1
|
Kumar R, Guleria A, Padwad YS, Srivatsan V, Yadav SK. Smart proteins as a new paradigm for meeting dietary protein sufficiency of India: a critical review on the safety and sustainability of different protein sources. Crit Rev Food Sci Nutr 2024:1-50. [PMID: 39011754 DOI: 10.1080/10408398.2024.2367564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
India, a global leader in agriculture, faces sustainability challenges in feeding its population. Although primarily a vegetarian population, the consumption of animal derived proteins has tremendously increased in recent years. Excessive dependency on animal proteins is not environmentally sustainable, necessitating the identification of alternative smart proteins. Smart proteins are environmentally benign and mimic the properties of animal proteins (dairy, egg and meat) and are derived from plant proteins, microbial fermentation, insects and cell culture meat (CCM) processes. This review critically evaluates the technological, safety, and sustainability challenges involved in production of smart proteins and their consumer acceptance from Indian context. Under current circumstances, plant-based proteins are most favorable; however, limited land availability and impending climate change makes them unsustainable in the long run. CCM is unaffordable with high input costs limiting its commercialization in near future. Microbial-derived proteins could be the most sustainable option for future owing to higher productivity and ability to grow on low-cost substrates. A circular economy approach integrating agri-horti waste valorization and C1 substrate synthesis with microbial biomass production offer economic viability. Considering the use of novel additives and processing techniques, evaluation of safety, allergenicity, and bioavailability of smart protein products is necessary before large-scale adoption.
Collapse
Affiliation(s)
- Raman Kumar
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Aditi Guleria
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Yogendra S Padwad
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- Protein Processing Centre, Dietetics, and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Sudesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
2
|
Liu L, Rong W, Du X, Yuan Q, Xu Z, Yu C, Lu H, Wang Y, Zhu Y, Liu Z, Wang G. Integrating Experimental and Computational Analyses of Yeast Protein Profiles for Optimizing the Production of High-Quality Microbial Proteins. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04995-3. [PMID: 38922492 DOI: 10.1007/s12010-024-04995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Microbial proteins represent a promising solution to address the escalating global demand for protein, particularly in regions with limited arable land. Yeasts, such as Saccharomyces cerevisiae, are robust and safe protein-producing strains. However, the utilization of non-conventional yeast strains for microbial protein production has been hindered, partly due to a lack of comprehensive understanding of protein production traits. In this study, we conducted experimental analyses focusing on the growth, protein content, and amino acid composition of nine yeast strains, including one S. cerevisiae strain, three Yarrowia lipolytica strains, and five Pichia spp. strains. We identified that, though Y. lipolytica and Pichia spp. strains consumed glucose at a slower rate compared to S. cerevisiae, Pichia spp. strains showed a higher cellular protein content, and Y. lipolytica strains showed a higher glucose-to-biomass/protein yield and methionine content. We further applied computational approaches to explain that metabolism economy was the main underlying factor for the limited amount of scarce/carbon-inefficient amino acids (such as methionine) within yeast cell proteins. We additionally verified that the specialized metabolism was a key reason for the high methionine content in Y. lipolytica strains, and proposed Y. lipolytica strain as a potential producer of high-quality single-cell protein rich in scarce amino acids. Through experimental evaluation, we identified Pichia jadinii CICC 1258 as a potential strain for high-quality protein production under unfavorable pH/temperature conditions. Our work suggests a promising avenue for optimizing microbial protein production, identifying the factors influencing amino acid composition, and paving the way for the use of unconventional yeast strains to meet the growing protein demands.
Collapse
Affiliation(s)
- Lu Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Weihe Rong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiang Du
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qianqian Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Zhaoyu Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Chang Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanfei Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yan Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guokun Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China.
| |
Collapse
|
3
|
Sakarika M, Kerckhof FM, Van Peteghem L, Pereira A, Van Den Bossche T, Bouwmeester R, Gabriels R, Van Haver D, Ulčar B, Martens L, Impens F, Boon N, Ganigué R, Rabaey K. The nutritional composition and cell size of microbial biomass for food applications are defined by the growth conditions. Microb Cell Fact 2023; 22:254. [PMID: 38072930 PMCID: PMC10712164 DOI: 10.1186/s12934-023-02265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND It is increasingly recognized that conventional food production systems are not able to meet the globally increasing protein needs, resulting in overexploitation and depletion of resources, and environmental degradation. In this context, microbial biomass has emerged as a promising sustainable protein alternative. Nevertheless, often no consideration is given on the fact that the cultivation conditions affect the composition of microbial cells, and hence their quality and nutritional value. Apart from the properties and nutritional quality of the produced microbial food (ingredient), this can also impact its sustainability. To qualitatively assess these aspects, here, we investigated the link between substrate availability, growth rate, cell composition and size of Cupriavidus necator and Komagataella phaffii. RESULTS Biomass with decreased nucleic acid and increased protein content was produced at low growth rates. Conversely, high rates resulted in larger cells, which could enable more efficient biomass harvesting. The proteome allocation varied across the different growth rates, with more ribosomal proteins at higher rates, which could potentially affect the techno-functional properties of the biomass. Considering the distinct amino acid profiles established for the different cellular components, variations in their abundance impacts the product quality leading to higher cysteine and phenylalanine content at low growth rates. Therefore, we hint that costly external amino acid supplementations that are often required to meet the nutritional needs could be avoided by carefully applying conditions that enable targeted growth rates. CONCLUSION In summary, we demonstrate tradeoffs between nutritional quality and production rate, and we discuss the microbial biomass properties that vary according to the growth conditions.
