1
|
Piszczek L, Constantinescu A, Kargl D, Lazovic J, Pekcec A, Nicholson JR, Haubensak W. Dissociation of impulsive traits by subthalamic metabotropic glutamate receptor 4. eLife 2022; 11:62123. [PMID: 34982027 PMCID: PMC8803315 DOI: 10.7554/elife.62123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Behavioral strategies require gating of premature responses to optimize outcomes. Several brain areas control impulsive actions, but the neuronal basis of natural variation in impulsivity between individuals remains largely unknown. Here, by combining a Go/No-Go behavioral assay with resting-state (rs) functional MRI in mice, we identified the subthalamic nucleus (STN), a known gate for motor control in the basal ganglia, as a major hotspot for trait impulsivity. In vivo recorded STN neural activity encoded impulsive action as a separable state from basic motor control, characterized by decoupled STN/substantia nigra pars reticulata (SNr) mesoscale networks. Optogenetic modulation of STN activity bidirectionally controlled impulsive behavior. Pharmacological and genetic manipulations showed that these impulsive actions are modulated by metabotropic glutamate receptor 4 (mGlu4) function in STN and its coupling to SNr in a behavioral trait-dependent manner, and independently of general motor function. In conclusion, STN circuitry multiplexes motor control and trait impulsivity, which are molecularly dissociated by mGlu4. This provides a potential mechanism for the genetic modulation of impulsive behavior, a clinically relevant predictor for developing psychiatric disorders associated with impulsivity.
Collapse
Affiliation(s)
- Lukasz Piszczek
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Andreea Constantinescu
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Dominic Kargl
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jelena Lazovic
- Preclinical Imaging Facility, Vienna BioCenter Core Facilities (VBCF), Vienna, Austria
| | - Anton Pekcec
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Janet R Nicholson
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Wulf Haubensak
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Raony Í, Geraldo A, Pandolfo P. A single episode of stress during adolescence impairs short-term memory and increases risk behaviour in an animal model of attention-deficit/hyperactivity disorder. Behav Processes 2021; 187:104395. [PMID: 33839237 DOI: 10.1016/j.beproc.2021.104395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/04/2020] [Accepted: 04/05/2021] [Indexed: 01/16/2023]
Abstract
Adolescence is a period of increased sensitivity to stress and vulnerability to the manifestation of psychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD). Nevertheless, the relationship between stress during adolescence and ADHD is still unclear. Knowing that stress can have long-term consequences, the aim of this study was to evaluate the impact of a single episode of restraint stress during adolescence on locomotion, risk behaviour and short-term memory in adult spontaneously hypertensive rats (SHR), a validated animal model of ADHD. A single episode of stress during adolescence increased risk behaviour and impaired short-term recognition memory, but did not alter locomotion in adult SHR. These findings show that stress during adolescence, even acute, may lead to long-term behavioural consequences in an animal model of ADHD.
Collapse
Affiliation(s)
- Ícaro Raony
- Laboratory of Neurobiology of Animal Behaviour, Department of Neurobiology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.
| | - Arnaldo Geraldo
- Laboratory of Neurobiology of Animal Behaviour, Department of Neurobiology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.
| | - Pablo Pandolfo
- Laboratory of Neurobiology of Animal Behaviour, Department of Neurobiology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Salles J, Lacassagne E, Eddiry S, Franchitto N, Salles JP, Tauber M. What can we learn from PWS and SNORD116 genes about the pathophysiology of addictive disorders? Mol Psychiatry 2021; 26:51-59. [PMID: 33082508 DOI: 10.1038/s41380-020-00917-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Addictive disorders have been much investigated and many studies have underlined the role of environmental factors such as social interaction in the vulnerability to and maintenance of addictive behaviors. Research on addiction pathophysiology now suggests that certain behavioral disorders are addictive, one example being food addiction. Yet, despite the growing body of knowledge on addiction, it is still unknown why only some of the individuals exposed to a drug become addicted to it. This observation has prompted the consideration of genetic heritage, neurodevelopmental trajectories, and gene-environment interactions in addiction vulnerability. Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder in which children become addicted to food and show early social impairment. PWS is caused by the deficiency of imprinted genes located on the 15q11-q13 chromosome. Among them, the SNORD116 gene was identified as the minimal gene responsible for the PWS phenotype. Several studies have also indicated the role of the Snord116 gene in animal and cellular models to explain PWS pathophysiology and phenotype (including social impairment and food addiction). We thus present here the evidence suggesting the potential involvement of the SNORD116 gene in addictive disorders.
