1
|
Wang S, Zhou Y, Ding K, Ding ZQ, Zhang W, Liu Y. High-throughput and multimodal profiling of antigen-specific T cells with a droplet-based cell-cell interaction screening platform. Biosens Bioelectron 2025; 267:116815. [PMID: 39348735 DOI: 10.1016/j.bios.2024.116815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Identifying antigen-specific T cells from tumor-infiltrating lymphocytes is essential for designing effective T cell immunotherapies. Traditional methods can detect antigen-specific T cells but struggle with high-throughput screening and multimodal profiling simultaneously. To address this issue, we developed DropCCI, a new strategy that transfers antigen information to co-incubated T cells for high-throughput, non-contaminated multimodal profiling. In DropCCI, droplets encapsulated DNA barcodes and antigen-loaded antigen-presenting cells (APCs), while click chemistry-modified T cells were injected into these droplets to capture free barcodes and acquire the corresponding antigen information. Following cell-cell interaction, APCs were removed via streptavidin-biotin conjugation, to prevent contamination. The resulting T cells underwent single-cell omics sequencing for comprehensive profiling of their antigen specificity, transcriptome, and genomics accurately. This click-chemistry method allowed detection of antigen-specific T cells without lysing APCs, avoiding cross-cell contamination and enabling low-noise multimodal profiling of primary T cells. With a completion time within 12 h and no requirement for complex equipment, DropCCI provides unbiased single-cell sequencing results that offer a comprehensive understanding of anti-tumor T cell responses. The concept of DropCCI holds great promise not only for advancing the field of T cell immunotherapy but also for its potential application in studying other cell-cell interactions.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Neurology and Cell Biology, School of Life Science, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Yan Zhou
- Department of Neurology and Cell Biology, School of Life Science, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Ke Ding
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | | | - Wenjie Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yang Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518107, China.
| |
Collapse
|
2
|
Miny L, Maisonneuve BGC, Quadrio I, Honegger T. Modeling Neurodegenerative Diseases Using In Vitro Compartmentalized Microfluidic Devices. Front Bioeng Biotechnol 2022; 10:919646. [PMID: 35813998 PMCID: PMC9263267 DOI: 10.3389/fbioe.2022.919646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
The human brain is a complex organ composed of many different types of cells interconnected to create an organized system able to efficiently process information. Dysregulation of this delicately balanced system can lead to the development of neurological disorders, such as neurodegenerative diseases (NDD). To investigate the functionality of human brain physiology and pathophysiology, the scientific community has been generated various research models, from genetically modified animals to two- and three-dimensional cell culture for several decades. These models have, however, certain limitations that impede the precise study of pathophysiological features of neurodegeneration, thus hindering therapeutical research and drug development. Compartmentalized microfluidic devices provide in vitro minimalistic environments to accurately reproduce neural circuits allowing the characterization of the human central nervous system. Brain-on-chip (BoC) is allowing our capability to improve neurodegeneration models on the molecular and cellular mechanism aspects behind the progression of these troubles. This review aims to summarize and discuss the latest advancements of microfluidic models for the investigations of common neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Louise Miny
- NETRI, Lyon, France
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
| | | | - Isabelle Quadrio
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France
| | | |
Collapse
|
3
|
|
4
|
Pagella P, Miran S, Mitsiadis T. Analysis of Developing Tooth Germ Innervation Using Microfluidic Co-culture Devices. J Vis Exp 2015:e53114. [PMID: 26327218 DOI: 10.3791/53114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Innervation plays a key role in the development, homeostasis and regeneration of organs and tissues. However, the mechanisms underlying these phenomena are not well understood yet. In particular, the role of innervation in tooth development and regeneration is neglected. Several in vivo studies have provided important information about the patterns of innervation of dental tissues during development and repair processes of various animal models. However, most of these approaches are not optimal to highlight the molecular basis of the interactions between nerve fibres and target organs and tissues. Co-cultures constitute a valuable method to investigate and manipulate the interactions between nerve fibres and teeth in a controlled and isolated environment. In the last decades, conventional co-cultures using the same culture medium have been performed for very short periods (e.g., two days) to investigate the attractive or repulsive effects of developing oral and dental tissues on sensory nerve fibres. However, extension of the culture period is required to investigate the effects of innervation on tooth morphogenesis and cytodifferentiation. Microfluidics systems allow co-cultures of neurons and different cell types in their appropriate culture media. We have recently demonstrated that trigeminal ganglia (TG) and teeth are able to survive for a long period of time when co-cultured in microfluidic devices, and that they maintain in these conditions the same innervation pattern that they show in vivo. On this basis, we describe how to isolate and co-culture developing trigeminal ganglia and tooth germs in a microfluidic co-culture system.This protocol describes a simple and flexible way to co-culture ganglia/nerves and target tissues and to study the roles of specific molecules on such interactions in a controlled and isolated environment.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Institute of Oral Biology, Unit of Orofacial Development and Regeneration, University of Zurich
| | - Shayee Miran
- Institute of Oral Biology, Unit of Orofacial Development and Regeneration, University of Zurich
| | - Tim Mitsiadis
- Institute of Oral Biology, Unit of Orofacial Development and Regeneration, University of Zurich;
| |
Collapse
|
5
|
Sha C, Fan Y, Cheng J, Cheng H. Quantitative determination of dopamine in single rat pheochromocytoma cells by microchip electrophoresis with only one high-voltage power supply. J Sep Sci 2015; 38:2357-62. [DOI: 10.1002/jssc.201500009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/04/2015] [Accepted: 04/09/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Cuicui Sha