Collapse
Affiliation(s)
- Myrsini Sakarika
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium.
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium.
| | - Frederiek-Maarten Kerckhof
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
- Kytos BV, IIC UGent, Frieda Saeysstraat 1/B, Ghent, 9052, Belgium
| | - Lotte Van Peteghem
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
| | - Alexandra Pereira
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
| | - Tim Van Den Bossche
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Robbin Bouwmeester
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Proteomics Core, VIB, Ghent, Belgium
| | - Barbara Ulčar
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Proteomics Core, VIB, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
- Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, 9052, Belgium
| |
Collapse
|
4
|
Phan UT, Jeon BW, Kim YH. Microbial engineering of Methylorubrum extorquens AM1 to enhance CO 2 conversion into formate. Enzyme Microb Technol 2023; 168:110264. [PMID: 37244213 DOI: 10.1016/j.enzmictec.2023.110264] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Methylorubrum extorquens AM1 has the potential to consume C1 feedstock to produce a wide range of biomaterials, from bioplastic to pharmaceutical. However, the synthetic biology tools for engineering M. extorquens AM1 need to be employed for precise control of recombinant enzyme expression. In this study, we presented an approach to improve the expression level of formate dehydrogenase 1 from M. extorquens AM1 (MeFDH1) using an efficient terminator and 5'-untranslated region (5'-UTR) design for enhanced carbon dioxide (CO2) conversion activity of whole-cell biocatalyst. The rrnB terminator significantly increased mRNA levels of MeFDH1 alpha and beta subunits by 8.2-fold and 11-fold, respectively, compared to the T7 terminator. Moreover, enzyme production was 1.6-fold higher with 2.1 mg/wet cell weight (WCW) using rrnB terminator. Homologous 5'-untranslated regions (5'-UTR) determined based on proteomics data and UTR designer also influenced the expression level of MeFDH1. The 5'-UTR of the formaldehyde activating enzyme (fae) was the strongest, with 2.5-fold higher expression than that of the control sequence (T7g-10L). Furthermore, the electrochemical reaction of recombinant strains as whole-cell biocatalysts was investigated for their applicability to CO2 conversion, showing enhanced formate productivity. The recombinant strain containing the 5'-UTR sequence of fae exhibited formate productivity of 5.0 mM/h, 2.3-fold higher than that of the control strain (T7). Overall, this study suggested practical applications for CO2 conversion into bioavailable formate and provided valuable insights for recombinant expression systems in methylotrophic strains.
Collapse
Affiliation(s)
- Uyen Thu Phan
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea
| | - Byoung Wook Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea.
| |
Collapse
|
5
|
de Lorenzo V. Environmental Galenics: large-scale fortification of extant microbiomes with engineered bioremediation agents. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210395. [PMID: 35757882 PMCID: PMC9234819 DOI: 10.1098/rstb.2021.0395] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Contemporary synthetic biology-based biotechnologies are generating tools and strategies for reprogramming genomes for specific purposes, including improvement and/or creation of microbial processes for tackling climate change. While such activities typically work well at a laboratory or bioreactor scale, the challenge of their extensive delivery to multiple spatio-temporal dimensions has hardly been tackled thus far. This state of affairs creates a research niche for what could be called Environmental Galenics (EG), i.e. the science and technology of releasing designed biological agents into deteriorated ecosystems for the sake of their safe and effective recovery. Such endeavour asks not just for an optimal performance of the biological activity at stake, but also the material form and formulation of the agents, their propagation and their interplay with the physico-chemical scenario where they are expected to perform. EG also encompasses adopting available physical carriers of microorganisms and channels of horizontal gene transfer as potential paths for spreading beneficial activities through environmental microbiomes. While some of these propositions may sound unsettling to anti-genetically modified organisms sensitivities, they may also fall under the tag of TINA (there is no alternative) technologies in the cases where a mere reduction of emissions will not help the revitalization of irreversibly lost ecosystems. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|