1
|
Lu Z, Shen Q, Bandari NC, Evans S, McDonnell L, Liu L, Jin W, Luna-Flores CH, Collier T, Talbo G, McCubbin T, Esquirol L, Myers C, Trau M, Dumsday G, Speight R, Howard CB, Vickers CE, Peng B. LowTempGAL: a highly responsive low temperature-inducible GAL system in Saccharomyces cerevisiae. Nucleic Acids Res 2024; 52:7367-7383. [PMID: 38808673 PMCID: PMC11229376 DOI: 10.1093/nar/gkae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Temperature is an important control factor for biologics biomanufacturing in precision fermentation. Here, we explored a highly responsive low temperature-inducible genetic system (LowTempGAL) in the model yeast Saccharomyces cerevisiae. Two temperature biosensors, a heat-inducible degron and a heat-inducible protein aggregation domain, were used to regulate the GAL activator Gal4p, rendering the leaky LowTempGAL systems. Boolean-type induction was achieved by implementing a second-layer control through low-temperature-mediated repression on GAL repressor gene GAL80, but suffered delayed response to low-temperature triggers and a weak response at 30°C. Application potentials were validated for protein and small molecule production. Proteomics analysis suggested that residual Gal80p and Gal4p insufficiency caused suboptimal induction. 'Turbo' mechanisms were engineered through incorporating a basal Gal4p expression and a galactose-independent Gal80p-supressing Gal3p mutant (Gal3Cp). Varying Gal3Cp configurations, we deployed the LowTempGAL systems capable for a rapid stringent high-level induction upon the shift from a high temperature (37-33°C) to a low temperature (≤30°C). Overall, we present a synthetic biology procedure that leverages 'leaky' biosensors to deploy highly responsive Boolean-type genetic circuits. The key lies in optimisation of the intricate layout of the multi-factor system. The LowTempGAL systems may be applicable in non-conventional yeast platforms for precision biomanufacturing.
Collapse
Affiliation(s)
- Zeyu Lu
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Qianyi Shen
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Naga Chandra Bandari
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samuel Evans
- ARC Centre of Excellence in Synthetic Biology, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Liam McDonnell
- ARC Centre of Excellence in Synthetic Biology, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lian Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- The Queensland Node of Metabolomics Australia and Proteomics Australia (Q-MAP), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wanli Jin
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Carlos Horacio Luna-Flores
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Thomas Collier
- ARC Centre of Excellence in Synthetic Biology, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Gert Talbo
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- The Queensland Node of Metabolomics Australia and Proteomics Australia (Q-MAP), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tim McCubbin
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lygie Esquirol
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Environment, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Chris Myers
- Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder, CO 80309, USA
| | - Matt Trau
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences (SCMB), the University of Queensland, Brisbane, QLD 4072, Australia
| | - Geoff Dumsday
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, 3169, Australia
| | - Robert Speight
- ARC Centre of Excellence in Synthetic Biology, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Claudia E Vickers
- ARC Centre of Excellence in Synthetic Biology, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Bingyin Peng
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Lu M, Sha Y, Kumar V, Xu Z, Zhai R, Jin M. Transcription factor-based biosensor: A molecular-guided approach for advanced biofuel synthesis. Biotechnol Adv 2024; 72:108339. [PMID: 38508427 DOI: 10.1016/j.biotechadv.2024.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/22/2024]
Abstract
As a sustainable and renewable alternative to petroleum fuels, advanced biofuels shoulder the responsibility of energy saving, emission reduction and environmental protection. Traditional engineering of cell factories for production of advanced biofuels lacks efficient high-throughput screening tools and regulating systems, impeding the improvement of cellular productivity and yield. Transcription factor-based biosensors have been widely applied to monitor and regulate microbial cell factory products due to the advantages of fast detection and in-situ screening. This review updates the design and application of transcription factor-based biosensors tailored for advanced biofuels and related intermediates. The construction and genetic parts selection principle of biosensors are discussed. Strategies to enhance the performance of biosensor, including regulating promoter strength and RBS strength, optimizing plasmid copy number, implementing genetic amplifier, and modulating the structure of transcription factor, have also been summarized. We further review the application of biosensors in high-throughput screening of new metabolic engineering targets, evolution engineering, confirmation of protein function, and dynamic regulation of metabolic flux for higher production of advanced biofuels. At last, we discuss the current limitations and future trends of transcription factor-based biosensors.
