1
|
Isaacs S, Harté E, Alves ID, Abdulhalim I. Improved Detection of Plasmon Waveguide Resonance Using Diverging Beam, Liquid Crystal Retarder, and Application to Lipid Orientation Determination. SENSORS 2019; 19:s19061402. [PMID: 30901964 PMCID: PMC6471420 DOI: 10.3390/s19061402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023]
Abstract
Plasmon waveguide resonance (PWR) sensors exhibit narrow resonances at the two orthogonal polarizations, transverse electric (TE) and transverse magnetic (TM), which are narrower by almost an order of a magnitude than the standard surface plasmon resonance (SPR), and thus the figure of merit is enhanced. This fact is useful for measuring optical anisotropy of materials on the surface and determining the orientation of molecules with high resolution. Using the diverging beam approach and a liquid crystal retarder, we present experimental results by simultaneous detection of TE and TM polarized resonances as well as using fast higher contrast serial detection with a variable liquid crystal retarder. While simultaneous detection makes the system simpler, a serial one has the advantage of obtaining a larger contrast of the resonances and thus an improved signal-to-noise ratio. Although the sensitivity of the PWR resonances is smaller than the standard SPR, the angular width is much smaller, and thus the figure of merit is improved. When the measurement methodology has a high enough angular resolution, as is the one presented here, the PWR becomes advantageous over other SPR modes. The possibility of carrying out exact numerical simulations for anisotropic molecules using the 4 × 4 matrix approach brings another advantage of the PWR over SPR on the possibility of extracting the orientation of molecules adsorbed to the surface. High sensitivity of the TE and TM signals to the anisotropic molecules orientation is found here, and comparison to the experimental data allowed detection of the orientation of lipids on the sensor surface. The molecular orientations cannot be fully determined from the TM polarization alone as in standard SPR, which underlines the additional advantage of the PWR technique.
Collapse
Affiliation(s)
- Sivan Isaacs
- Department of Electrooptics and Photonics Engineering and The Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| | - Etienne Harté
- CBMN, UMR 5248 CNRS, Université de Bordeaux, Allée Geoffroy St. Hilaire, 33600 Pessac, France.
| | - Isabel D Alves
- CBMN, UMR 5248 CNRS, Université de Bordeaux, Allée Geoffroy St. Hilaire, 33600 Pessac, France.
| | - Ibrahim Abdulhalim
- Department of Electrooptics and Photonics Engineering and The Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
2
|
Origin and prediction of free-solution interaction studies performed label-free. Proc Natl Acad Sci U S A 2016; 113:E1595-604. [PMID: 26960999 DOI: 10.1073/pnas.1515706113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interaction/reaction assays have led to significant scientific discoveries in the biochemical, medical, and chemical disciplines. Several fundamental driving forces form the basis of intermolecular and intramolecular interactions in chemical and biochemical systems (London dispersion, hydrogen bonding, hydrophobic, and electrostatic), and in the past three decades the sophistication and power of techniques to interrogate these processes has developed at an unprecedented rate. In particular, label-free methods have flourished, such as NMR, mass spectrometry (MS), surface plasmon resonance (SPR), biolayer interferometry (BLI), and backscattering interferometry (BSI), which can facilitate assays without altering the participating components. The shortcoming of most refractive index (RI)-based label-free methods such as BLI and SPR is the requirement to tether one of the interaction entities to a sensor surface. This is not the case for BSI. Here, our hypothesis is that the signal origin for free-solution, label-free determinations can be attributed to conformation and hydration-induced changes in the solution RI. We propose a model for the free-solution response function (FreeSRF) and show that, when quality bound and unbound structural data are available, FreeSRF correlates well with the experiment (R(2)> 0.99, Spearman rank correlation coefficients >0.9) and the model is predictive within ∼15% of the experimental binding signal. It is also demonstrated that a simple mass-weighted dη/dC response function is the incorrect equation to determine that the change in RI is produced by binding or folding event in free solution.
Collapse
|
3
|
Keenan CR, Lew MJ, Stewart AG. Biased signalling from the glucocorticoid receptor: Renewed opportunity for tailoring glucocorticoid activity. Biochem Pharmacol 2016; 112:6-12. [PMID: 26898958 DOI: 10.1016/j.bcp.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
Recent landmark studies applying analytical pharmacology approaches to the glucocorticoid receptor (GR) have demonstrated that different ligands can cause differential activation of distinct GR-regulated genes. Drawing on concepts of signalling bias from the field of G protein-coupled receptor (GPCR) biology, we speculate that ligand-dependent differences in GR signalling can be considered analogous to GPCR biased signalling, and thus can be quantitatively analysed in a similar way. This type of approach opens up the possibility of using rational structure-based drug optimisation strategies to improve the therapeutic selectivity of glucocorticoid drugs to maximise their efficacy and minimise adverse effects.
