorbents as alternative adsorbents for preparative chromatography. While the benefits of fiber-based adsorbents in terms of productivity have been highlighted in several recent studies, microscale tools that enable a fast characterization of these novel adsorbents, and an easy integration into process development workflows, are still lacking. In the present study an automated high-throughput screening (HTS) for fiber-based adsorbents was established on a robotic liquid handling station in 96 well filter plates. Two techniques - punching and weighing - were identified as techniques that enabled accurate and reproducible portioning of short-cut fiber-based adsorbents. The impact of several screening parameters such as phase ratio, shaking frequency, and incubation time were investigated and optimized for different types of fiber-based adsorbents. The data from the developed HTS correlated with data from packed fiber columns, and binding capacities from both scales matched closely. Subsequently, the developed HTS was utilized to optimize the hydrogel architecture of anion exchange (AEX) fiber-based adsorbent prototypes. A novel AEX fiber-based adsorbent was developed that compared favorably with existing resin and membrane adsorbents in terms of productivity and DNA binding capacity. In addition, the developed HTS was also successfully employed in order to identify step elution conditions for the purification of a monoclonal antibody from product- and process-related impurities with a cation exchange (CEX) fiber-based adsorbent. Trends from the HTS were found to be in good agreement with trends from lab scale column runs. The tool developed in this paper will enable a faster and more complete characterization of fiber-based adsorbents, easier tailoring of such adsorbents towards specific process applications, and an easier integration of such materials into processes. In comparison to previous lab scale experiments, material requirements are reduced by a factor of 3-40 and time requirements are reduced by a factor of 2-5.
Collapse
Affiliation(s)
- Johannes Winderl
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Stephan Bürkle
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
16
|
O'Donnell K, Krishnathu S, Bhatia R, Huang Z, Kelly W. Evaluation of two-species binding model with anion-exchange membrane chromatography to predict pressure buildup during recovery of virus. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Tournois M, Mathé S, André I, Esque J, Fernández MA. Surface charge distribution: a key parameter for understanding protein behavior in chromatographic processes. J Chromatogr A 2021; 1648:462151. [PMID: 33992992 DOI: 10.1016/j.chroma.2021.462151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Multi-component adsorption of proteins still requires a better understanding of local phenomena to improve the development of predictive models. In this work, all-atom Molecular Dynamics (MD) simulations were used to investigate the influence of protein charge distribution on the adsorption capacity. The simultaneous adsorption of α-chymotrypsin and lysozyme on a cation exchanger, SP Sepharose FF, was studied through MD simulations and compared to macroscopic isotherm experiments. It appears that the charge distribution is a relevant information to better understand specific phenomena, such as a multilayer adsorption caused by the particular electrostatic profile of α-chymotrypsin. Therefore, MD simulations seem to be an interesting way to visualize and highlight these behaviors.
Collapse
Affiliation(s)
- Marine Tournois
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Stéphane Mathé
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Isabelle André
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jérémy Esque
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | |
Collapse
|
18
|
Polymer microarrays rapidly identify competitive adsorbents of virus-like particles. Biointerphases 2020; 15:061005. [PMID: 33203214 DOI: 10.1116/6.0000586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The emergence of SARS-CoV-2 highlights the global need for platform technologies to enable the rapid development of diagnostics, vaccines, treatments, and personal protective equipment (PPE). However, many current technologies require the detailed mechanistic knowledge of specific material-virion interactions before they can be employed, for example, to aid in the purification of vaccine components or in the design of a more effective PPE. Here, we show that an adaption of a polymer microarray method for screening bacterial-surface interactions allows for the screening of polymers for desirable material-virion interactions. Nonpathogenic virus-like particles including fluorophores are exposed to the arrays in an aqueous buffer as a simple model of virions carried to the surface in saliva/sputum. Competitive binding of Lassa and Rubella virus-like particles is measured to probe the relative binding properties of a selection of copolymers. This provides the first step in the development of a method for the discovery of novel materials with promise for viral binding, with the next being development of this method to assess absolute viral adsorption and assessment of the attenuation of the activity of live virus, which we propose would be part of a material scale up step carried out in high containment facilities, alongside the use of more complex media to represent biological fluids.