Collapse
Affiliation(s)
- Juliette Salles
- Université de Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Service de psychiatrie et psychologie, psychiatrie Toulouse, F-31000, Toulouse, France.,Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, F-31000, Toulouse, France
| | - Emmanuelle Lacassagne
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Sanaa Eddiry
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Nicolas Franchitto
- Université de Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Service d'addictologie clinique, urgences réanimation médecine, F-31000, Toulouse, France
| | - Jean-Pierre Salles
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Maithé Tauber
- Université de Toulouse III, F-31000, Toulouse, France. .,Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France. .,CHU de Toulouse, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, F-31000, Toulouse, France. .,CHU de Toulouse, Centre de référence du Syndrome de Prader-Willi et autres syndromes avec troubles du comportement alimentaire, Unité d'endocrinologie, obésités, maladies osseuses, génétique et gynécologie médicale, F-31000, Toulouse, France.
| |
Collapse
|
4
|
de Abreu MS, C V V Giacomini A, Genario R, Fontana BD, Parker MO, Marcon L, Scolari N, Bueno B, Demin KA, Galstyan D, Kolesnikova TO, Amstislavskaya TG, Zabegalov KN, Strekalova T, Kalueff AV. Zebrafish models of impulsivity and impulse control disorders. Eur J Neurosci 2020; 52:4233-4248. [PMID: 32619029 DOI: 10.1111/ejn.14893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
Impulse control disorders (ICDs) are characterized by generalized difficulty controlling emotions and behaviors. ICDs are a broad group of the central nervous system (CNS) disorders including conduct disorder, intermittent explosive, oppositional-defiant disorder, antisocial personality disorder, kleptomania, pyromania and other illnesses. Although they all share a common feature (aberrant impulsivity), their pathobiology is complex and poorly understood. There are also currently no ICD-specific therapies to treat these illnesses. Animal models are a valuable tool for studying ICD pathobiology and potential therapies. The zebrafish (Danio rerio) has become a useful model organism to study CNS disorders due to high genetic and physiological homology to mammals, and sensitivity to various pharmacological and genetic manipulations. Here, we summarize experimental models of impulsivity and ICD in zebrafish and highlight their growing translational significance. We also emphasize the need for further development of zebrafish ICD models to improve our understanding of their pathogenesis and to search for novel therapeutic treatments.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Naiara Scolari
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara Bueno
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | | | | | - Tatyana Strekalova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Institute of General Pathology and Pathophysiology, University of Würzburg, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Laboratory of Petrochemistry, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
5
|
Davies JR, Wilkinson LS, Isles AR, Humby T. Prader-Willi syndrome imprinting centre deletion mice have impaired baseline and 5-HT2CR-mediated response inhibition. Hum Mol Genet 2020; 28:3013-3023. [PMID: 31087031 PMCID: PMC6737253 DOI: 10.1093/hmg/ddz100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
Prader–Willi syndrome (PWS) is a neurodevelopmental disorder caused by deletion or inactivation of paternally expressed imprinted genes on human chromosome 15q11–q13. In addition to endocrine and developmental issues, PWS presents with behavioural problems including stereotyped behaviour, impulsiveness and cognitive deficits. The PWS genetic interval contains several brain-expressed small nucleolar (sno) RNA species that are subject to genomic imprinting, including snord115 that negatively regulates post-transcriptional modification of the serotonin 2C receptor (5-HT2CR) pre-mRNA potentially leading to a reduction in 5-HT2CR function. Using the imprinting centre deletion mouse model for PWS (PWSICdel) we have previously shown impairments in a number of behaviours, some of which are abnormally sensitive to 5-HT2CR-selective drugs. In the stop-signal reaction time task test of impulsivity, PWSICdel mice showed increased impulsivity relative to wild-type (WT) littermates. Challenge with the selective 5-HT2CR agonist WAY163909 reduced impulsivity in PWSICdel mice but had no effect on WT behaviour. This behavioural dissociation in was also reflected in differential patterns of immunoreactivity of the immediate early gene c-Fos, with a blunted response to the drug in the orbitofrontal cortex of PWSICdel mice, but no difference in c-Fos activation in the nucleus accumbens. These findings suggest specific facets of response inhibition are impaired in PWSICdel mice and that abnormal 5-HT2CR function may mediate this dissociation. These data have implications for our understanding of the aetiology of PWS-related behavioural traits and translational relevance for individuals with PWS who may seek to control appetite with the new obesity treatment 5-HT2CR agonist lorcaserin.
