1
|
Babiker F, Benter IF, Akhtar S. Nanotoxicology of Dendrimers in the Mammalian Heart: ex vivo and in vivo Administration of G6 PAMAM Nanoparticles Impairs Recovery of Cardiac Function Following Ischemia-Reperfusion Injury. Int J Nanomedicine 2020; 15:4393-4405. [PMID: 32606684 PMCID: PMC7310973 DOI: 10.2147/ijn.s255202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 01/30/2023] Open
Abstract
Aim The effects of polyamidoamine (PAMAM) dendrimers on the mammalian heart are not completely understood. In this study, we have investigated the effects of a sixth-generation cationic dendrimer (G6 PAMAM) on cardiac function in control and diabetic rat hearts following ischemia-reperfusion (I/R) injury. Methods Isolated hearts from healthy non-diabetic (Ctr) male Wistar rats were subjected to ischemia and reperfusion (I/R). LV contractility and hemodynamics data were computed digitally whereas cardiac damage following I/R injury was assessed by measuring cardiac enzymes. For ex vivo acute exposure experiments, G6 PAMAM was administered during the first 10 mins of reperfusion in Ctr animals. In chronic in vivo studies, nondiabetic rats (Ctr) received either vehicle or daily i.p. injections of G6 PAMAM (40 mg/kg) for 4 weeks. Diabetic (D) animals received either vehicle or daily i.p. injections of G6 PAMAM (10, 20 or 40 mg/kg) for 4 weeks. The impact of G6 PAMAM on pacing-postconditioning (PPC) was also studied in Ctr and D rats. Results In ex vivo studies, acute administration of G6 PAMAM to isolated Ctr hearts during reperfusion dose-dependently impaired recovery of cardiac hemodynamics and vascular dynamics parameters following I/R injury. Chronic daily i.p. injections of G6 PAMAM significantly (P<0.01) impaired recovery of cardiac function following I/R injury in nondiabetic animals but this was not generally observed in diabetic animals except for CF which was impaired by about 50%. G6 PAMAM treatment completely blocked the protective effects of PPC in the Ctr animals. Conclusion Acute ex vivo or chronic in vivo treatment with naked G6 PAMAM dendrimer can significantly compromise recovery of non-diabetic hearts from I/R injury and can further negate the beneficial effects of PPC. Our findings are therefore extremely important in the nanotoxicological evaluation of G6 PAMAM dendrimers for potential clinical applications in physiological and pathological settings.
Collapse
Affiliation(s)
- Fawzi Babiker
- Department of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Kuwait City, Kuwait
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus, Republic of Cyprus
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Cheng X, Hu J, Wang Y, Ye H, Li X, Gao Q, Li Z. Effects of Dexmedetomidine Postconditioning on Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Role of the PI3K/Akt-Dependent Signaling Pathway. J Diabetes Res 2018; 2018:3071959. [PMID: 30402501 PMCID: PMC6196799 DOI: 10.1155/2018/3071959] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE The present study was designed to determine whether dexmedetomidine (DEX) exerts cardioprotection against myocardial I/R injury in diabetic hearts and the mechanisms involved. METHODS A total of 30 diabetic rats induced by high-glucose-fat diet and streptozotocin (STZ) were randomly assigned to five groups: diabetic sham-operated group (DM-S), diabetic I/R group (DM-I/R), diabetic DEX group (DM-D), diabetic DEX + Wort group (DM-DW), and diabetic Wort group (DM-W). Another 12 age-matched male normal SD rats were randomly divided into two groups: sham-operated group (S) and I/R group (I/R). All rats were subjected to 30 min myocardial ischemia followed by 120 min reperfusion except sham groups. Plasmas were collected to measure the malondialdehyde (MDA), creatine kinase isoenzymes (CK-MB), and lactate dehydrogenase (LDH) levels and superoxide dismutase (SOD) activity at the end of reperfusion. Pathologic changes in myocardial tissues were observed by H-E staining. The total and phosphorylated form of Akt and GSK-3β protein expressions were measured by western blot. The ratio of Bcl-2/Bax at mRNA level was detected by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS DEX significantly reduced plasma CK-MB, MDA concentration, and LDH level and increased SOD activity caused by I/R. The phosphorylation of Akt and GSK-3β was increased, Bcl-2 mRNA and the Bcl-2/Bax ratio was increased, and Bax mRNA was decreased in the DEX group as compared to the I/R group, while posttreatment with Wort attenuated the effects induced by DEX. CONCLUSION The results of this study suggest that DEX postconditioning may increase the phosphorylation of GSK-3β by activating the PI3K/Akt signaling pathway and may inhibit apoptosis and oxidative stress of the myocardium, thus exerting protective effects in diabetic rat hearts suffering from I/R injury.