Collapse
|
19
|
Kumar V, Lenhoff AM. Mechanistic Modeling of Preparative Column Chromatography for Biotherapeutics. Annu Rev Chem Biomol Eng 2020; 11:235-255. [DOI: 10.1146/annurev-chembioeng-102419-125430] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatography has long been, and remains, the workhorse of downstream processing in the production of biopharmaceuticals. As bioprocessing has matured, there has been a growing trend toward seeking a detailed fundamental understanding of the relevant unit operations, which for some operations include the use of mechanistic modeling in a way similar to its use in the conventional chemical process industries. Mechanistic models of chromatography have been developed for almost a century, but although the essential features are generally understood, the specialization of such models to biopharmaceutical processing includes several areas that require further elucidation. This review outlines the overall approaches used in such modeling and emphasizes current needs, specifically in the context of typical uses of such models; these include selection and improvement of isotherm models and methods to estimate isotherm and transport parameters independently. Further insights are likely to be aided by molecular-level modeling, as well as by the copious amounts of empirical data available for existing processes.
Collapse
Affiliation(s)
- Vijesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
20
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
21
|
Heller M, Li Q, Esinhart K, Pourdeyhimi B, Boi C, Carbonell RG. Heat Induced Grafting of Poly(glycidyl methacrylate) on Polybutylene Terephthalate Nonwovens for Bioseparations. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b04936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Heller
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Qian Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Kellie Esinhart
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Behnam Pourdeyhimi
- The Nonwovens Institute, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Cristiana Boi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695-7905, United States
- DICAM, Alma Mater Studiorum-Università di Bologna, Bologna 40131, Italy
| | - Ruben G. Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695-7905, United States
- National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), Raleigh, North Carolina 27695, United States
| |
Collapse
|
22
|
Umatheva U, Chen G, Ghosh R. Computational fluid dynamic (CFD) simulation of a cuboid packed-bed chromatography device. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Madadkar P, Sadavarte R, Ghosh R. Performance Comparison of a Laterally-Fed Membrane Chromatography (LFMC) Device with a Commercial Resin Packed Column. MEMBRANES 2019; 9:E138. [PMID: 31671843 PMCID: PMC6918161 DOI: 10.3390/membranes9110138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022]
Abstract
The use of conventional membrane adsorbers such as radial flow devices is largely restricted to flow-through applications, such as virus and endotoxin removal, as they fail to give acceptable resolution in bind-and-elute separations. Laterally-fed membrane chromatography or LFMC devices have been specifically developed to combine high-speed with high-resolution. In this study, an LFMC device containing a stack of strong cation exchange membranes was compared with an equivalent resin packed column. Preliminary characterization experiments showed that the LFMC device had a significantly greater number of theoretical plates per metre than the column. These devices were used to separate a ternary model protein mixture consisting of ovalbumin, conalbumin and lysozyme. The resolution obtained with the LFMC device was better than that obtained with the column. For instance, the LFMC device could resolve lysozyme dimer from lysozyme monomer, which was not possible using the column. In addition, the LFMC device could be operated at lower pressure and at significantly higher flow rates. The devices were then compared based on an application case study, i.e., preparative separation of monoclonal antibody charge variants. The LFMC device gave significantly better separation of these variants than the column.
