1
|
Liao HJ, Yang YP, Liu YH, Tseng HC, Huo TI, Chiou SH, Chang CH. Harnessing the potential of mesenchymal stem cells-derived exosomes in degenerative diseases. Regen Ther 2024; 26:599-610. [PMID: 39253597 PMCID: PMC11382214 DOI: 10.1016/j.reth.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have gained attention as a promising therapeutic approach in both preclinical and clinical osteoarthritis (OA) settings. Various joint cell types, such as chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and release extracellular vesicles (EVs), which subsequently influence the biological activities of recipient cells. Recently, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have shown the potential to modulate various physiological and pathological processes through the modulation of cellular differentiation, immune responses, and tissue repair. This review explores the roles and therapeutic potential of MSC-EVs in OA and rheumatoid arthritis, cardiovascular disease, age-related macular degeneration, Alzheimer's disease, and other degenerative diseases. Notably, we provide a comprehensive summary of exosome biogenesis, microRNA composition, mechanisms of intercellular transfer, and their evolving role in the highlight of exosome-based treatments in both preclinical and clinical avenues.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Huan-Chin Tseng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Teh-Ia Huo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, Taiwan
| |
Collapse
|
2
|
Wang Y, Zhang Y, Zhao C, Yang H, Ai C, Zhao W, Xu J. Genetic link between depression and musculoskeletal disorders: insights from Mendelian randomization analysis. Front Med (Lausanne) 2024; 11:1398203. [PMID: 38882662 PMCID: PMC11177873 DOI: 10.3389/fmed.2024.1398203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Background The association between depression and musculoskeletal diseases has long been a subject of contentious debate. However, the causal relationship between the two remains uncertain. This study employs a two-sample Mendelian randomization (MR) analysis to investigate the causality between depression and six musculoskeletal diseases. Methods In this study, we performed MR analysis to systematically explore the causal relationship between depression and six musculoskeletal disorders. Single nucleotide polymorphisms (SNPs) that are linked to depression were employed as instrumental variables. To ensure robust and reliable conclusions, multiple analytical approaches were utilized, including inverse variance weighting(IVW), weighted median, and MR-Egger regression. Additionally, sensitivity analysis methods such as the MR-Egger intercept test, Cochran's Q test, leave-one-out analysis, and funnel plot were employed. Results Our MR analysis revealed a significant association between depression and cervical spondylosis (depression: OR 1.003, 95% CI 1.002-1.005, P = 8.32E-05; major depressive disorder: OR 1.003, 95% CI 1.001-1.005, P = 0.0052). Furthermore, a strong correlation was noted between major depressive disorder (MDD) and knee osteoarthritis (KOA) (OR 1.299, 95% CI 1.154-1.463, P = 1.50E-5). Sensitivity analysis confirmed the robustness of these findings. Our independent validation study also corroborated these results. Conclusion The MR analysis conducted in this study provides evidence supporting a genetic link between depression and cervical spondylosis, as well as KOA. Targeted interventions to manage depression in susceptible populations may contribute to lowering the risk of cervical spondylosis and KOA in these cohorts.
Collapse
Affiliation(s)
- Yanpeng Wang
- Department of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yinzhen Zhang
- Department of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Changwei Zhao
- Department of Orthopedics, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Hao Yang
- Department of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenglong Ai
- Department of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenhai Zhao
- Department of Orthopedics, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Ji Xu
- Department of Spinal Orthopedics, Weifang Hospital of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| |
Collapse
|
3
|
Gerami MH, Khorram R, Rasoolzadegan S, Mardpour S, Nakhaei P, Hashemi S, Al-Naqeeb BZT, Aminian A, Samimi S. Emerging role of mesenchymal stem/stromal cells (MSCs) and MSCs-derived exosomes in bone- and joint-associated musculoskeletal disorders: a new frontier. Eur J Med Res 2023; 28:86. [PMID: 36803566 PMCID: PMC9939872 DOI: 10.1186/s40001-023-01034-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023] Open
Abstract
Exosomes are membranous vesicles with a 30 to 150 nm diameter secreted by mesenchymal stem/stromal cells (MSCs) and other cells, such as immune cells and cancer cells. Exosomes convey proteins, bioactive lipids, and genetic components to recipient cells, such as microRNAs (miRNAs). Consequently, they have been implicated in regulating intercellular communication mediators under physiological and pathological circumstances. Exosomes therapy as a cell-free approach bypasses many concerns regarding the therapeutic application of stem/stromal cells, including undesirable proliferation, heterogeneity, and immunogenic effects. Indeed, exosomes have become a promising strategy to treat human diseases, particularly bone- and joint-associated musculoskeletal disorders, because of their characteristics, such as potentiated stability in circulation, biocompatibility, low immunogenicity, and toxicity. In this light, a diversity of studies have indicated that inhibiting inflammation, inducing angiogenesis, provoking osteoblast and chondrocyte proliferation and migration, and negative regulation of matrix-degrading enzymes result in bone and cartilage recovery upon administration of MSCs-derived exosomes. Notwithstanding, insufficient quantity of isolated exosomes, lack of reliable potency test, and exosomes heterogeneity hurdle their application in clinics. Herein, we will deliver an outline respecting the advantages of MSCs-derived exosomes-based therapy in common bone- and joint-associated musculoskeletal disorders. Moreover, we will have a glimpse the underlying mechanism behind the MSCs-elicited therapeutic merits in these conditions.