Collapse
Affiliation(s)
- Jennifer R Davies
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine
| | - Lawrence S Wilkinson
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine.,Psychology, Cardiff University, Cardiff, UK
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine
| | | |
Collapse
|
6
|
Isles AR, Winstanley CA, Humby T. Risk taking and impulsive behaviour: fundamental discoveries, theoretical perspectives and clinical implications. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180128. [PMID: 30966916 PMCID: PMC6335461 DOI: 10.1098/rstb.2018.0128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Our willingness to take risks, our ability to wait or the speed with which to make decisions are central features of our personality. However, it is now recognized that impulsive and risk-taking behaviours are not a unitary construct, and different aspects can be both psychologically and neurally dissociated. The range of neurochemicals and brain systems that govern these behaviours is extensive, and this may be a contributing factor to the phenotypic range seen in the human population. However, this variety can also be pathological as extremes in risk-taking and impulsive behaviours are characteristics of many neuropsychiatric and indeed neurodegenerative disorders. This spans obsessive-compulsive disorder, where behaviour becomes ridged and non-spontaneous, to the nonsensical risk-taking seen in gambling and drug taking. This article is part of the theme issue 'Risk taking and impulsive behaviour: fundamental discoveries, theoretical perspectives and clinical implications'.
Collapse
Affiliation(s)
- Anthony R. Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Catharine A. Winstanley
- Department of Psychology, University of British Columbia, Vancouver Campus, 2136 West Mall, British Columbia, CanadaV6T 1Z4
| | - Trevor Humby
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
7
|
Sakakibara Y, Sekiya M, Saito T, Saido TC, Iijima KM. Cognitive and emotional alterations in App knock-in mouse models of Aβ amyloidosis. BMC Neurosci 2018; 19:46. [PMID: 30055565 PMCID: PMC6064053 DOI: 10.1186/s12868-018-0446-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/21/2018] [Indexed: 12/21/2022] Open
Abstract
Background Alzheimer’s disease (AD), the most common cause of dementia, is characterized by the progressive deposition of amyloid-β (Aβ) peptides and neurofibrillary tangles. Mouse models of Aβ amyloidosis generated by knock-in (KI) of a humanized Aβ sequence provide distinct advantages over traditional transgenic models that rely on overexpression of amyloid precursor protein (APP). In App-KI mice, three familial AD-associated mutations were introduced into the endogenous mouse App locus to recapitulate Aβ pathology observed in AD: the Swedish (NL) mutation, which elevates total Aβ production; the Beyreuther/Iberian (F) mutation, which increases the Aβ42/Aβ40 ratio; and the Arctic (G) mutation, which promotes Aβ aggregation. AppNL-G-F mice harbor all three mutations and develop progressive Aβ amyloidosis and neuroinflammatory response in broader brain areas, whereas AppNL mice carrying only the Swedish mutation exhibit no overt AD-related pathological changes. To identify behavioral alterations associated with Aβ pathology, we assessed emotional and cognitive domains of AppNL-G-F and AppNL mice at different time points, using the elevated plus maze, contextual fear conditioning, and Barnes maze tasks. Results Assessments of emotional domains revealed that, in comparison with wild-type (WT) C57BL/6J mice, AppNL-G-F/NL-G-F mice exhibited anxiolytic-like behavior that was detectable from 6 months of age. By contrast, AppNL/NL mice exhibited anxiogenic-like behavior from 15 months of age. In the contextual fear conditioning task, both AppNL/NL and AppNL-G-F/NL-G-F mice exhibited intact learning and memory up to 15–18 months of age, whereas AppNL-G-F/NL-G-F mice exhibited hyper-reactivity to painful stimuli. In the Barnes maze task, AppNL-G-F/NL-G-F mice exhibited a subtle decline in spatial learning ability at 8 months of age, but retained normal memory functions. Conclusion AppNL/NL and AppNL-G-F/NL-G-F mice exhibit behavioral changes associated with non-cognitive, emotional domains before the onset of definitive cognitive deficits. Our observations consistently indicate that AppNL-G-F/NL-G-F mice represent a model for preclinical AD. These mice are useful for the study of AD prevention rather than treatment after neurodegeneration. Electronic supplementary material The online version of this article (10.1186/s12868-018-0446-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasufumi Sakakibara
- Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan.