Collapse
Affiliation(s)
- Xiangyang Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Jing Hu
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Ya Wang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Hongwei Ye
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Xiaohong Li
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Zhenghong Li
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, China
| |
Collapse
|
3
|
Vyas FS, Nelson CP, Dickenson JM. Role of transglutaminase 2 in A 1 adenosine receptor- and β 2-adrenoceptor-mediated pharmacological pre- and post-conditioning against hypoxia-reoxygenation-induced cell death in H9c2 cells. Eur J Pharmacol 2017; 819:144-160. [PMID: 29208472 DOI: 10.1016/j.ejphar.2017.11.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
Abstract
Pharmacologically-induced pre- and post-conditioning represent attractive therapeutic strategies to reduce ischaemia/reperfusion injury during cardiac surgery and following myocardial infarction. We have previously reported that transglutaminase 2 (TG2) activity is modulated by the A1 adenosine receptor and β2-adrenoceptor in H9c2 cardiomyoblasts. The primary aim of this study was to determine the role of TG2 in A1 adenosine receptor and β2-adrenoceptor-induced pharmacological pre- and post-conditioning in the H9c2 cells. H9c2 cells were exposed to 8h hypoxia (1% O2) followed by 18h reoxygenation, after which cell viability was assessed by monitoring mitochondrial reduction of MTT, lactate dehydrogenase release and caspase-3 activation. N6-cyclopentyladenosine (CPA; A1 adenosine receptor agonist), formoterol (β2-adrenoceptor agonist) or isoprenaline (non-selective β-adrenoceptor agonist) were added before hypoxia/reoxygenation (pre-conditioning) or at the start of reoxygenation following hypoxia (post-conditioning). Pharmacological pre- and post-conditioning with CPA and isoprenaline significantly reduced hypoxia/reoxygenation-induced cell death. In contrast, formoterol did not elicit protection. Pre-treatment with pertussis toxin (Gi/o-protein inhibitor), DPCPX (A1 adenosine receptor antagonist) or TG2 inhibitors (Z-DON and R283) attenuated the A1 adenosine receptor-induced pharmacological pre- and post-conditioning. Similarly, pertussis toxin, ICI 118,551 (β2-adrenoceptor antagonist) or TG2 inhibition attenuated the isoprenaline-induced cell survival. Knockdown of TG2 using small interfering RNA (siRNA) attenuated CPA and isoprenaline-induced pharmacological pre- and post-conditioning. Finally, proteomic analysis following isoprenaline treatment identified known (e.g. protein S100-A6) and novel (e.g. adenine phosphoribosyltransferase) protein substrates for TG2. These results have shown that A1 adenosine receptor and β2-adrenoceptor-induced protection against simulated hypoxia/reoxygenation occurs in a TG2 and Gi/o-protein dependent manner in H9c2 cardiomyoblasts.
Collapse
Affiliation(s)
- Falguni S Vyas
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Carl P Nelson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - John M Dickenson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
4
|
Biasutto L, Azzolini M, Szabò I, Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2515-30. [PMID: 26902508 DOI: 10.1016/j.bbamcr.2016.02.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Over the past 30years the mitochondrial permeability transition - the permeabilization of the inner mitochondrial membrane due to the opening of a wide pore - has progressed from being considered a curious artifact induced in isolated mitochondria by Ca(2+) and phosphate to a key cell-death-inducing process in several major pathologies. Its relevance is by now universally acknowledged and a pharmacology targeting the phenomenon is being developed. The molecular nature of the pore remains to this day uncertain, but progress has recently been made with the identification of the FOF1 ATP synthase as the probable proteic substrate. Researchers sharing this conviction are however divided into two camps: these believing that only the ATP synthase dimers or oligomers can form the pore, presumably in the contact region between monomers, and those who consider that the ring-forming c subunits in the FO sector actually constitute the walls of the pore. The latest development is the emergence of a new candidate: Spastic Paraplegia 7 (SPG7), a mitochondrial AAA-type membrane protease which forms a 6-stave barrel. This review summarizes recent developments of research on the pathophysiological relevance and on the molecular nature of the mitochondrial permeability transition pore. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biology, Viale G. Colombo 3, 35121 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
5
|
Zhang WP, Zong QF, Gao Q, Yu Y, Gu XY, Wang Y, Li ZH, Ge M. Effects of endomorphin-1 postconditioning on myocardial ischemia/reperfusion injury and myocardial cell apoptosis in a rat model. Mol Med Rep 2016; 14:3992-8. [DOI: 10.3892/mmr.2016.5695] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 07/29/2016] [Indexed: 11/06/2022] Open
|
6
|
Pharmacological postconditioning against myocardial infarction with a slow-releasing hydrogen sulfide donor, GYY4137. Pharmacol Res 2016; 111:442-451. [PMID: 27378570 DOI: 10.1016/j.phrs.2016.06.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 11/20/2022]
Abstract
Exogenous hydrogen sulfide (H2S) protects against myocardial ischemia/reperfusion injury but the mechanism of action is unclear. The present study investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial infarction given specifically at reperfusion and the signalling pathway involved. Thiobutabarbital-anesthetised rats were subjected to 30min of left coronary artery occlusion and 2h reperfusion. Infarct size was assessed by tetrazolium staining. In the first study, animals randomly received either no treatment or GYY4137 (26.6, 133 or 266μmolkg(-1)) by intravenous injection 10min before reperfusion. In a second series, involvement of PI3K and NO signalling were interrogated by concomitant administration of LY294002 or L-NAME respectively and the effects on the phosphorylation of Akt, eNOS, GSK-3β and ERK1/2 during early reperfusion were assessed by immunoblotting. GYY4137 266μmolkg(-1) significantly limited infarct size by 47% compared to control hearts (P<0.01). In GYY4137-treated hearts, phosphorylation of Akt, eNOS and GSK-3β was increased 2.8, 2.2 and 2.2 fold respectively at early reperfusion. Co-administration of L-NAME and GYY4137 attenuated the cardioprotection afforded by GYY4137, associated with attenuated phosphorylation of eNOS. LY294002 totally abrogated the infarct-limiting effect of GYY4137 and inhibited Akt, eNOS and GSK-3β phosphorylation. These data are the first to demonstrate that GYY4137 protects the heart against lethal reperfusion injury through activation of PI3K/Akt signalling, with partial dependency on NO signalling and inhibition of GSK-3β during early reperfusion. H2S-based therapeutic approaches may have value as adjuncts to reperfusion in the treatment of acute myocardial infarction.