Collapse
Affiliation(s)
- Christine R Keenan
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael J Lew
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
4
|
Xie L, Ge X, Tan H, Xie L, Zhang Y, Hart T, Yang X, Bourne PE. Towards structural systems pharmacology to study complex diseases and personalized medicine. PLoS Comput Biol 2014; 10:e1003554. [PMID: 24830652 PMCID: PMC4022462 DOI: 10.1371/journal.pcbi.1003554] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome-Wide Association Studies (GWAS), whole genome sequencing, and high-throughput omics techniques have generated vast amounts of genotypic and molecular phenotypic data. However, these data have not yet been fully explored to improve the effectiveness and efficiency of drug discovery, which continues along a one-drug-one-target-one-disease paradigm. As a partial consequence, both the cost to launch a new drug and the attrition rate are increasing. Systems pharmacology and pharmacogenomics are emerging to exploit the available data and potentially reverse this trend, but, as we argue here, more is needed. To understand the impact of genetic, epigenetic, and environmental factors on drug action, we must study the structural energetics and dynamics of molecular interactions in the context of the whole human genome and interactome. Such an approach requires an integrative modeling framework for drug action that leverages advances in data-driven statistical modeling and mechanism-based multiscale modeling and transforms heterogeneous data from GWAS, high-throughput sequencing, structural genomics, functional genomics, and chemical genomics into unified knowledge. This is not a small task, but, as reviewed here, progress is being made towards the final goal of personalized medicines for the treatment of complex diseases.
Collapse
Affiliation(s)
- Lei Xie
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, United States of America
- Ph.D. Program in Computer Science, Biology, and Biochemistry, The Graduate Center, The City University of New York, New York, New York, United States of America
- * E-mail:
| | - Xiaoxia Ge
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, United States of America
| | - Hepan Tan
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, United States of America
| | - Li Xie
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Yinliang Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Thomas Hart
- Department of Biological Sciences, Hunter College, The City University of New York, New York, New York, United States of America
| | - Xiaowei Yang
- School of Public Health, Hunter College, The City University of New York, New York, New York, United States of America
| | - Philip E. Bourne
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
5
|
Li B, Ju H. Label-free optical biosensors based on a planar optical waveguide. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7401-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Kenakin T. New concepts in pharmacological efficacy at 7TM receptors: IUPHAR review 2. Br J Pharmacol 2013; 168:554-75. [PMID: 22994528 PMCID: PMC3579279 DOI: 10.1111/j.1476-5381.2012.02223.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/03/2012] [Accepted: 09/12/2012] [Indexed: 01/14/2023] Open
Abstract
The present-day concept of drug efficacy has changed completely from its original description as the property of agonists that causes tissue activation. The ability to visualize the multiple behaviours of seven transmembrane receptors has shown that drugs can have many efficacies and also that the transduction of drug stimulus to various cellular stimulus-response cascades can be biased towards some but not all pathways. This latter effect leads to agonist 'functional selectivity', which can be favourable for the improvement of agonist therapeutics. However, in addition, biased agonist potency becomes cell type dependent with the loss of the monotonic behaviour of stimulus-response mechanisms, leading to potential problems in agonist quantification. This has an extremely important effect on the discovery process for new agonists since it now cannot be assumed that a given screening or lead optimization assay will correctly predict therapeutic behaviour. This review discusses these ideas and how new approaches to quantifying agonist effect may be used to circumvent the cell type dependence of agonism. This article, written by a corresponding member of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR), reviews our current understanding of the interaction of ligands with seven transmembrane receptors. Further information on these pharmacological concepts is being incorporated into the IUPHAR/BPS database GuideToPharmacology.org.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Kenakin T. The potential for selective pharmacological therapies through biased receptor signaling. BMC Pharmacol Toxicol 2012; 13:3. [PMID: 22947056 PMCID: PMC3506267 DOI: 10.1186/2050-6511-13-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/13/2012] [Indexed: 11/10/2022] Open
Abstract
The discovery that not all agonists uniformly activate cellular signaling pathways (biased signaling) has greatly changed the drug discovery process for agonists and the strategy for treatment of disease with agonists. Technological advances have enabled complex receptor behaviors to be viewed independently and through these assays, the bias for an agonist can be quantified. It is predicted that therapeutic phenotypes will be linked, through translational studies, to quantified scales of bias to guide medicinal chemists in the drug discovery process.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Road, Room 4042 Genetic Medicine Building, CB# 7365, Chapel Hill, NC 27599-7365, USA.