| | - Michiko Sekiya
- Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Koichi M Iijima
- Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan. .,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| |
Collapse
|
8
|
Dent CL, Humby T, Lewis K, Plagge A, Fischer-Colbrie R, Wilkins JF, Wilkinson LS, Isles AR. Impulsive choices in mice lacking imprinted Nesp55. GENES BRAIN AND BEHAVIOR 2016; 15:693-701. [PMID: 27509352 DOI: 10.1111/gbb.12316] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Genomic imprinting is the process whereby germline epigenetic events lead to parent-of-origin specific monallelic expression of a number of key mammalian genes. The imprinted gene Nesp is expressed from the maternal allele only and encodes for Nesp55 protein. In the brain, Nesp55 is found predominately in discrete areas of the hypothalamus and midbrain. Previously, we have shown that loss of Nesp55 gives rise to alterations in novelty-related behaviour. Here, we extend these findings and demonstrate, using the Nespm/+ mouse model, that loss of Nesp55 leads to impulsive choices as measured by a delayed-reinforcement task, whereby Nespm/+ mice were less willing to wait for a delayed, larger reward, preferring instead to choose an immediate, smaller reward. These effects were highly specific as performance in another component of impulsive behaviour, the ability to stop a response once started as assayed in the stop-signal reaction time task, was equivalent to controls. We also showed changes in the serotonin system, a key neurotransmitter pathway mediating impulsive behaviour. First, we demonstrated that Nesp55 is co-localized with serotonin and then went on to show that in midbrain regions there were reductions in mRNA expression of the serotonin-specific genes Tph2 and Slc6a4, but not the dopamine-specific gene Th in Nespm/+ mice; suggesting an altered serotonergic system could contribute, in part, to the changes in impulsive behaviour. These data provide a novel mode of action for genomic imprinting in the brain and may have implications for pathological conditions characterized by maladaptive response control.
Collapse
Affiliation(s)
- C L Dent
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute
| | - T Humby
- Behavioural Genetics Group, School of Psychology, Cardiff University, Cardiff, UK
| | - K Lewis
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute
| | - A Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - R Fischer-Colbrie
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | - L S Wilkinson
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute.,Behavioural Genetics Group, School of Psychology, Cardiff University, Cardiff, UK
| | - A R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute
| |
Collapse
|
9
|
Brown JA, Ramikie TS, Schmidt MJ, Báldi R, Garbett K, Everheart MG, Warren LE, Gellért L, Horváth S, Patel S, Mirnics K. Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes. Mol Psychiatry 2015; 20:1499-507. [PMID: 25623945 PMCID: PMC4516717 DOI: 10.1038/mp.2014.192] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/06/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022]
Abstract
Reduced expression of the Gad1 gene-encoded 67-kDa protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of schizophrenia. GAD67 downregulation occurs in multiple interneuronal sub-populations, including the parvalbumin-positive (PVALB+) cells. To investigate the role of the PV-positive GABAergic interneurons in behavioral and molecular processes, we knocked down the Gad1 transcript using a microRNA engineered to target specifically Gad1 mRNA under the control of Pvalb bacterial artificial chromosome. Verification of construct expression was performed by immunohistochemistry. Follow-up electrophysiological studies revealed a significant reduction in γ-aminobutyric acid (GABA) release probability without alterations in postsynaptic membrane properties or changes in glutamatergic release probability in the prefrontal cortex pyramidal neurons. Behavioral characterization of our transgenic (Tg) mice uncovered that the Pvalb/Gad1 Tg mice have pronounced sensorimotor gating deficits, increased novelty-seeking and reduced fear extinction. Furthermore, NMDA (N-methyl-d-aspartate) receptor antagonism by ketamine had an opposing dose-dependent effect, suggesting that the differential dosage of ketamine might have divergent effects on behavioral processes. All behavioral studies were validated using a second cohort of animals. Our results suggest that reduction of GABAergic transmission from PVALB+ interneurons primarily impacts behavioral domains related to fear and novelty seeking and that these alterations might be related to the behavioral phenotype observed in schizophrenia.