Collapse
|
7
|
Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 2015; 66:1142-74. [PMID: 25261534 DOI: 10.1124/pr.113.008300] [Citation(s) in RCA: 461] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pre-, post-, and remote conditioning of the myocardium are well described adaptive responses that markedly enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and provide therapeutic paradigms for cardioprotection. Nevertheless, more than 25 years after the discovery of ischemic preconditioning, we still do not have established cardioprotective drugs on the market. Most experimental studies on cardioprotection are still undertaken in animal models, in which ischemia/reperfusion is imposed in the absence of cardiovascular risk factors. However, ischemic heart disease in humans is a complex disorder caused by, or associated with, cardiovascular risk factors and comorbidities, including hypertension, hyperlipidemia, diabetes, insulin resistance, heart failure, altered coronary circulation, and aging. These risk factors induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury per se and responses to cardioprotective interventions. Moreover, some of the medications used to treat these risk factors, including statins, nitrates, and antidiabetic drugs, may impact cardioprotection by modifying cellular signaling. The aim of this article is to review the recent evidence that cardiovascular risk factors and their medication may modify the response to cardioprotective interventions. We emphasize the critical need to take into account the presence of cardiovascular risk factors and concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple risk factors.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Derek J Hausenloy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gerd Heusch
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gary F Baxter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| |
Collapse
|
8
|
Bednarski M, Otto M, Dudek M, Siwek A, Zygmunt M, Knutelska J, Nowiński L, Groszek G, Sapa J. Antiarrhythmic activity in occlusion-reperfusion model of 1-(1H-indol-4-yloxy)-3-{[2-(2-methoxyphenoxy)ethyl]amino} propan-2-ol and its enantiomers. Clin Exp Pharmacol Physiol 2015; 43:81-7. [PMID: 26384857 DOI: 10.1111/1440-1681.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 08/29/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022]
Abstract
Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide, especially in developed countries. The most serious problem after myocardial infarction is reperfusion injury that manifests as functional impairment, arrhythmia, and accelerated progression of cell death in certain critically injured myocytes. Subsequently the infarcted myocardium develops features of necrosis and reactive inflammation. To reduce lethal reperfusion injury in patient with AMI antioxidants, anti-inflammatory agents, adenosine, opioids, metabolic modulators (glucose, insulin, and potassium, nicorandil and agents which reduce intracellular Ca(2+) overload and inhibit Na(+)-H(+) exchange) are used. In this study a novel compound (compound 9) 1-(1 h-indol-4-yloxy)-3-{[2-(2-methoxyphenoxy) ethyl]amino}propan-2-ol and its enantiomers are examined in arrhythmia associated with coronary artery occlusion and reperfusion in a rat model. Antioxidant properties are also determined for test compounds using the malondialdehyde (MDA) lipid peroxidation and ferric reducing antioxidant power (FRAP) tests. In summary, the tested compounds, especially the S enantiomer has a strong antiarrhythmic activity in a model of occlusion and reperfusion of the left coronary artery which is probably related to their adrenolytic action. In contrast to carvedilol, none of the test compound reduced the lipid peroxidation but increased ferric reducing antioxidant power. In the antioxidant effect, there was no difference between the optical forms of compound 9.
Collapse
Affiliation(s)
- Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, Kraków, Poland
| | - Monika Otto
- Department of Pharmacological Screening, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Dudek
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Małgorzata Zygmunt
- Department of Pharmacological Screening, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Knutelska
- Department of Pharmacological Screening, Jagiellonian University Medical College, Kraków, Poland
| | - Leszek Nowiński
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Grażyna Groszek
- Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
| | - Jacek Sapa
- Department of Pharmacological Screening, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
9
|
Abstract
Reperfusion is mandatory to salvage ischemic myocardium from infarction, but reperfusion per se contributes to injury and ultimate infarct size. Therefore, cardioprotection beyond that by timely reperfusion is needed to reduce infarct size and improve the prognosis of patients with acute myocardial infarction. The conditioning phenomena provide such cardioprotection, insofar as brief episodes of coronary occlusion/reperfusion preceding (ischemic preconditioning) or following (ischemic postconditioning) sustained myocardial ischemia with reperfusion reduce infarct size. Even ischemia/reperfusion in organs remote from the heart provides cardioprotection (remote ischemic conditioning). The present review characterizes the signal transduction underlying the conditioning phenomena, including their physical and chemical triggers, intracellular signal transduction, and effector mechanisms, notably in the mitochondria. Cardioprotective signal transduction appears as a highly concerted spatiotemporal program. Although the translation of ischemic postconditioning and remote ischemic conditioning protocols to patients with acute myocardial infarction has been fairly successful, the pharmacological recruitment of cardioprotective signaling has been largely disappointing to date.
