Baghdassarian HM, Dimitrov D, Armingol E, Saez-Rodriguez J, Lewis NE. Combining LIANA and Tensor-cell2cell to decipher cell-cell communication across multiple samples.
CELL REPORTS METHODS 2024;
4:100758. [PMID:
38631346 PMCID:
PMC11046036 DOI:
10.1016/j.crmeth.2024.100758]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
In recent years, data-driven inference of cell-cell communication has helped reveal coordinated biological processes across cell types. Here, we integrate two tools, LIANA and Tensor-cell2cell, which, when combined, can deploy multiple existing methods and resources to enable the robust and flexible identification of cell-cell communication programs across multiple samples. In this work, we show how the integration of our tools facilitates the choice of method to infer cell-cell communication and subsequently perform an unsupervised deconvolution to obtain and summarize biological insights. We explain how to perform the analysis step by step in both Python and R and provide online tutorials with detailed instructions available at https://ccc-protocols.readthedocs.io/. This workflow typically takes ∼1.5 h to complete from installation to downstream visualizations on a graphics processing unit-enabled computer for a dataset of ∼63,000 cells, 10 cell types, and 12 samples.
Collapse