Collapse
Affiliation(s)
- Jacquelyn A. Brown
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
| | - Teniel S. Ramikie
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA,Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Martin J. Schmidt
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA,Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Rita Báldi
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA
| | - Krassimira Garbett
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Lambert E. Warren
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - Levente Gellért
- Department of Psychiatry, University of Szeged, 6725 Szeged, Hungary
| | - Szatmár Horváth
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA,Department of Psychiatry, University of Szeged, 6725 Szeged, Hungary
| | - Sachin Patel
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA,Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Károly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA,Department of Psychiatry, University of Szeged, 6725 Szeged, Hungary,Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA,Correspondence: Karoly Mirnics, Department of Psychiatry, Vanderbilt University, 8130A MRB III, 465 21st Avenue South, Nashville TN 37232, USA, , Office phone: 615-936-1074, www.mirnicslab.org
| |
Collapse
|
10
|
Mice Lacking the Serotonin Htr2B Receptor Gene Present an Antipsychotic-Sensitive Schizophrenic-Like Phenotype. Neuropsychopharmacology 2015; 40:2764-73. [PMID: 25936642 PMCID: PMC4864652 DOI: 10.1038/npp.2015.126] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/08/2015] [Accepted: 04/25/2015] [Indexed: 11/09/2022]
Abstract
Impulsivity and hyperactivity share common ground with numerous mental disorders, including schizophrenia. Recently, a population-specific serotonin 2B (5-HT2B) receptor stop codon (ie, HTR2B Q20*) was reported to segregate with severely impulsive individuals, whereas 5-HT2B mutant (Htr2B(-/-)) mice also showed high impulsivity. Interestingly, in the same cohort, early-onset schizophrenia was more prevalent in HTR2B Q*20 carriers. However, the putative role of 5-HT2B receptor in the neurobiology of schizophrenia has never been investigated. We assessed the effects of the genetic and the pharmacological ablation of 5-HT2B receptors in mice subjected to a comprehensive series of behavioral test screenings for schizophrenic-like symptoms and investigated relevant dopaminergic and glutamatergic neurochemical alterations in the cortex and the striatum. Domains related to the positive, negative, and cognitive symptom clusters of schizophrenia were affected in Htr2B(-/-) mice, as shown by deficits in sensorimotor gating, in selective attention, in social interactions, and in learning and memory processes. In addition, Htr2B(-/-) mice presented with enhanced locomotor response to the psychostimulants dizocilpine and amphetamine, and with robust alterations in sleep architecture. Moreover, ablation of 5-HT2B receptors induced a region-selective decrease of dopamine and glutamate concentrations in the dorsal striatum. Importantly, selected schizophrenic-like phenotypes and endophenotypes were rescued by chronic haloperidol treatment. We report herein that 5-HT2B receptor deficiency confers a wide spectrum of antipsychotic-sensitive schizophrenic-like behavioral and psychopharmacological phenotypes in mice and provide first evidence for a role of 5-HT2B receptors in the neurobiology of psychotic disorders.