Collapse
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
10
|
Vogler M, Zieseniss A, Hesse AR, Levent E, Tiburcy M, Heinze E, Burzlaff N, Schley G, Eckardt KU, Willam C, Katschinski DM. Pre- and post-conditional inhibition of prolyl-4-hydroxylase domain enzymes protects the heart from an ischemic insult. Pflugers Arch 2015; 467:2141-9. [PMID: 25578858 DOI: 10.1007/s00424-014-1667-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/12/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Several genetically modified mouse models implicated that prolyl-4-hydroxylase domain (PHD) enzymes are critical mediators for protecting tissues from an ischemic insult including myocardial infarction by affecting the stability and activation of hypoxia-inducible factor (HIF)-1 and HIF-2. Thus, the current efforts to develop small-molecule PHD inhibitors open a new therapeutic option for myocardial tissue protection during ischemia. Therefore, we aimed to investigate the applicability and efficacy of pharmacological HIFα stabilization by a small-molecule PHD inhibitor in the heart. We tested for protective effects in the acute phase of myocardial infarction after pre- or post-conditional application of the inhibitor. Application of the specific PHD inhibitor 2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetate (ICA) resulted in HIF-1α and HIF-2α accumulation in heart muscle cells in vitro and in vivo. The rapid and robust responsiveness of cardiac tissue towards ICA was further confirmed by induction of the known HIF target genes heme oxygenase-1 and PHD3. Pre- and post-conditional treatment of mice undergoing myocardial infarction resulted in a significantly smaller infarct size. Tissue protection from ischemia after pre- or post-conditional ICA treatment demonstrates that there is a therapeutic time window for the application of the PHD inhibitor (PHI) post-myocardial infarction, which might be exploited for acute medical interventions.
Collapse
Affiliation(s)
- Melanie Vogler
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Anke Zieseniss
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Amke R Hesse
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Elif Levent
- Institute of Pharmacology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Malte Tiburcy
- Institute of Pharmacology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Eva Heinze
- Inorganic Chemistry and Organometallic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University, Erlangen, Germany
| | - Nicolai Burzlaff
- Inorganic Chemistry and Organometallic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University, Erlangen, Germany
| | - Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen, Germany
| | - Kai Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen, Germany
| | - Carsten Willam
- Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen, Germany
| | - Dörthe M Katschinski
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.
| |
Collapse
|
11
|
Bice JS, Baxter GF. Postconditioning signalling in the heart: mechanisms and translatability. Br J Pharmacol 2014; 172:1933-46. [PMID: 25303373 DOI: 10.1111/bph.12976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/29/2014] [Accepted: 10/05/2014] [Indexed: 12/15/2022] Open
Abstract
The protective effect of ischaemic postconditioning (short cycles of reperfusion and reocclusion of a previously occluded vessel) was identified over a decade ago commanding intense interest as an approach for modifying reperfusion injury which contributes to infarct size in acute myocardial infarction. Elucidation of the major mechanisms of postconditioning has identified potential pharmacological targets for limitation of reperfusion injury. These include ligands for membrane-associated receptors, activators of phosphokinase survival signalling pathways and inhibitors of the mitochondrial permeability transition pore. In experimental models, numerous agents that target these mechanisms have shown promise as postconditioning mimetics. Nevertheless, clinical studies of ischaemic postconditioning and pharmacological postconditioning mimetics are equivocal. The majority of experimental research is conducted in animal models which do not fully portray the complexity of risk factors and comorbidities with which patients present and which we now know modify the signalling pathways recruited in postconditioning. Cohort size and power, patient selection, and deficiencies in clinical infarct size estimation may all represent major obstacles to assessing the therapeutic efficacy of postconditioning. Furthermore, chronic treatment of these patients with drugs like ACE inhibitors, statins and nitrates may modify signalling, inhibiting the protective effect of postconditioning mimetics, or conversely induce a maximally protected state wherein no further benefit can be demonstrated. Arguably, successful translation of postconditioning cannot occur until all of these issues are addressed, that is, experimental investigation requires more complex models that better reflect the clinical setting, while clinical investigation requires bigger trials with appropriate patient selection and standardization of clinical infarct size measurements.
Collapse
Affiliation(s)
- Justin S Bice
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
12
|
Iliodromitis EK, Andreadou I, Iliodromitis K, Dagres N. Ischemic and postischemic conditioning of the myocardium in clinical practice: challenges, expectations and obstacles. Cardiology 2014; 129:117-25. [PMID: 25227478 DOI: 10.1159/000362499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/27/2014] [Indexed: 12/14/2022]
Abstract
Conditioning refers to endogenous mechanisms rendering the myocardium more tolerant against reperfusion injury. Application of brief ischemia-reperfusion cycles prior to the index ischemia has a beneficial effect and limits the infarct size. This is called preconditioning and is mainly mediated by activation of adenosine, bradykinin, opioid and other receptors, with subsequent activation of intracellular mediators leading to mitochondrial protection. A clinical equivalent of preconditioning is preinfarction angina. Benefits for the ischemic and reperfused myocardium are also provided by repetitive short-lived cycles of ischemia-reperfusion applied after the index ischemia. This is termed postconditioning, shares a common pathway with preconditioning, and is more useful and relevant in clinical practice. Finally, benefits are also derived from remote conditioning, i.e. ischemia applied in a remote vascular territory parallel with or immediately after the index myocardial ischemia. Several pharmacological interventions may interfere with these mechanisms leading to enhanced protection of the myocardium and limitation of the infarct size. Despite the huge interest and the great body of evidence that verify the effectiveness of conditioning, clinical application has remained limited due to controversies over the appropriate intervention protocol, but also interference of medication, comorbidities and other factors that may enhance or blur the protective effect.