Collapse
Affiliation(s)
- Pedram Madadkar
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| | - Rahul Sadavarte
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
24
|
Purification of lysozyme from chicken egg white using nanofiber membrane immobilized with Reactive Orange 4 dye. Int J Biol Macromol 2019; 134:458-468. [DOI: 10.1016/j.ijbiomac.2019.05.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 11/21/2022]
|
25
|
de Medeiros AF, Rocha MGF, Serquiz AC, Machado RJA, Lima VCO, de Carvalho FMC, de Sousa Costa I, Maciel BLL, dos Santos EA, de Araújo Morais AH. Characterization of novel trypsin inhibitor in raw and toasted peanuts using a simple improved isolation. ACTA CHROMATOGR 2019. [DOI: 10.1556/1326.2017.00353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Amanda Fernandes de Medeiros
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Alexandre Coelho Serquiz
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | - Izael de Sousa Costa
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Bruna Leal Lima Maciel
- Course of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Elizeu Antunes dos Santos
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Biochemistry, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
26
|
|
27
|
Poplewska I, Łyskowski A, Kołodziej M, Szałański P, Piątkowski W, Antos D. Determination of protein crystallization kinetics by a through-flow small-angle X-ray scattering method. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Salmean C, Dimartino S. 3D-Printed Stationary Phases with Ordered Morphology: State of the Art and Future Development in Liquid Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3671-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Hindered diffusion of proteins in mixture adsorption on porous anion exchangers and impact on flow-through purification of large proteins. J Chromatogr A 2018; 1585:121-130. [PMID: 30503698 DOI: 10.1016/j.chroma.2018.11.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023]
Abstract
Complex adsorption kinetics behaviors of proteins in mixtures hampers chromatographic process development and complicates model-based prediction of separation. We investigated the adsorption characteristics of mixtures comprised of a larger protein (secretory immunoglobulins or thyroglobulin) and a smaller protein (serum albumin or green fluorescence protein) on the small-pore anion exchanger Q Sepharose FF. Confocal laser scanning microscopy measurements revealed that binding of the large protein was extremely slow and eventually stopped completely after the adsorption front penetrated just a few μm into the particle. Binding capacities after 24 h of incubation were nevertheless around 35 mg/mL of particle which is relatively high when considering that only a fraction of the particle was saturated, suggesting that locally-high bound protein concentrations are attained in a layer close to the particle surface. During mixture adsorption, the bound protein layer also significantly hindered diffusion of the smaller proteins into the particles resulting in about three times slower adsorption kinetics compared to single component adsorption. The combined effects of restricted diffusion and protein binding explain why flow-through purification of these mixtures with the small-pore resin Q Sepharose FF is effective under practical conditions. In this resin, diffusion of secretory immunoglobulins (or thyroglobulin) is restricted in the small pores so that despite their intrinsically greater affinity for the resin, much less binds compared to small proteins. Using the large-pore resin POROS 50 HQ results in faster transport, but also in more binding of secretory immunoglobulins (or thyroglobulin) compared to smaller protein impurities, preventing effective flow-through purification.
Collapse
|
30
|
NISHIMURA N, NAITO T, KUBO T, OTSUKA K. Suppression of Hydrophobicity and Optimizations of a Ligand-Immobilization for Effective Affinity Chromatography Using a Spongy Monolith. CHROMATOGRAPHY 2018. [DOI: 10.15583/jpchrom.2018.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | | | - Takuya KUBO
- Graduate School of Engineering, Kyoto University
| | - Koji OTSUKA
- Graduate School of Engineering, Kyoto University
| |
Collapse
|
31
|
Umatheva U, Madadkar P, Selvaganapathy PR, Ghosh R. Computational fluid dynamic (CFD) simulation of laterally-fed membrane chromatography. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Madadkar P, Yu Z, Wildfong J, Ghosh R. Comparison of membrane chromatography devices in laboratory-scale preparative flow-through separation of a recombinant protein. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1481090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pedram Madadkar
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Yu
- Bioprocess Research and Development, Sanofi Pasteur, Toronto, Ontario, Canada
| | - Jenny Wildfong
- Bioprocess Research and Development, Sanofi Pasteur, Toronto, Ontario, Canada
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Chew KW, Ling TC, Show PL. Recent Developments and Applications of Three-Phase Partitioning for the Recovery of Proteins. SEPARATION AND PURIFICATION REVIEWS 2018. [DOI: 10.1080/15422119.2018.1427596] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kit Wayne Chew