Collapse
|
11
|
Closing the translational gap between mutant mouse models and the clinical reality of psychotic illness. Neurosci Biobehav Rev 2015; 58:19-35. [DOI: 10.1016/j.neubiorev.2015.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/03/2023]
|
12
|
Davies W, Humby T, Trent S, Eddy JB, Ojarikre OA, Wilkinson LS. Genetic and pharmacological modulation of the steroid sulfatase axis improves response control; comparison with drugs used in ADHD. Neuropsychopharmacology 2014; 39:2622-32. [PMID: 24842408 PMCID: PMC4140762 DOI: 10.1038/npp.2014.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/10/2014] [Accepted: 05/02/2014] [Indexed: 02/08/2023]
Abstract
Maladaptive response control is a feature of many neuropsychiatric conditions, including attention deficit hyperactivity disorder (ADHD). As ADHD is more commonly diagnosed in males than females, a pathogenic role for sex-linked genes has been suggested. Deletion or point mutation of the X-linked STS gene, encoding the enzyme steroid sulfatase (STS) influences risk for ADHD. We examined whether deletion of the Sts gene in the 39,X(Y*)O mouse model, or pharmacological manipulation of the STS axis, via administration of the enzyme substrate dehydroepiandrosterone sulfate or the enzyme inhibitor COUMATE, influenced behavior in a novel murine analog of the stop-signal reaction time task used to detect inhibitory deficits in individuals with ADHD. Unexpectedly, both the genetic and pharmacological treatments resulted in enhanced response control, manifest as highly specific effects in the ability to cancel a prepotent action. For all three manipulations, the effect size was comparable to that seen with the commonly used ADHD therapeutics methylphenidate and atomoxetine. Hence, converging genetic and pharmacological evidence indicates that the STS axis is involved in inhibitory processes and can be manipulated to give rise to improvements in response control. While the precise neurobiological mechanism(s) underlying the effects remain to be established, there is the potential for exploiting this pathway in the treatment of disorders where failures in behavioral inhibition are prominent.
Collapse
Affiliation(s)
- William Davies
- Behavioral Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Trevor Humby
- Behavioral Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Simon Trent
- Behavioral Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Jessica B Eddy
- Behavioral Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Obah A Ojarikre
- MRC National Institute for Medical Research, London, Cardiff, UK
| | - Lawrence S Wilkinson
- Behavioral Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Psychology, Cardiff University, Tower Building, Cardiff CF10 3AT, UK, Tel: +44 (0)29 2087 0357, Fax: +44 (0)29 2087 4858, E-mail:
| |
Collapse
|
13
|
Davies W. Sex differences in attention Deficit Hyperactivity Disorder: candidate genetic and endocrine mechanisms. Front Neuroendocrinol 2014; 35:331-46. [PMID: 24680800 DOI: 10.1016/j.yfrne.2014.03.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/13/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a developmental condition characterised by severe inattention, pathological impulsivity and hyperactivity; it is relatively common affecting up to 6% of children, and is associated with a risk of long-term adverse educational and social consequences. Males are considerably more likely to be diagnosed with ADHD than females; the course of the disorder and its associated co-morbidities also appear to be sensitive to sex. Here, I discuss fundamental biological (genetic and endocrine) mechanisms that have been shown to, or could theoretically, contribute towards these sexually dimorphic phenomena. Greater understanding of how and why the sexes differ with respect to ADHD vulnerability should allow us to identify and characterise novel protective and risk factors for the disorder, and should ultimately facilitate improved diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- William Davies
- Behavioural Genetics Group, Neuroscience and Mental Health Research Institute, Schools of Psychology and Medicine, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK; Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
| |
Collapse
|
14
|
Abstract
Impulsive behavior is a key constituent of many psychiatric illnesses, with maladaptive response control being a feature of disorders such as ADHD, schizophrenia, mania, and addiction. In order to understand the neurological underpinnings of impulsivity, a number of behavioral tasks have been developed for use with animal models. Data from studies with rats and other animals have led to the idea of the existence of dissociable components of impulsivity, which in turn informs studies of human disorders and potentially the development of specific therapies. Increasingly, mouse models are being used to investigate the known genetic contribution to psychiatric disorders in which abnormal response control leads to altered impulsive behaviors. In order to maximize the potential of these mouse models, it is important that researchers take into account the non-unitary nature of response control and impulsivity. In this article, we briefly review the tasks available to behavioral neuroscientists and how these can be used in order to tease apart the contribution of a specific genetic lesion into the discrete aspects of impulsive behavior.