Collapse
|
13
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
14
|
McCafferty K, Byrne C, Yaqoob MM. Ischaemic conditioning strategies for the nephrologist: a promise lost in translation? Nephrol Dial Transplant 2014; 29:1827-40. [PMID: 24589718 DOI: 10.1093/ndt/gfu034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Over the last quarter of a century, a huge effort has been made to develop interventions that can minimise ischaemia reperfusion injury. The most potent of these are the ischaemic conditioning strategies, which comprise ischaemic preconditioning, remote ischaemic preconditioning and ischaemic postconditioning. While much of the focus for these interventions has been on protecting the myocardium, other organs including the kidney can be similarly protected. However, translation of these beneficial effects from animal models into routine clinical practice has been less straightforward than expected. In this review, we examine the role of ischaemic conditioning strategies in reducing tissue injury from the 'bench to the bedside' and discuss the barriers to their greater translation.
Collapse
Affiliation(s)
- Kieran McCafferty
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Conor Byrne
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Muhammad M Yaqoob
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, UK
| |
Collapse
|
15
|
Protection tissulaire: une nouvelle piste. MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-013-0817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Preventive Effect of Total Flavones of Choerospondias axillaries on Ischemia/Reperfusion-Induced Myocardial Infarction-Related MAPK Signaling Pathway. Cardiovasc Toxicol 2013; 14:145-52. [DOI: 10.1007/s12012-013-9238-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
|
18
|
Park H, Otani H, Noda T, Sato D, Okazaki T, Ueyama T, Iwasaka J, Yamamoto Y, Iwasaka T. Intracoronary followed by intravenous administration of the short-acting β-blocker landiolol prevents myocardial injury in the face of elective percutaneous coronary intervention. Int J Cardiol 2012; 167:1547-51. [PMID: 22608892 DOI: 10.1016/j.ijcard.2012.04.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 01/27/2012] [Accepted: 04/14/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Myocardial injury during elective percutaneous coronary intervention (PCI) is associated with higher subsequent cardiac events and mortality. β-Blockers have been used to reduce myocardial injury during ischemia and reperfusion. We investigated whether intracoronary followed by intravenous administration of the short-acting β-blocker landiolol prevents myocardial injury in the face of elective PCI. METHODS AND RESULTS Patients undergoing elective PCI (n=70) were randomly assigned to the landiolol (n=35) or control (n=35) group. Landiolol or saline was administered into target vessels through a balloon catheter for 1min before and after first balloon inflation followed by continuous intravenous administration for 6h after PCI. The incidence of myocardial injury defined by cardiac troponin-I (cTnI) >/=0.05 ng/ml was 79% of the patients in the control group compared to 56% in the landiolol group (p=0.04). The cTnI level at 24h after PCI tended to be lower in the landiolol group (0.57 ± 1.14 versus 1.27 ± 2.48 ng/ml; p=0.07), while the CK-MB level was not significantly different between the landiolol and control groups. The incidence of peri-procedural myocardial infarction defined by cTnI >/=0.12 ng/ml was significantly (p=0.02) lower in the landiolol group (41%) compared to the control group (70%). There was no incidence of coronary spasm, hypotension, bradycardia or heart failure during and after PCI in the two groups. CONCLUSIONS Brief intracoronary followed by continuous intravenous administration of landiolol is safe and effective for myocardial protection in the face of elective PCI.
Collapse
Affiliation(s)
- Haengnam Park
- Second Department of Internal Medicine, Kansai Medical University, Moriguchi City, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Morel O, Perret T, Delarche N, Labeque JN, Jouve B, Elbaz M, Piot C, Ovize M. Pharmacological approaches to reperfusion therapy. Cardiovasc Res 2012; 94:246-52. [DOI: 10.1093/cvr/cvs114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Fretwell L, Dickenson JM. Role of large-conductance Ca²+-activated K+ channels in adenosine A₁ receptor-mediated pharmacological postconditioning in H9c2 cells. Can J Physiol Pharmacol 2011; 89:24-30. [PMID: 21186374 DOI: 10.1139/y10-106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ischaemic postconditioning is a phenomenon whereby short periods of ischaemia applied during the start of reperfusion protect the myocardium from the damaging consequences of reperfusion. As such, pharmacological-induced postconditioning represents an attractive therapeutic strategy for reducing reperfusion injury during cardiac surgery and following myocardial infarction. The primary aim of this study was to determine the role of large-conductance Ca²(+)-activated potassium channels (BK(Ca) channels) in adenosine A₁ receptor-induced pharmacological postconditioning in the rat embryonic cardiomyoblast-derived cell line H9c2. H9c2 cells were exposed to 6 h hypoxia (0.5% O₂) followed by 18 h reoxygenation (H/R) after which cell viability was assessed by monitoring lactate dehydrogenase (LDH) release and caspase-3 activation. The adenosine A₁ receptor agonist N⁶-cyclopentyladenosine (CPA; 100 nmol/L) or the BK(Ca) channel opener NS1619 (10 µmol/L) were added for 30 min at the start of reoxygenation following 6 h hypoxic exposure. Where appropriate, cells were treated (15 min) before pharmacological postconditioning with the BK(Ca) channel blockers paxilline (1 µmol/L) or iberiotoxin (100 nmol/L). Pharmacological postconditioning with CPA or NS1619 significantly reduced H/R-induced LDH release. Treatment with paxilline or iberiotoxin attenuated adenosine A₁ receptor and NS1619-induced pharmacological postconditioning. These results have shown for the first time that BK(Ca) channels are involved in adenosine A₁ receptor-induced pharmacological postconditioning in a cell model system.