- Department of Chemical and Environmental Engineering and Bioseparation Research Group, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan 43500, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering and Bioseparation Research Group, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan 43500, Malaysia
| |
Collapse
|
34
|
Gagaoua M. Aqueous Methods for Extraction/Recovery of Macromolecules From Microorganisms of Atypical Environments: A Focus on Three Phase Partitioning. METHODS IN MICROBIOLOGY 2018. [DOI: 10.1016/bs.mim.2018.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Jamaluddin N, Stuckey DC, Ariff AB, Faizal Wong FW. Novel approaches to purifying bacteriocin: A review. Crit Rev Food Sci Nutr 2017; 58:2453-2465. [DOI: 10.1080/10408398.2017.1328658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Norfariza Jamaluddin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - David C. Stuckey
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Arbakariya B. Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
36
|
Yan JK, Wang YY, Qiu WY, Ma H, Wang ZB, Wu JY. Three-phase partitioning as an elegant and versatile platform applied to nonchromatographic bioseparation processes. Crit Rev Food Sci Nutr 2017; 58:2416-2431. [DOI: 10.1080/10408398.2017.1327418] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | | | | | - Haile Ma
- Jiangsu University, Zhenjiang, China
| | | | - Jian-Yong Wu
- The Hong Kong Polytechnic University, Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
37
|
Nadar SS, Pawar RG, Rathod VK. Recent advances in enzyme extraction strategies: A comprehensive review. Int J Biol Macromol 2017; 101:931-957. [DOI: 10.1016/j.ijbiomac.2017.03.055] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
|
38
|
Abramyan TM, Hyde-Volpe DL, Stuart SJ, Latour RA. Application of advanced sampling and analysis methods to predict the structure of adsorbed protein on a material surface. Biointerphases 2017; 12:02D409. [PMID: 28514864 PMCID: PMC5435533 DOI: 10.1116/1.4983274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/08/2023] Open
Abstract
The use of standard molecular dynamics simulation methods to predict the interactions of a protein with a material surface have the inherent limitations of lacking the ability to determine the most likely conformations and orientations of the adsorbed protein on the surface and to determine the level of convergence attained by the simulation. In addition, standard mixing rules are typically applied to combine the nonbonded force field parameters of the solution and solid phases the system to represent interfacial behavior without validation. As a means to circumvent these problems, the authors demonstrate the application of an efficient advanced sampling method (TIGER2A) for the simulation of the adsorption of hen egg-white lysozyme on a crystalline (110) high-density polyethylene surface plane. Simulations are conducted to generate a Boltzmann-weighted ensemble of sampled states using force field parameters that were validated to represent interfacial behavior for this system. The resulting ensembles of sampled states were then analyzed using an in-house-developed cluster analysis method to predict the most probable orientations and conformations of the protein on the surface based on the amount of sampling performed, from which free energy differences between the adsorbed states were able to be calculated. In addition, by conducting two independent sets of TIGER2A simulations combined with cluster analyses, the authors demonstrate a method to estimate the degree of convergence achieved for a given amount of sampling. The results from these simulations demonstrate that these methods enable the most probable orientations and conformations of an adsorbed protein to be predicted and that the use of our validated interfacial force field parameter set provides closer agreement to available experimental results compared to using standard CHARMM force field parameterization to represent molecular behavior at the interface.
Collapse
Affiliation(s)
- Tigran M Abramyan
- Department of Bioengineering, Clemson University, 501 Rhodes Engineering Research Center, Clemson, South Carolina 29634
| | - David L Hyde-Volpe
- Department of Chemistry, 369 Hunter Laboratories, Clemson University, Clemson, South Carolina 29634
| | - Steven J Stuart
- Department of Chemistry, 369 Hunter Laboratories, Clemson University, Clemson, South Carolina 29634
| | - Robert A Latour
- Department of Bioengineering, Clemson University, 501 Rhodes Engineering Research Center, Clemson, South Carolina 29634
| |
Collapse
|
39
|
Mukherjee J, Gupta MN. Protein aggregates: Forms, functions and applications. Int J Biol Macromol 2017; 97:778-789. [DOI: 10.1016/j.ijbiomac.2016.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/15/2022]
|
40
|
Kubota K, Kubo T, Tanigawa T, Naito T, Otsuka K. New platform for simple and rapid protein-based affinity reactions. Sci Rep 2017; 7:178. [PMID: 28282970 PMCID: PMC5428043 DOI: 10.1038/s41598-017-00264-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
We developed a spongy-like porous polymer (spongy monolith) consisting of poly(ethylene-co-glycidyl methacrylate) with continuous macropores that allowed efficient in situ reaction between the epoxy groups and proteins of interest. Immobilization of protein A on the spongy monolith enabled high-yield collection of immunoglobulin G (IgG) from cell culture supernatant even at a high flow rate. In addition, immobilization of pepsin on the spongy monolith enabled efficient online digestion at a high flow rate.