Collapse
Affiliation(s)
- Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
3
|
Fan C, Yuan J. Reshaping the yeast galactose regulon via GPCR signaling cascade. CELL REPORTS METHODS 2023; 3:100647. [PMID: 37989311 PMCID: PMC10753199 DOI: 10.1016/j.crmeth.2023.100647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/23/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Dynamically regulated systems are preferable to control metabolic pathways for an improved strain performance with better productivity. Here, we harnessed to the G protein-coupled receptor (GPCR) signaling pathway to reshape the yeast galactose regulon. The galactose-regulated (GAL) system was coupled with the GPCR signaling pathway for mating pheromone via a synthetic transcription factor. In this study, we refabricated the dynamic range, sensitivity, and response time of the GAL system to α factor by modulating the key components of the GPCR signaling cascade. A series of engineered yeasts with self-secretion of α factor were constructed to achieve quorum-sensing behaviors. In addition, we also repurposed the GAL system to make it responsive to heat shock. Taken together, our work showcases the great potential of synthetic biology in creating user-defined metabolic controls. We envision that the plasticity of our genetic design would be of significant interest for the future fabrication of novel gene expression systems.
Collapse
Affiliation(s)
- Cong Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China.
| |
Collapse
|
4
|
Nasr MA, Martin VJJ, Kwan DH. Divergent directed evolution of a TetR-type repressor towards aromatic molecules. Nucleic Acids Res 2023; 51:7675-7690. [PMID: 37377432 PMCID: PMC10415137 DOI: 10.1093/nar/gkad503] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/18/2023] [Accepted: 06/25/2023] [Indexed: 06/29/2023] Open
Abstract
Reprogramming cellular behaviour is one of the hallmarks of synthetic biology. To this end, prokaryotic allosteric transcription factors (aTF) have been repurposed as versatile tools for processing small molecule signals into cellular responses. Expanding the toolbox of aTFs that recognize new inducer molecules is of considerable interest in many applications. Here, we first establish a resorcinol responsive aTF-based biosensor in Escherichia coli using the TetR-family repressor RolR from Corynebacterium glutamicum. We then perform an iterative walk along the fitness landscape of RolR to identify new inducer specificities, namely catechol, methyl catechol, caffeic acid, protocatechuate, L-DOPA, and the tumour biomarker homovanillic acid. Finally, we demonstrate the versatility of these engineered aTFs by transplanting them into the model eukaryote Saccharomyces cerevisiae. This work provides a framework for efficient aTF engineering to expand ligand specificity towards novel molecules on laboratory timescales, which, more broadly, is invaluable across a wide range of applications such as protein and metabolic engineering, as well as point-of-care diagnostics.