Collapse
|
21
|
Przyklenk K. Efficacy of cardioprotective 'conditioning' strategies in aging and diabetic cohorts: the co-morbidity conundrum. Drugs Aging 2011; 28:331-43. [PMID: 21542657 DOI: 10.2165/11587190-000000000-00000] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence obtained in multiple experimental models has revealed that cardiac 'conditioning' strategies--including ischaemic preconditioning, postconditioning, remote conditioning and administration of pharmacological conditioning mimetics--are profoundly protective and significantly attenuate myocardial ischaemia-reperfusion injury. As a result, there is considerable interest in translating these cardioprotective paradigms from the laboratory to patients. However, the majority of studies investigating conditioning-induced cardioprotection have utilized healthy adult animals devoid of the risk factors and co-morbidities associated with cardiovascular disease and acute myocardial infarction. The aim of this article is to summarize the growing consensus that two well established risk factors, aging and diabetes mellitus, may render the heart refractory to the favourable effects of myocardial conditioning, and discuss the clinical implications of a loss in efficacy of cardiac conditioning paradigms in these patient populations.
Collapse
Affiliation(s)
- Karin Przyklenk
- Cardiovascular Research Institute and Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|
22
|
Rohilla A, Rohilla S, Kushnoor A. Myocardial postconditioning: next step to cardioprotection. Arch Pharm Res 2011; 34:1409-15. [PMID: 21975801 DOI: 10.1007/s12272-011-0901-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 01/29/2011] [Accepted: 03/03/2011] [Indexed: 12/25/2022]
Abstract
Myocardial ischemia is a condition in which lack of blood flow to the cardiac muscle occurs resulting in deficient oxygen and nutrient supply to the heart. The restoration of blood flow to an organ or tissue is termed reperfusion. Brief episodes of ischemia and reperfusion given after prolonged ischemia and at the onset of reperfusion denotes postconditioning. Myocardial postconditioning is a phenomenon in which myocardium from lethal ischemia-reperfusion injury is protected. However, numerous experimental studies reveal that the cardioprotective effects of postconditioning are suppressed in various pathological states. This review critically discusses the mechanisms involved in the cardioprotective effects of postconditioning and factors affecting the cardioprotective potential of myocardial postconditioning.
Collapse
Affiliation(s)
- Ankur Rohilla
- Department of Pharmaceutical Sciences, Shri Gopi Chand, Group of Institutions, Baghpat 250609, UP, India.
| | | | | |
Collapse
|
23
|
Characterization of a critical role for CFTR chloride channels in cardioprotection against ischemia/reperfusion injury. Acta Pharmacol Sin 2011; 32:824-33. [PMID: 21642951 DOI: 10.1038/aps.2011.61] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To further characterize the functional role of cystic fibrosis transmembrane conductance regulator (CFTR) in early and late (second window) ischemic preconditioning (IPC)- and postconditioning (POC)-mediated cardioprotection against ischemia/reperfusion (I/R) injury. METHODS CFTR knockout (CFTR(-/-)) mice and age- and gender-matched wild-type (CFTR(+/+)) and heterozygous (CFTR(+/-)) mice were used. In in vivo studies, the animals were subjected to a 30-min coronary occlusion followed by a 40-min reperfusion. In ex vivo (isolate heart) studies, a 45-min global ischemia was applied. To evaluate apoptosis, the level of activated caspase 3 and TdT-mediated dUTP-X nick end labeling (TUNEL) were examined. RESULTS In the in vivo I/R models, early IPC significantly reduced the myocardial infarct size in wild-type (CFTR(+/+)) (from 40.4% ± 5.3% to 10.4% ± 2.0%, n=8, P<0.001) and heterozygous (CFTR(+/-)) littermates (from 39.4% ± 2.4% to 15.4% ± 5.1%, n=6, P<0.001) but failed to protect CFTR knockout (CFTR(-/-)) mice from I/R induced myocardial infarction (46.9% ± 6.2% vs 55.5% ± 7.8%, n=6, P>0.5). Similar results were observed in the in vivo late IPC experiments. Furthermore, in both in vivo and ex vivo I/R models, POC significantly reduced myocardial infarction in wild-type mice, but not in CFTR knockout mice. In ex vivo I/R models, targeted inactivation of CFTR gene abolished the protective effects of IPC against I/R-induced apoptosis. CONCLUSION These results provide compelling evidence for a critical role for CFTR Cl(-) channels in IPC- and POC-mediated cardioprotection against I/R-induced myocardial injury.