| |
Collapse
|
8
|
Salon JA, Lodowski DT, Palczewski K. The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 2012; 63:901-37. [PMID: 21969326 DOI: 10.1124/pr.110.003350] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Crucial as molecular sensors for many vital physiological processes, seven-transmembrane domain G protein-coupled receptors (GPCRs) comprise the largest family of proteins targeted by drug discovery. Together with structures of the prototypical GPCR rhodopsin, solved structures of other liganded GPCRs promise to provide insights into the structural basis of the superfamily's biochemical functions and assist in the development of new therapeutic modalities and drugs. One of the greatest technical and theoretical challenges to elucidating and exploiting structure-function relationships in these systems is the emerging concept of GPCR conformational flexibility and its cause-effect relationship for receptor-receptor and receptor-effector interactions. Such conformational changes can be subtle and triggered by relatively small binding energy effects, leading to full or partial efficacy in the activation or inactivation of the receptor system at large. Pharmacological dogma generally dictates that these changes manifest themselves through kinetic modulation of the receptor's G protein partners. Atomic resolution information derived from increasingly available receptor structures provides an entrée to the understanding of these events and practically applying it to drug design. Supported by structure-activity relationship information arising from empirical screening, a unified structural model of GPCR activation/inactivation promises to both accelerate drug discovery in this field and improve our fundamental understanding of structure-based drug design in general. This review discusses fundamental problems that persist in drug design and GPCR structural determination.
Collapse
Affiliation(s)
- John A Salon
- Department of Molecular Structure, Amgen Incorporated, Thousand Oaks, California, USA
| | | | | |
Collapse
|
9
|
Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 2012; 12:205-16. [PMID: 23411724 DOI: 10.1038/nrd3954] [Citation(s) in RCA: 585] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Agonists of seven-transmembrane receptors, also known as G protein-coupled receptors (GPCRs), do not uniformly activate all cellular signalling pathways linked to a given seven-transmembrane receptor (a phenomenon termed ligand or agonist bias); this discovery has changed how high-throughput screens are designed and how lead compounds are optimized for therapeutic activity. The ability to experimentally detect ligand bias has necessitated the development of methods for quantifying agonist bias in a way that can be used to guide structure-activity studies and the selection of drug candidates. Here, we provide a viewpoint on which methods are appropriate for quantifying bias, based on knowledge of how cellular and intracellular signalling proteins control the conformation of seven-transmembrane receptors. We also discuss possible predictions of how biased molecules may perform in vivo, and what potential therapeutic advantages they may provide.
Collapse
|
10
|
Abbas A, Linman MJ, Cheng Q. Sensitivity Comparison of Surface Plasmon Resonance and Plasmon-Waveguide Resonance Biosensors. SENSORS AND ACTUATORS. B, CHEMICAL 2011; 156:169-175. [PMID: 21666780 PMCID: PMC3111218 DOI: 10.1016/j.snb.2011.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plasmon-waveguide resonance (PWR) sensors are particularly useful for investigation of biomolecular interactions with or within lipid bilayer membranes. Many studies demonstrated their ability to provide unique qualitative information, but the evaluation of their sensitivity as compared to other surface plasmon resonance (SPR) sensors has not been broadly investigated. We report here a comprehensive sensitivity comparison of SPR and PWR biosensors for the p-polarized light component. The sensitivity of five different biosensor designs to changes in refractive index, thickness and mass are determined and discussed. Although numerical simulations show an increase of the electric field intensity by 30-35 % and the penetration depth by four times in PWR, the waveguide-based method is 0.5 to 8 fold less sensitive than conventional SPR in all considered analytical parameters. The experimental results also suggest that the increase in the penetration depth in PWR is made at the expense of the surface sensitivity. The physical and structural reasons for PWR sensor limitations are discussed and a general viewpoint for designing more efficient SPR sensors based on dielectric slab waveguides is provided.