Collapse
Affiliation(s)
- Mohamed A Nasr
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, Canada
- Department of Biology, Concordia University, Montréal, Québec, Canada
- PROTEO, Québec Network for Research on Protein Function, Structure, and Engineering, Québec City, Québec, Canada
| | - Vincent J J Martin
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, Canada
- Department of Biology, Concordia University, Montréal, Québec, Canada
| | - David H Kwan
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, Canada
- Department of Biology, Concordia University, Montréal, Québec, Canada
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
- PROTEO, Québec Network for Research on Protein Function, Structure, and Engineering, Québec City, Québec, Canada
| |
Collapse
|
5
|
Sugianto W, Altin-Yavuzarslan G, Tickman BI, Kiattisewee C, Yuan SF, Brooks SM, Wong J, Alper HS, Nelson A, Carothers JM. Gene expression dynamics in input-responsive engineered living materials programmed for bioproduction. Mater Today Bio 2023; 20:100677. [PMID: 37273790 PMCID: PMC10239009 DOI: 10.1016/j.mtbio.2023.100677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Engineered living materials (ELMs) fabricated by encapsulating microbes in hydrogels have great potential as bioreactors for sustained bioproduction. While long-term metabolic activity has been demonstrated in these systems, the capacity and dynamics of gene expression over time is not well understood. Thus, we investigate the long-term gene expression dynamics in microbial ELMs constructed using different microbes and hydrogel matrices. Through direct gene expression measurements of engineered E. coli in F127-bisurethane methacrylate (F127-BUM) hydrogels, we show that inducible, input-responsive genetic programs in ELMs can be activated multiple times and maintained for multiple weeks. Interestingly, the encapsulated bacteria sustain inducible gene expression almost 10 times longer than free-floating, planktonic cells. These ELMs exhibit dynamic responsiveness to repeated induction cycles, with up to 97% of the initial gene expression capacity retained following a subsequent induction event. We demonstrate multi-week bioproduction cycling by implementing inducible CRISPR transcriptional activation (CRISPRa) programs that regulate the expression of enzymes in a pteridine biosynthesis pathway. ELMs fabricated from engineered S. cerevisiae in bovine serum albumin (BSA) - polyethylene glycol diacrylate (PEGDA) hydrogels were programmed to express two different proteins, each under the control of a different chemical inducer. We observed scheduled bioproduction switching between betaxanthin pigment molecules and proteinase A in S. cerevisiae ELMs over the course of 27 days under continuous cultivation. Overall, these results suggest that the capacity for long-term genetic expression may be a general property of microbial ELMs. This work establishes approaches for implementing dynamic, input-responsive genetic programs to tailor ELM functions for a wide range of advanced applications.
Collapse
Affiliation(s)
- Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| | - Gokce Altin-Yavuzarslan
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - Benjamin I. Tickman
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| | - Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| | - Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, United States
| | - Sierra M. Brooks
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, United States
| | - Jitkanya Wong
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - Hal S. Alper
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, United States
| | - Alshakim Nelson
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - James M. Carothers
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| |
Collapse
|
6
|
Gambill L, Staubus A, Mo KW, Ameruoso A, Chappell J. A split ribozyme that links detection of a native RNA to orthogonal protein outputs. Nat Commun 2023; 14:543. [PMID: 36725852 PMCID: PMC9892565 DOI: 10.1038/s41467-023-36073-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Individual RNA remains a challenging signal to synthetically transduce into different types of cellular information. Here, we describe Ribozyme-ENabled Detection of RNA (RENDR), a plug-and-play strategy that uses cellular transcripts to template the assembly of split ribozymes, triggering splicing reactions that generate orthogonal protein outputs. To identify split ribozymes that require templating for splicing, we use laboratory evolution to evaluate the activities of different split variants of the Tetrahymena thermophila ribozyme. The best design delivers a 93-fold dynamic range of splicing with RENDR controlling fluorescent protein production in response to an RNA input. We further resolve a thermodynamic model to guide RENDR design, show how input signals can be transduced into diverse outputs, demonstrate portability across different bacteria, and use RENDR to detect antibiotic-resistant bacteria. This work shows how transcriptional signals can be monitored in situ and converted into different types of biochemical information using RNA synthetic biology.
Collapse
Affiliation(s)
- Lauren Gambill
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, 77005, USA
| | - August Staubus
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Kim Wai Mo
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Andrea Ameruoso
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - James Chappell
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, 77005, USA. .,Department of Biosciences, Rice University, Houston, TX, 77005, USA. .,Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
7
|
Yu W, Xu X, Jin K, Liu Y, Li J, Du G, Lv X, Liu L. Genetically encoded biosensors for microbial synthetic biology: From conceptual frameworks to practical applications. Biotechnol Adv 2023; 62:108077. [PMID: 36502964 DOI: 10.1016/j.biotechadv.2022.108077] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Genetically encoded biosensors are the vital components of synthetic biology and metabolic engineering, as they are regarded as powerful devices for the dynamic control of genotype metabolism and evolution/screening of desirable phenotypes. This review summarized the recent advances in the construction and applications of different genetically encoded biosensors, including fluorescent protein-based biosensors, nucleic acid-based biosensors, allosteric transcription factor-based biosensors and two-component system-based biosensors. First, the construction frameworks of these biosensors were outlined. Then, the recent progress of biosensor applications in creating versatile microbial cell factories for the bioproduction of high-value chemicals was summarized. Finally, the challenges and prospects for constructing robust and sophisticated biosensors were discussed. This review provided theoretical guidance for constructing genetically encoded biosensors to create desirable microbial cell factories for sustainable bioproduction.