Collapse
Affiliation(s)
- Kei Kubota
- Graduate School of Engineering, Kyoto University, Kyoto, Japan.,Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Japan
| | - Takuya Kubo
- Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Tetsuya Tanigawa
- Graduate School of Engineering, Kyoto University, Kyoto, Japan.,Chemco Scientific Co., Ltd., Osaka, Japan
| | - Toyohiro Naito
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Koji Otsuka
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
X-ray computed tomography of packed bed chromatography columns for three dimensional imaging and analysis. J Chromatogr A 2017; 1487:108-115. [DOI: 10.1016/j.chroma.2017.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 11/17/2022]
|
42
|
GOLUNSKI SIMONE, SILVA MARCELIF, MARQUES CAMILAT, ROSSETO VANUSA, KAIZER ROSILENER, MOSSI ALTEMIRJ, RIGO DIANE, DALLAGO ROGÉRIOM, DI LUCCIO MARCO, TREICHEL HELEN. Purification of inulinases by changing the ionic strength of the medium and precipitation with alcohols. AN ACAD BRAS CIENC 2017; 89:57-63. [DOI: 10.1590/0001-3765201720160367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/01/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- SIMONE GOLUNSKI
- Universidade Regional Integrada do Alto Uruguai e das Missões, Brazil; Universidade Federal da Fronteira Sul, Brazil
| | - MARCELI F. SILVA
- Universidade Regional Integrada do Alto Uruguai e das Missões, Brazil
| | | | | | | | | | - DIANE RIGO
- Universidade Regional Integrada do Alto Uruguai e das Missões, Brazil
| | | | | | | |
Collapse
|
43
|
Yuan W, Ding RH, Ge H, Zhu PL, Ma SS, Zhang B, Song XM. Solid-phase extraction of d -glucaric acid from aqueous solution. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.11.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Faizal Wong FW, Ariff AB, Stuckey DC. A biocompatible surfactant, methyl ester sulphonate (MES), as a precipitating ligand for protein purification. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Winderl J, Hahn T, Hubbuch J. A mechanistic model of ion-exchange chromatography on polymer fiber stationary phases. J Chromatogr A 2016; 1475:18-30. [DOI: 10.1016/j.chroma.2016.10.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023]
|
46
|
Hämmerling F, Ladd Effio C, Andris S, Kittelmann J, Hubbuch J. Investigation and prediction of protein precipitation by polyethylene glycol using quantitative structure-activity relationship models. J Biotechnol 2016; 241:87-97. [PMID: 27876584 DOI: 10.1016/j.jbiotec.2016.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
Precipitation of proteins is considered to be an effective purification method for proteins and has proven its potential to replace costly chromatography processes. Besides salts and polyelectrolytes, polymers, such as polyethylene glycol (PEG), are commonly used for precipitation applications under mild conditions. Process development, however, for protein precipitation steps still is based mainly on heuristic approaches and high-throughput experimentation due to a lack of understanding of the underlying mechanisms. In this work we apply quantitative structure-activity relationships (QSARs) to model two parameters, the discontinuity point m* and the β-value, that describe the complete precipitation curve of a protein under defined conditions. The generated QSAR models are sensitive to the protein type, pH, and ionic strength. It was found that the discontinuity point m* is mainly dependent on protein molecular structure properties and electrostatic surface properties, whereas the β-value is influenced by the variance in electrostatics and hydrophobicity on the protein surface. The models for m* and the β-value exhibit a good correlation between observed and predicted data with a coefficient of determination of R2≥0.90 and, hence, are able to accurately predict precipitation curves for proteins. The predictive capabilities were demonstrated for a set of combinations of protein type, pH, and ionic strength not included in the generation of the models and good agreement between predicted and experimental data was achieved.
Collapse
Affiliation(s)
- Frank Hämmerling
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Christopher Ladd Effio
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sebastian Andris
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jörg Kittelmann
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
47
|
Xu J, Niu M, Xiao Y. Hexafluoroisopropanol-induced catanionic-surfactants-based coacervate extraction for analysis of lysozyme. Anal Bioanal Chem 2016; 409:1281-1289. [DOI: 10.1007/s00216-016-0054-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/08/2016] [Accepted: 10/24/2016] [Indexed: 11/24/2022]
|
48
|
Reducing diffusion limitations in Ion exchange grafted membranes using high surface area nonwovens. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Park MJ, Nisola GM, Vivas EL, Limjuco LA, Lawagon CP, Seo JG, Kim H, Shon HK, Chung WJ. Mixed matrix nanofiber as a flow-through membrane adsorber for continuous Li+ recovery from seawater. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.062] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Wu Y, Abraham D, Carta G. Comparison of perfusion media and monoliths for protein and virus-like particle chromatography. J Chromatogr A 2016; 1447:72-81. [DOI: 10.1016/j.chroma.2016.03.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 01/29/2023]
|