Collapse
Affiliation(s)
| | | | - Quan Cheng
- Corresponding author: , Tel: (951) 827-2702, Fax: (951) 827-4713
| |
Collapse
|
11
|
Jastrzebska B, Debinski A, Filipek S, Palczewski K. Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function. Prog Lipid Res 2011; 50:267-77. [PMID: 21435354 DOI: 10.1016/j.plipres.2011.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) - a member of the superfamily that shares a similar structural architecture consisting of seven-transmembrane helices and propagates various signals across biological membranes. Rhodopsin is embedded in the lipid bilayer of specialized disk membranes in the outer segments of retinal rod photoreceptor cells where it transmits a light-stimulated signal. Photoactivated rhodopsin then activates a visual signaling cascade through its cognate G protein, transducin or Gt, that results in a neuronal response in the brain. Interestingly, the lipid composition of ROS membranes not only differs from that of the photoreceptor plasma membrane but is critical for visual transduction. Specifically, lipids can modulate structural changes in rhodopsin that occur after photoactivation and influence binding of transducin. Thus, altering the lipid organization of ROS membranes can result in visual dysfunction and blindness.
Collapse
Affiliation(s)
- Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
| | | | | | | |
Collapse
|
12
|
|
13
|
Abstract
Receptors on the surface of cells function as conduits for information flowing between the external environment and the cell interior. Since signal transduction is based on the physical interaction of receptors with both extracellular ligands and intracellular effectors, ligand binding must produce conformational changes in the receptor that can be transmitted to the intracellular domains accessible to G proteins and other effectors. Classical models of G protein-coupled receptor (GPCR) signaling envision receptor conformations as highly constrained, wherein receptors exist in equilibrium between single "off" and "on" states distinguished by their ability to activate effectors, and ligands act by perturbing this equilibrium. In such models, ligands can be classified based upon two simple parameters; affinity and efficacy, and ligand activity is independent of the assay used to detect the response. However, it is clear that GPCRs assume multiple conformations, any number of which may be capable of interacting with a discrete subset of possible effectors. Both orthosteric ligands, molecules that occupy the natural ligand-binding pocket, and allosteric modulators, small molecules or proteins that contact receptors distant from the site of ligand binding, have the ability to alter the conformational equilibrium of a receptor in ways that affect its signaling output both qualitatively and quantitatively. In this context, efficacy becomes pluridimensional and ligand classification becomes assay dependent. A more complete description of ligand-receptor interaction requires the use of multiplexed assays of receptor activation and screening assays may need to be tailored to detect specific efficacy profiles.
Collapse
|
14
|
Dell'Orco D, Müller M, Koch KW. Quantitative detection of conformational transitions in a calcium sensor protein by surface plasmon resonance. Chem Commun (Camb) 2010; 46:7316-8. [PMID: 20835460 DOI: 10.1039/c0cc02086a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We determined the conditions under which surface plasmon resonance can be used to monitor at real-time the Ca(2+)-induced conformational transitions of the sensor protein recoverin immobilized over a sensor chip. The equilibrium and the kinetics of conformational transitions were detected and quantified over a physiological range of Ca(2+) and protein concentrations similar to those found within cells. Structural analysis suggests that the detection principle reflects changes in the hydrodynamic properties of the protein and is not due to a mass effect. The phenomenon appears to be related to changes in the refractive index at the metal/dielectric interface.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Institute of Biology and Environmental Sciences, Biochemistry Group, University of Oldenburg, D-26111 Oldenburg, Germany.
| | | | | |
Collapse
|
15
|
Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 2010; 62:265-304. [PMID: 20392808 DOI: 10.1124/pr.108.000992] [Citation(s) in RCA: 462] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures.
Collapse
Affiliation(s)
- Terry Kenakin
- GlaxoSmithKline, 5 Moore Drive, Mailtstop V-287, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
16
|
Abstract
Seven-transmembrane receptors are commonly coupled to multiple signaling pathways in cells. The simple model describing agonists for these receptors as producing a common active state to induce uniform activation of the pathways linked to the receptor has been shown to be untenable in light of a large body of data that suggest that some agonists produce activation of some but not all available pathways. These agonists are referred to as ‘biased’ in that they select which signaling pathways become activated upon binding to the receptor. The data to support this mechanism as well as ideas on the possible therapeutic application of this effect will be discussed.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Biological Reagents and Assay Development, Molecular Discovery, GlaxoSmithKline Research and Development 5 Moore Drive, Research Triangle Park, NC 27709 USA.