Collapse
Affiliation(s)
- Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Yu W, Jin K, Wu Y, Zhang Q, Liu Y, Li J, Du G, Chen J, Lv X, Ledesma-Amaro R, Liu L. A pathway independent multi-modular ordered control system based on thermosensors and CRISPRi improves bioproduction in Bacillus subtilis. Nucleic Acids Res 2022; 50:6587-6600. [PMID: 35670665 PMCID: PMC9226513 DOI: 10.1093/nar/gkac476] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamic regulation is an effective strategy for control of gene expression in microbial cell factories. In some pathway contexts, several metabolic modules must be controlled in a time dependent or ordered manner to maximize production, while the creation of genetic circuits with ordered regulation capacity still remains a great challenge. In this work, we develop a pathway independent and programmable system that enables multi-modular ordered control of metabolism in Bacillus subtilis. First, a series of thermosensors were created and engineered to expand their thresholds. Then we designed single-input-multi-output circuits for ordered control based on the use of thermosensors with different transition points. Meanwhile, a repression circuit was constructed by combining CRISPRi-based NOT gates. As a proof-of-concept, these genetic circuits were applied for multi-modular ordered control of 2′-fucosyllactose (2′-FL) biosynthesis, resulting in a production of 1839.7 mg/l in shake flask, which is 5.16-times that of the parental strain. In a 5-l bioreactor, the 2′-FL titer reached 28.2 g/l with down-regulation of autolysis. Taken together, this work provides programmable and versatile thermosensitive genetic toolkits for dynamic regulation in B. subtilis and a multi-modular ordered control framework that can be used to improve metabolic modules in other chassis cells and for other compounds.
Collapse
Affiliation(s)
- Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Quanwei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Tickman BI, Burbano DA, Chavali VP, Kiattisewee C, Fontana J, Khakimzhan A, Noireaux V, Zalatan JG, Carothers JM. Multi-layer CRISPRa/i circuits for dynamic genetic programs in cell-free and bacterial systems. Cell Syst 2022; 13:215-229.e8. [PMID: 34800362 DOI: 10.1016/j.cels.2021.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/24/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
CRISPR-Cas transcriptional circuits hold great promise as platforms for engineering metabolic networks and information processing circuits. Historically, prokaryotic CRISPR control systems have been limited to CRISPRi. Creating approaches to integrate CRISPRa for transcriptional activation with existing CRISPRi-based systems would greatly expand CRISPR circuit design space. Here, we develop design principles for engineering prokaryotic CRISPRa/i genetic circuits with network topologies specified by guide RNAs. We demonstrate that multi-layer CRISPRa/i cascades and feedforward loops can operate through the regulated expression of guide RNAs in cell-free expression systems and E. coli. We show that CRISPRa/i circuits can program complex functions by designing type 1 incoherent feedforward loops acting as fold-change detectors and tunable pulse-generators. By investigating how component characteristics relate to network properties such as depth, width, and speed, this work establishes a framework for building scalable CRISPRa/i circuits as regulatory programs in cell-free expression systems and bacterial hosts. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Benjamin I Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Venkata P Chavali
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Jason Fontana
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA; Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Tarasava K, Lee SH, Chen J, Köpke M, Jewett MC, Gonzalez R. Reverse β-oxidation pathways for efficient chemical production. J Ind Microbiol Biotechnol 2022; 49:6537408. [PMID: 35218187 PMCID: PMC9118988 DOI: 10.1093/jimb/kuac003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022]
Abstract
Microbial production of fuels, chemicals, and materials has the potential to reduce greenhouse gas emissions and contribute to a sustainable bioeconomy. While synthetic biology allows readjusting of native metabolic pathways for the synthesis of desired products, often these native pathways do not support maximum efficiency and are affected by complex regulatory mechanisms. A synthetic or engineered pathway that allows modular synthesis of versatile bioproducts with minimal enzyme requirement and regulation while achieving high carbon and energy efficiency could be an alternative solution to address these issues. The reverse β-oxidation (rBOX) pathways enable iterative non-decarboxylative elongation of carbon molecules of varying chain lengths and functional groups with only four core enzymes and no ATP requirement. Here, we describe recent developments in rBOX pathway engineering to produce alcohols and carboxylic acids with diverse functional groups, along with other commercially important molecules such as polyketides. We discuss the application of rBOX beyond the pathway itself by its interfacing with various carbon-utilization pathways and deployment in different organisms, which allows feedstock diversification from sugars to glycerol, carbon dioxide, methane, and other substrates.