Collapse
|
24
|
Liou SF, Ke HJ, Hsu JH, Liang JC, Lin HH, Chen IJ, Yeh JL. San-Huang-Xie-Xin-Tang Prevents Rat Hearts from Ischemia/Reperfusion-Induced Apoptosis through eNOS and MAPK Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:915051. [PMID: 21785641 PMCID: PMC3137793 DOI: 10.1093/ecam/neq061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 04/20/2010] [Indexed: 12/21/2022]
Abstract
San-Huang-Xie-Xin-Tang (SHXT) is a traditional Chinese medication consisting of three herbs, namely Coptidis rhizome, Scutellariae radix and Rhei rhizome. This study aimed to examine the cardioprotective effects of SHXT in a rat model of acute myocardial apoptosis induced by ischemia/reperfusion (I/R). Vehicle (intravenous saline) or SHXT (intravenous or oral) was administered prior to I/R (occlusion of left coronary artery for 45 min followed by reperfusion for 2 h). In the vehicle group, myocardial I/R caused myocardial infarction with increased plasma cardiac enzymes, severe arrhythmia and mortality. Myocardial apoptosis was induced by I/R as evidenced by DNA ladder and Bcl-2/Bax ratio. In the SHXT group, we found that SHXT significantly reduced plasma levels of cardiac enzymes, arrhythmia scores (from 5 ± 1 to 2 ± 1, P < .01) and mortality rate (from 53 to 0%, P < .01). In addition, pretreatment with intravenous SHXT reduced the infarct size dose-dependently when compared with the vehicle group (10 mg kg(-1): 14.0 ± 0.2 versus 44.5 ± 5.0%, and 30 mg kg(-1): 6.2 ± 1.2% versus 44.5 ± 5.0%, both P < .01). Similarly, oral administration of SHXT reduced the infarct size dose-dependently. Furthermore, SHXT markedly decreased the apoptosis induced by I/R with increased Bcl-2/Bax ratio. Finally, we found that SHXT counteracted the I/R-induced downstream signaling, resulting in increased myocardial eNOS expression and plasma nitrite, and decreased activation of ERK1/2, p38 and JNK. These data suggest that SHXT has cardioprotective effects against I/R-induced apoptosis, and that these effects are mediated, at least in part, by eNOS and MAPK pathways.
Collapse
Affiliation(s)
- Shu-Fen Liou
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Mimuro S, Katoh T, Suzuki A, Yu S, Adachi YU, Uraoka M, Sano H, Sato S. Deterioration of myocardial injury due to dexmedetomidine administration after myocardial ischaemia. Resuscitation 2010; 81:1714-7. [DOI: 10.1016/j.resuscitation.2010.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/13/2010] [Accepted: 07/29/2010] [Indexed: 12/27/2022]
|
26
|
Tong G, Sun Z, Wei X, Gu C, Kaye AD, Wang Y, Li J, Zhang Q, Guo H, Yu S, Yi D, Pei J. U50,488H postconditioning reduces apoptosis after myocardial ischemia and reperfusion. Life Sci 2010; 88:31-8. [PMID: 21034750 DOI: 10.1016/j.lfs.2010.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/01/2010] [Accepted: 10/15/2010] [Indexed: 01/01/2023]
Abstract
AIMS Evidence has indicated U50,488H, a selective κ-opioid receptor (κ-OR) agonist, administered before ischemia attenuates apoptosis and infarction during ischemia and reperfusion (I/R). However, it remains unclear whether U50,488H postconditioning reduces apoptosis during I/R. This study was designed, therefore, to test the hypothesis that U50,488H administered at the onset of reperfusion inhibits cardiomyocyte apoptosis and to investigate the underlying mechanisms. MAIN METHODS Male Sprague-Dawley rats were subjected to myocardial ischemia and reperfusion(MI/R) and were randomized to receive either vehicle, U50,488H, U50,488H plus Nor-BNI, a selective κ-OR antagonist, U50,488H plus wortmannin, a specific inhibitor of phosphoinositide 3'-kinase (PI3K), or U50,488H plus L-NAME, a nitric oxide synthase inhibitor (NOS inhibitor), immediately prior to reperfusion. In vitro study was performed on cultured neonatal cardiomyocytes subjected to simulated ischemia/reperfusion. KEY FINDINGS Treatment with U50,488H resulted in increases in Akt and endothelial nitric oxide synthase (eNOS) phosphorylation with secondary NO production both in vivo and in vitro and these effect were completely blocked by wortmannin and specific Akt inhibitor(AI). L-NAME treatment had no effect on Akt and eNOS phosphorylation; but, significantly reduced NO production. Moreover, treatment with U50,488H markedly reduced myocardial apoptotic death. Treatment with wortmannin and specific Akt inhibitor abolished the anti-apoptotic effect of U50,488H. L-NAME also significantly attenuated the anti-apoptotic effect of U50,488H. SIGNIFICANCE These results demonstrate that U50,488H administered immediately prior to reperfusion increases Akt phosphorylation through a PI3-kinase-dependent mechanism and reduces postischemic myocardial apoptosis. Phosphorylation of eNOS with secondary NO production contribute significantly to the anti-apoptotic effect of U50,488H postconditioning.