| |
Collapse
|
17
|
Salamon Z, Tollin G, Alves I, Hruby V. Chapter 6. Plasmon resonance methods in membrane protein biology applications to GPCR signaling. Methods Enzymol 2009; 461:123-46. [PMID: 19480917 DOI: 10.1016/s0076-6879(09)05406-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Plasmon waveguide resonance (PWR) spectroscopy, a variant of surface plasmon resonance (SPR) spectrometry, allows one to examine changes in conformation of anisotropic structures such as membranes and membrane-associated proteins such as G-protein-coupled receptors (GPCRs). The binding and resulting structural changes that accompany interactions of membrane protein with ligands (agonists, antagonists, inverse agonist, etc.), G-proteins, and other effectors and modulators of signaling can be directly examined with this technique. In this chapter we outline the instrumentation used for these studies, the experimental methods that allow determination of the structural changes, and thermodynamic and kinetic parameters that can be obtained from these studies.
Collapse
Affiliation(s)
- Zdzislaw Salamon
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
18
|
Kenakin TP. Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nat Rev Drug Discov 2009; 8:617-26. [PMID: 19609267 DOI: 10.1038/nrd2838] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As technology advances to the point at which various behaviours of seven-transmembrane (7TM) receptors (also known as G protein-coupled receptors (GPCRs)) can be observed individually, it is clear that, rather than being 'on-off' switches, 7TM receptors are more akin to 'microprocessors' of information. This has introduced the phenomenon of functional selectivity, whereby certain ligands initiate only portions of the signalling mechanisms mediated by a given receptor, which has opened new horizons for drug discovery. The need to discover new 7TM receptor-ligand behaviours and quantify the effect of the drug on these complex systems, to guide medicinal chemistry, puts the pharmacological assay into the spotlight. This Perspective outlines the return to whole-system assays from reductionist recombinant systems, and discusses how the efficacy of a drug is linked to the particular assay used to observe its effects. It also highlights how these new assays are adding value to the drug discovery process.
Collapse
Affiliation(s)
- Terry P Kenakin
- Department of Biological Reagents and Assay Development, GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
19
|
Kenakin T. Interrogating 7TM receptors: Does texture in the question yield greater texture in the answer? J Recept Signal Transduct Res 2009; 29:132-9. [DOI: 10.1080/10799890903050829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Hruby VJ, Alves I, Cowell S, Salamon Z, Tollin G. Use of plasmon waveguide resonance (PWR) spectroscopy for examining binding, signaling and lipid domain partitioning of membrane proteins. Life Sci 2009; 86:569-74. [PMID: 19281827 DOI: 10.1016/j.lfs.2009.02.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 02/17/2009] [Accepted: 02/25/2009] [Indexed: 11/16/2022]
Abstract
AIMS Due to their anisotropic properties and other factors, it has been difficult to determine the conformational and dynamic properties of integral membrane proteins such as G-protein coupled receptors (GPCRs), growth factor receptors, ion channels, etc. in response to ligands and subsequent signaling. Herein a novel methodology is presented that allows such studies to be performed while maintaining the receptors in a membrane environment. MAIN METHOD Plasmon waveguide resonance (PWR) spectroscopy is a relatively new biophysical method which allows one to directly observe structural and dynamic changes which occur on interaction of GPCRs (and other integral membrane proteins) with ligands and signaling molecules. The delta opioid receptor (DOR) and its ligands serve as an excellent model system to illustrate the new insights into GPCR signaling that can be obtained by this method. KEY FINDINGS Among our key findings are: 1) it is possible to obtain the following information directly and without any need for labels (radioactive, fluorescent, etc.): binding affinities, and the ability to distinguish between agonists, antagonists, inverse agonist, and partial agonists without a need for second messenger analysis; 2) it is possible to determine directly, again without a need for labels, G-protein binding to variously occupied or unoccupied DORs, and to determine which alpha-subtype is involved in allowing structurally different agonist ligands to have differential effects; 3) GTPgammaS binding can be examined directly; and 4) binding of the DOR with different ligands leads to differential segregation of the ligand-receptor complex into lipid rafts. SIGNIFICANCE The implications of these discoveries suggest a need to modify our current views of GPCR-ligand interactions and signaling.
Collapse
Affiliation(s)
- Victor J Hruby
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|