Collapse
Affiliation(s)
- Katia Tarasava
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Seung Hwan Lee
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Jing Chen
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | | | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Ramon Gonzalez
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
11
|
Verma BK, Mannan AA, Zhang F, Oyarzún DA. Trade-Offs in Biosensor Optimization for Dynamic Pathway Engineering. ACS Synth Biol 2022; 11:228-240. [PMID: 34968029 DOI: 10.1021/acssynbio.1c00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent progress in synthetic biology allows the construction of dynamic control circuits for metabolic engineering. This technology promises to overcome many challenges encountered in traditional pathway engineering, thanks to its ability to self-regulate gene expression in response to bioreactor perturbations. The central components in these control circuits are metabolite biosensors that read out pathway signals and actuate enzyme expression. However, the construction of metabolite biosensors is a major bottleneck for strain design, and a key challenge is to understand the relation between biosensor dose-response curves and pathway performance. Here we employ multiobjective optimization to quantify performance trade-offs that arise in the design of metabolite biosensors. Our approach reveals strategies for tuning dose-response curves along an optimal trade-off between production flux and the cost of an increased expression burden on the host. We explore properties of control architectures built in the literature and identify their advantages and caveats in terms of performance and robustness to growth conditions and leaky promoters. We demonstrate the optimality of a control circuit for glucaric acid production in Escherichia coli, which has been shown to increase the titer by 2.5-fold as compared to static designs. Our results lay the groundwork for the automated design of control circuits for pathway engineering, with applications in the food, energy, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Babita K. Verma
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Ahmad A. Mannan
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Diego A. Oyarzún
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, U.K
- The Alan Turing Institute, London, NW1 2DB, U.K
| |
Collapse
|
12
|
Chee WKD, Yeoh JW, Dao VL, Poh CL. Thermogenetics: Applications come of age. Biotechnol Adv 2022; 55:107907. [PMID: 35041863 DOI: 10.1016/j.biotechadv.2022.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Temperature is a ubiquitous physical cue that is non-invasive, penetrative and easy to apply. In the growing field of thermogenetics, through beneficial repurposing of natural thermosensing mechanisms, synthetic biology is bringing new opportunities to design and build robust temperature-sensitive (TS) sensors which forms a thermogenetic toolbox of well characterised biological parts. Recent advancements in technological platforms available have expedited the discovery of novel or de novo thermosensors which are increasingly deployed in many practical temperature-dependent biomedical, industrial and biosafety applications. In all, the review aims to convey both the exhilarating recent technological developments underlying the advancement of thermosensors and the exciting opportunities the nascent thermogenetic field holds for biomedical and biotechnology applications.