- Department of Pharmacy; South-Central University for Nationalities; Wuhan China
| | - Yuejuan Fan
- Department of Pharmacy; South-Central University for Nationalities; Wuhan China
| | - Jieke Cheng
- Department of Chemistry and Molecular Sciences; Wuhan University; Wuhan China
| | - Han Cheng
- Department of Pharmacy; South-Central University for Nationalities; Wuhan China
| |
Collapse
|
6
|
Wikswo JP. The relevance and potential roles of microphysiological systems in biology and medicine. Exp Biol Med (Maywood) 2014; 239:1061-72. [PMID: 25187571 PMCID: PMC4330974 DOI: 10.1177/1535370214542068] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microphysiological systems (MPS), consisting of interacting organs-on-chips or tissue-engineered, 3D organ constructs that use human cells, present an opportunity to bring new tools to biology, medicine, pharmacology, physiology, and toxicology. This issue of Experimental Biology and Medicine describes the ongoing development of MPS that can serve as in-vitro models for bone and cartilage, brain, gastrointestinal tract, lung, liver, microvasculature, reproductive tract, skeletal muscle, and skin. Related topics addressed here are the interconnection of organs-on-chips to support physiologically based pharmacokinetics and drug discovery and screening, and the microscale technologies that regulate stem cell differentiation. The initial motivation for creating MPS was to increase the speed, efficiency, and safety of pharmaceutical development and testing, paying particular regard to the fact that neither monolayer monocultures of immortal or primary cell lines nor animal studies can adequately recapitulate the dynamics of drug-organ, drug-drug, and drug-organ-organ interactions in humans. Other applications include studies of the effect of environmental toxins on humans, identification, characterization, and neutralization of chemical and biological weapons, controlled studies of the microbiome and infectious disease that cannot be conducted in humans, controlled differentiation of induced pluripotent stem cells into specific adult cellular phenotypes, and studies of the dynamics of metabolism and signaling within and between human organs. The technical challenges are being addressed by many investigators, and in the process, it seems highly likely that significant progress will be made toward providing more physiologically realistic alternatives to monolayer monocultures or whole animal studies. The effectiveness of this effort will be determined in part by how easy the constructs are to use, how well they function, how accurately they recapitulate and report human pharmacology and toxicology, whether they can be generated in large numbers to enable parallel studies, and if their use can be standardized consistent with the practices of regulatory science.
Collapse
Affiliation(s)
- John P Wikswo
- Departments of Biomedical Engineering, Molecular Physiology and Biophysics, and Physics and Astronomy, Vanderbilt University, The Vanderbilt Institute for Integrative Biosystems Research and Education, VU Station B 351807, Nashville, TN 37235-1807, USA
| |
Collapse
|
7
|
Pagella P, Neto E, Jiménez-Rojo L, Lamghari M, Mitsiadis TA. Microfluidics co-culture systems for studying tooth innervation. Front Physiol 2014; 5:326. [PMID: 25202282 PMCID: PMC4142415 DOI: 10.3389/fphys.2014.00326] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/06/2014] [Indexed: 01/01/2023] Open
Abstract
Innervation plays a key role in the development and homeostasis of organs and tissues of the orofacial complex. Among these structures, teeth are peculiar organs as they are not innervated until later stages of development. Furthermore, the implication of neurons in tooth initiation, morphogenesis and differentiation is still controversial. Co-cultures constitute a valuable method to investigate and manipulate the interactions of nerve fibers with their target organs in a controlled and isolated environment. Conventional co-cultures between neurons and their target tissues have already been performed, but these cultures do not offer optimal conditions that are closely mimicking the in vivo situation. Indeed, specific cell populations require different culture media in order to preserve their physiological properties. In this study we evaluate the usefulness of a microfluidics system for co-culturing mouse trigeminal ganglia and developing teeth. This device allows the application of specific media for the appropriate development of both neuronal and dental tissues. The results show that mouse trigeminal ganglia and teeth survive for long culture periods in this microfluidics system, and that teeth maintain the attractive or repulsive effect on trigeminal neurites that has been observed in vivo. Neurites are repealed when co-cultured with embryonic tooth germs, while postnatal teeth exert an attractive effect to trigeminal ganglia-derived neurons. In conclusion, microfluidics system devices provide a valuable tool for studying the behavior of neurons during the development of orofacial tissues and organs, faithfully imitating the in vivo situation.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Estrela Neto
- NEW Therapies Group, INEB - Instituto de Engenharia Biomédica, Universidade do Porto Porto, Portugal ; Faculdade de Medicina da Universidade do Porto Porto, Portugal
| | - Lucia Jiménez-Rojo
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Meriem Lamghari
- NEW Therapies Group, INEB - Instituto de Engenharia Biomédica, Universidade do Porto Porto, Portugal ; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Porto, Portugal
| | - Thimios A Mitsiadis
- Department of Orofacial Development and Regeneration, Faculty of Medicine, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| |
Collapse
|
8
|
Nichols JE, Niles JA, Vega SP, Argueta LB, Eastaway A, Cortiella J. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use. Exp Biol Med (Maywood) 2014; 239:1135-69. [PMID: 24962174 DOI: 10.1177/1535370214536679] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models.
Collapse
Affiliation(s)
- Joan E Nichols
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX 77555-0435, USA University of Texas Medical Branch, School of Medicine, Galveston, TX 77555-0435, USA
| | - Jean A Niles
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA
| | - Stephanie P Vega
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX 77555-0435, USA
| | - Lissenya B Argueta
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX 77555-0435, USA
| | - Adriene Eastaway
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, School of Medicine, Galveston, TX 77555-0435, USA
| | - Joaquin Cortiella
- University of Texas Medical Branch, Department of Anesthesiology, Galveston, TX 77555-0435, USA
| |
Collapse
|