Collapse
Affiliation(s)
- Claire L Dent
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
15
|
Davis BA, Isles AR. Modelling the genetic contribution to mental illness: a timely end for the psychiatric rodent? Eur J Neurosci 2014; 39:1933-42. [DOI: 10.1111/ejn.12607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/11/2014] [Accepted: 04/01/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Brittany A. Davis
- MRC Centre for Neuropsychiatric Genetics and Genomics; Neuroscience and Mental Health Research Institute; Cardiff University; Hadyn Ellis Building Maindy Road Cardiff CF24 4HQ UK
| | - Anthony R. Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics; Neuroscience and Mental Health Research Institute; Cardiff University; Hadyn Ellis Building Maindy Road Cardiff CF24 4HQ UK
| |
Collapse
|
16
|
A randomized, double-blind, placebo-controlled crossover study of α4β 2* nicotinic acetylcholine receptor agonist AZD1446 (TC-6683) in adults with attention-deficit/hyperactivity disorder. Psychopharmacology (Berl) 2014; 231:1251-65. [PMID: 23640072 PMCID: PMC3838503 DOI: 10.1007/s00213-013-3116-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Stimulation of nicotinic cholinergic systems has been shown to alleviate ADHD symptoms and to improve cognitive performance. AZD1446 is a selective α4β2* nicotinic acetylcholine receptor agonist with potential effect on the symptoms of ADHD. OBJECTIVES The purpose of this study is to evaluate the efficacy, safety, and pharmacokinetics of AZD1446 in adults with ADHD treated for 2 weeks. METHOD This was a randomized, double-blind, placebo-controlled crossover trial. Participants were 79 adults with ADHD, grouped according to their use of nicotine-containing products. Nicotine non-users received placebo and two of three AZD1446 treatment regimens (80 mg tid, 80 mg qd, 10 mg tid). Nicotine users received placebo, AZD1446 80 mg tid and 80 mg qd. Efficacy measures included the Conners' Adult ADHD Rating Scale and cognitive measures of immediate and delayed verbal episodic memory, learning, attention, working memory, executive functioning, and spatial problem solving (CogState computerized test battery). RESULTS There was no significant effect of AZD1446 on any of the clinical scores irrespective of dose, schedule, or concomitant use of nicotine products. A statistically significant improvement was seen on the Groton Maze Learning Task, a measure of executive functioning, in nicotine non-users after treatment with AZD1446 80 mg qd. CONCLUSIONS AZD1446 was well tolerated, but did not significantly improve ADHD symptoms after 2 weeks of treatment compared to placebo. While the present study does not support the therapeutic utility of AZD1446 in ADHD, its potential pro-cognitive effects remain to be explored in other neuropsychiatric disorders.
Collapse
|
17
|
A novel translational assay of response inhibition and impulsivity: effects of prefrontal cortex lesions, drugs used in ADHD, and serotonin 2C receptor antagonism. Neuropsychopharmacology 2013; 38:2150-9. [PMID: 23657439 PMCID: PMC3773664 DOI: 10.1038/npp.2013.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 01/25/2023]
Abstract
Animal models are making an increasing contribution to our understanding of the psychology and brain mechanisms underlying behavioral inhibition and impulsivity. The aim here was to develop, for the first time, a mouse analog of the stop-signal reaction time task with high translational validity in order to be able to exploit this species in genetic and molecular investigations of impulsive behaviors. Cohorts of mice were trained to nose-poke to presentations of visual stimuli. Control of responding was manipulated by altering the onset of an auditory 'stop-signal' during the go response. The anticipated systematic changes in action cancellation were observed as stopping was made more difficult by placing the stop-signal closer to the execution of the action. Excitotoxic lesions of medial prefrontal cortex resulted in impaired stopping, while the clinically effective drugs methylphenidate and atomoxetine enhanced stopping abilities. The specific 5-HT2C receptor antagonist SB242084 also led to enhanced response control in this task. We conclude that stop-signal reaction time task performance can be successfully modeled in mice and is sensitive to prefrontal cortex dysfunction and drug treatments in a qualitatively similar manner to humans and previous rat models. Additionally, using this model we show novel and highly discrete effects of 5-HT2C receptor antagonism that suggest manipulation of 5-HT2C receptor function may be of use in correcting maladaptive impulsive behaviors and provide further evidence for dissociable contributions of serotonergic transmission to response control.