Collapse
Affiliation(s)
- Wai Kit David Chee
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jing Wui Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Viet Linh Dao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
13
|
Chou A, Lee SH, Zhu F, Clomburg JM, Gonzalez R. An orthogonal metabolic framework for one-carbon utilization. Nat Metab 2021; 3:1385-1399. [PMID: 34675440 DOI: 10.1038/s42255-021-00453-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 08/10/2021] [Indexed: 11/09/2022]
Abstract
Metabolic engineering often entails concurrent engineering of substrate utilization, central metabolism and product synthesis pathways, inevitably creating interdependency with native metabolism. Here we report an alternative approach using synthetic pathways for C1 bioconversion that generate multicarbon products directly from C1 units and hence are orthogonal to the host metabolic network. The engineered pathways are based on formyl-CoA elongation (FORCE) reactions catalysed by the enzyme 2-hydroxyacyl-CoA lyase. We use thermodynamic and stoichiometric analyses to evaluate FORCE pathway variants, including aldose elongation, α-reduction and aldehyde elongation. Promising variants were prototyped in vitro and in vivo using the non-methylotrophic bacterium Escherichia coli. We demonstrate the conversion of formate, formaldehyde and methanol into various products including glycolate, ethylene glycol, ethanol and glycerate. FORCE pathways also have the potential to be integrated with the host metabolism for synthetic methylotrophy by the production of native growth substrates as demonstrated in a two-strain co-culture system.
Collapse
Affiliation(s)
- Alexander Chou
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Seung Hwan Lee
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Fayin Zhu
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - James M Clomburg
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Ramon Gonzalez
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
14
|
Montaño López J, Duran L, Avalos JL. Physiological limitations and opportunities in microbial metabolic engineering. Nat Rev Microbiol 2021; 20:35-48. [PMID: 34341566 DOI: 10.1038/s41579-021-00600-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Metabolic engineering can have a pivotal role in increasing the environmental sustainability of the transportation and chemical manufacturing sectors. The field has already developed engineered microorganisms that are currently being used in industrial-scale processes. However, it is often challenging to achieve the titres, yields and productivities required for commercial viability. The efficiency of microbial chemical production is usually dependent on the physiological traits of the host organism, which may either impose limitations on engineered biosynthetic pathways or, conversely, boost their performance. In this Review, we discuss different aspects of microbial physiology that often create obstacles for metabolic engineering, and present solutions to overcome them. We also describe various instances in which natural or engineered physiological traits in host organisms have been harnessed to benefit engineered metabolic pathways for chemical production.
Collapse
Affiliation(s)
- José Montaño López
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Lisset Duran
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA. .,Department of Molecular Biology, Princeton University, Princeton, NJ, USA. .,Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA. .,Princeton Environmental Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
15
|
Liu H, Shi F, Tan S, Yu X, Lai W, Li Y. Engineering a Bifunctional ComQXPA-P srfA Quorum-Sensing Circuit for Dynamic Control of Gene Expression in Corynebacterium glutamicum. ACS Synth Biol 2021; 10:1761-1774. [PMID: 34165971 DOI: 10.1021/acssynbio.1c00149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Corynebacterium glutamicum is an important industrial workhorse for the production of amino acids and other chemicals. However, the engineering of C. glutamicum is inflexible due to the lack of dynamic regulation tools. In this study, a quorum sensing (QS) circuit and its modulated hfq-sRNA cassette were constructed, and the dynamic control of gene expression by these bifunctional circuits was researched. First, the ComQXPA-PsrfA QS system of Bacillus subtilis was harnessed and modified to create an upregulating QS circuit, in which the transcription of genes controlled by the PsrfA promoter may be promoted at high cell density. This QS circuit successfully activated the expression of green fluorescent protein (GFP) to 6.35-fold in a cell density-dependent manner in C. glutamicum. Next, the hfq-sRNA-mediated downregulating circuit under the control of the ComQXPA-PsrfA QS system was established, and the expression of GFP was autonomously repressed by 96.1%. Next, to fine-tune these two QS circuits, a library of synthetic PsrfA based promoters was constructed, and a series of mutant PsrfAM promoters with 0.4-1.5-fold strength of native PsrfA were selected. Subsequently, the ComQXPA-PsrfAM QS circuit was utilized to upregulate the expression of red fluorescent protein, and the same QS-based hfq-sRNA system was utilized to downregulate the expression of GFP simultaneously. Last, this bifunctional ComQXPA-PsrfAM QS circuit was verified again by fine-tuning the expression of α-amylase. Therefore, the engineered ComQXPA-PsrfAM QS cassette can be applied as a novel bifunctional QS circuit to flexibly control gene expression in C. glutamicum.
Collapse
Affiliation(s)
- Haiyan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shuyu Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinping Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenmei Lai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongfu Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|