Collapse
Affiliation(s)
- Guang Tong
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lønborg J, Treiman M, Engstrøm T. Ischemic postconditioning: a clinical perspective. Interv Cardiol 2010. [DOI: 10.2217/ica.10.52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Lemoine S, Buléon C, Rouet R, Ivascau C, Babatasi G, Massetti M, Gérard JL, Hanouz JL. Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species. BMC Anesthesiol 2010; 10:12. [PMID: 20670410 PMCID: PMC2919536 DOI: 10.1186/1471-2253-10-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 07/29/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. METHODS We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz). After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyl)theophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean +/- standard deviation) between the groups by a variance analysis and post hoc test. RESULTS Desflurane 6% (84 +/- 6% of baseline) enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 +/- 8% of baseline, P < 0.0001). N-mercaptopropionylglycine (54 +/- 3% of baseline), 8-(p-Sulfophenyl)theophylline (62 +/- 9% of baseline), HOE140 (58 +/- 6% of baseline) abolished desflurane-induced postconditioning. Adenosine (80 +/- 9% of baseline) and bradykinin (83 +/- 4% of baseline) induced postconditioning (P < 0.0001 vs control), N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 +/- 8 and 58 +/- 5% of baseline, respectively). CONCLUSIONS In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin administered at the beginning of reoxygenation, was mediated, at least in part, through ROS production.
Collapse
Affiliation(s)
- Sandrine Lemoine
- Laboratory of Experimental Anesthesiology and Cellular Physiology, IFR 146 ICORE, Université de Caen Basse Normandie, CHU Caen, Avenue de la Cote de Nacre, 14033 Caen, France.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R. Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 2010; 87:406-23. [PMID: 20448097 DOI: 10.1093/cvr/cvq129] [Citation(s) in RCA: 430] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ischaemic postconditioning (brief periods of ischaemia alternating with brief periods of reflow applied at the onset of reperfusion following sustained ischaemia) effectively reduces myocardial infarct size in all species tested so far, including humans. Ischaemic postconditioning is a simple and safe manoeuvre, but because reperfusion injury is initiated within minutes of reflow, postconditioning must be applied at the onset of reperfusion. The mechanisms of protection by postconditioning include: formation and release of several autacoids and cytokines; maintained acidosis during early reperfusion; activation of protein kinases; preservation of mitochondrial function, most strikingly the attenuation of opening of the mitochondrial permeability transition pore (MPTP). Exogenous recruitment of some of the identified signalling steps can induce cardioprotection when applied at the time of reperfusion in animal experiments, but more recently cardioprotection was also observed in a proof-of-concept clinical trial. Indeed, studies in patients with an acute myocardial infarction showed a reduction of infarct size and improved left ventricular function when they underwent ischaemic postconditioning or pharmacological inhibition of MPTP opening during interventional reperfusion. Further animal studies and large-scale human studies are needed to determine whether patients with different co-morbidities and co-medications respond equally to protection by postconditioning. Also, our understanding of the underlying mechanisms must be improved to develop new therapeutic strategies to be applied at reperfusion with the ultimate aim of limiting the burden of ischaemic heart disease and potentially providing protection for other organs at risk of reperfusion injury, such as brain and kidney.
Collapse
Affiliation(s)
- Michel Ovize
- Service d'Explorations Fonctionnelles Cardiovasculaires and Inserm U886, Hospices Civils de Lyon, University of Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Keyes KT, Ye Y, Lin Y, Zhang C, Perez-Polo JR, Gjorstrup P, Birnbaum Y. Resolvin E1 protects the rat heart against reperfusion injury. Am J Physiol Heart Circ Physiol 2010; 299:H153-64. [PMID: 20435846 DOI: 10.1152/ajpheart.01057.2009] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of the present study was to assess whether resolvin E1 (RvE1), an anti-inflammatory mediator derived from eicosapentaenoic acid, would limit myocardial infarct size in the rat. The H9c2 cell line was used to assess whether RvE1 has direct protective effects on cardiomyocytes. In in vivo experiments, Male Sprague-Dawley rats underwent 30 min of ischemia/4 h of reperfusion. Before reperfusion, rats received intravenous RvE1 (0, 0.03, 0.1, or 0.3mg/kg). In in vitro experiments, H9c2 cells were incubated with RvE1 (0, 1, 10, 100, or 1000 nM). Cells were subjected to 18 h of incubation under normoxic conditions, 16 h of hypoxia, or 16 h of hypoxia and 2 h of reoxygenation. In vivo, RvE1 dose dependently reduced infarct size (30.7 +/- 1.7% of the area at risk in the control group and 29.1 +/- 1.6%, 14.7 +/- 1.3%, and 9.0 +/- 0.6% in the 0.03, 0.1, and 0.3 mg/kg groups, respectively, P < 0.001). In vitro, RvE1 increased viability and decreased apoptosis in a dose-dependent fashion in cells exposed to hypoxia or hypoxia/reoxygenation. A maximal effect was achieved at a concentration of 100 nM. RvE1 augmented phosphoinositide 3-kinase activity, attenuated caspase-3 activity, and augmented calcium-dependent nitric oxide synthase activity in cells exposed to hypoxia or hypoxia/reoxygenation. RvE1 increased Akt, ERK1/2, and endothelial nitric oxide synthase phosphorylation and attenuated the levels of activated caspase-3 and phosphorylated p38 levels. AG-1478, an EGF receptor tyrosine kinase inhibitor, blocked the protective effect of RvE1 both in vivo and in vitro and attenuated the RvE1-induced increase in Akt and ERK1/2 phosphorylation. In conclusion, RvE1, an anti-inflammatory mediator derived from eicosapentaenoic acid, has a direct protective effect on cardiomyocytes against ischemia-reperfusion injury and limits infarct size when administered intravenously before reperfusion.
Collapse
Affiliation(s)
- K T Keyes
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
|