Collapse
|
18
|
Yamashita M, Sakakibara Y, Hall FS, Numachi Y, Yoshida S, Kobayashi H, Uchiumi O, Uhl GR, Kasahara Y, Sora I. Impaired cliff avoidance reaction in dopamine transporter knockout mice. Psychopharmacology (Berl) 2013; 227:741-9. [PMID: 23397052 DOI: 10.1007/s00213-013-3009-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/23/2013] [Indexed: 12/29/2022]
Abstract
RATIONALE Impulsivity is a key feature of disorders that include attention-deficit/hyperactivity disorder (ADHD). The cliff avoidance reaction (CAR) assesses maladaptive impulsive rodent behavior. Dopamine transporter knockout (DAT-KO) mice display features of ADHD and are candidates in which to test other impulsive phenotypes. OBJECTIVES Impulsivity of DAT-KO mice was assessed in the CAR paradigm. For comparison, attentional deficits were also assessed in prepulse inhibition (PPI) in which DAT-KO mice have been shown to exhibit impaired sensorimotor gating. RESULTS DAT-KO mice exhibited a profound CAR impairment compared to wild-type (WT) mice. As expected, DAT-KO mice showed PPI deficits compared to WT mice. Furthermore, the DAT-KO mice with the most impaired CAR exhibited the most severe PPI deficits. Treatment with methylphenidate or nisoxetine ameliorated CAR impairments in DAT-KO mice. CONCLUSION These results suggest that DAT-KO mice exhibit impulsive CAR behavior that correlates with their PPI deficits. Blockade of monoamine transporters, especially the norepinephrine transporter (NET) in the prefrontal cortex (PFC), may contribute to pharmacological improvement of impulsivity in these mice.
Collapse
Affiliation(s)
- Motoyasu Yamashita
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Koziol LF, Stevens MC. Neuropsychological Assessment and The Paradox of ADHD. APPLIED NEUROPSYCHOLOGY-CHILD 2012; 1:79-89. [DOI: 10.1080/21622965.2012.694764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
O'Tuathaigh CMP, Desbonnet L, Waddington JL. Mutant mouse models in evaluating novel approaches to antipsychotic treatment. Handb Exp Pharmacol 2012:113-45. [PMID: 23027414 DOI: 10.1007/978-3-642-25758-2_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this review we consider the application of mutant mouse phenotypes to the study of psychotic illness in general and schizophrenia in particular, as they relate to behavioral, psychopharmacological, and cellular phenotypes of putative import for antipsychotic drug development. Mutant models appear to be heuristic at two main levels; firstly, by indicating the functional roles of neuronal components thought to be of relevance to the putative pathobiology of psychotic illness, they help resolve overt behavioral and underlying cellular processes regulated by those neuronal components; secondly, by indicating the functional roles of genes associated with risk for psychotic illness, they help resolve overt behavioral and underlying cellular processes regulated by those risk genes. We focus initially on models of dopaminergic and glutamatergic dysfunction. Then, we consider advances in the genetics of schizophrenia and mutant models relating to replicable risk genes. Lastly, we extend this discussion by exemplifying two new variant approaches in mutant mice that may serve as prototypes for advancing antipsychotic drug development. There is continuing need not only to address numerous technical challenges but also to develop more "real-world" paradigms that reflect the milieu of gene × environment and gene × gene interactions that characterize psychotic illness and its response to antipsychotic drugs.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | | | | |
Collapse
|
21
|
Davies W. Functional themes from psychiatric genome-wide screens. Front Genet 2011; 2:89. [PMID: 22303383 PMCID: PMC3268640 DOI: 10.3389/fgene.2011.00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/28/2011] [Indexed: 12/24/2022] Open
Abstract
Technological advances and a greater degree of inter-laboratory co-operation mean that genome-wide analyses can now be used to identify genetic variants that are robustly associated with the risk of developing psychiatric and neurological disorders. In contrast to the candidate gene approach, such screens may identify variants within genes which have a hitherto unappreciated role in disorder pathogenesis, and whose brain function is obscure. In this Perspective, I discuss how the behavioral functions of such genes may be investigated using model systems, drawing attention to the potential caveats and limitations with such approaches. The power of focused cross-species studies needs to be effectively exploited to enable useful insights into the molecular pathogenesis of common and disabling disorders, and ultimately to provide better clinical outcomes for patients.
Collapse
Affiliation(s)
- William Davies
- Behavioural Genetics Group, Schools of Medicine and Psychology, Cardiff UniversityCardiff, UK
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff UniversityCardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff UniversityCardiff, UK
| |
Collapse
|