Collapse
Affiliation(s)
- Mohammad Hadi Gerami
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roya Khorram
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Rasoolzadegan
- grid.411600.2Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Mardpour
- grid.411705.60000 0001 0166 0922Department of Radiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooria Nakhaei
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheyla Hashemi
- grid.411036.10000 0001 1498 685XObstetrician, Gynaecology & Infertility Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Aminian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Sahar Samimi
- Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Chen R, Jiang Y, Lu L, Wang P, Huang D, Wang J, Liu Z, Qin S, Yin F. Bibliometric analysis of research trends in stem cell therapy for knee osteoarthritis over the period 2001–2021. Front Cell Dev Biol 2022; 10:996273. [PMID: 36330330 PMCID: PMC9623163 DOI: 10.3389/fcell.2022.996273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Stem cell therapy is a promising treatment for knee osteoarthritis, but few bibliometric studies have been performed on the subject. Bibliometric analysis is helpful for identifying the most influential studies in a specific field and can evaluate the global research trends in stem cell therapy for knee osteoarthritis. The Web of Science Core Collection was searched for publications from 2001 to 2021. Publication performance was analyzed using several bibliometric parameters, including VOSviewer, to identify the research landscape of trends in topics, and CiteSpace was investigated to identify the keywords that have the strongest citation bursts. From 2001 to 2021, in total, 1,345 publications explored the research on stem cells in knee osteoarthritis. The United States contributed the largest number of publications and at the top list of international collaborations. Tokyo Medical and Dental University ranked first among institutions in the overall number of articles and citations. The journal of Osteoarthritis and Cartilage had the largest number of publications. Sekiya Ichiro was the most cited author, with 32 articles. The keywords with the most frequent occurrence were “osteoarthritis,” “mesenchymal stem cells,” and “cartilage,” in descending order of frequency. “fibroblast growth factor” and “extracellular vesicle” were the first and last searched theme terms, respectively. The number of publications on stem cells for knee osteoarthritis stays growing. Cartilage repair and paracrine function are current research hotspots for the stem cell therapy mechanism. Stem cell therapy has gradually advanced from basic research to the clinical application stage.
Collapse
Affiliation(s)
- Runzhi Chen
- School of Medicine, Tongji University, Shanghai, China
| | - Yanyan Jiang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Laiya Lu
- School of Medicine, Tongji University, Shanghai, China
| | - Pei Wang
- School of Medicine, Tongji University, Shanghai, China
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyi Wang
- School of Medicine, Tongji University, Shanghai, China
| | - Zheng Liu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaojie Qin
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Shaojie Qin, ; Feng Yin,
| | - Feng Yin
- School of Medicine, Tongji University, Shanghai, China
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Shaojie Qin, ; Feng Yin,
| |
Collapse
|
5
|
Xiang XN, Zhu SY, He HC, Yu X, Xu Y, He CQ. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem Cell Res Ther 2022; 13:14. [PMID: 35012666 PMCID: PMC8751117 DOI: 10.1186/s13287-021-02689-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis, as a degenerative disease, is a common problem and results in high socioeconomic costs and rates of disability. The most commonly affected joint is the knee and characterized by progressive destruction of articular cartilage, loss of extracellular matrix, and progressive inflammation. Mesenchymal stromal cell (MSC)-based therapy has been explored as a new regenerative treatment for knee osteoarthritis in recent years. However, the detailed functions of MSC-based therapy and related mechanism, especially of cartilage regeneration, have not been explained. Hence, this review summarized how to choose, authenticate, and culture different origins of MSCs and derived exosomes. Moreover, clinical application and the latest mechanistical findings of MSC-based therapy in cartilage regeneration were also demonstrated.
Collapse
Affiliation(s)
- Xiao-Na Xiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Si-Yi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hong-Chen He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xi Yu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Xu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cheng-Qi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Rehabilitation Medicine Centre, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Klontzas ME, Kakkos GA, Papadakis GZ, Marias K, Karantanas AH. Advanced clinical imaging for the evaluation of stem cell based therapies. Expert Opin Biol Ther 2021; 21:1253-1264. [PMID: 33576278 DOI: 10.1080/14712598.2021.1890711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: As stem cell treatments reach closer to the clinic, the need for appropriate noninvasive imaging for accurate disease diagnosis, treatment planning, follow-up, and early detection of complications, is constantly rising. Clinical radiology affords an extensive arsenal of advanced imaging techniques, to provide anatomical and functional information on the whole spectrum of stem cell treatments from diagnosis to follow-up.Areas covered: This manuscript aims at providing a critical review of major published studies on the utilization of advanced imaging for stem cell treatments. Uses of magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, and positron emission tomography (PET) are reviewed and interrogated for their applicability to stem cell imaging.Expert opinion: A wide spectrum of imaging methods have been utilized for the evaluation of stem cell therapies. The majority of published techniques are not clinically applicable, using methods exclusively applicable to animals or technology irrelevant to current clinical practice. Harmonization of preclinical methods with clinical reality is necessary for the timely translation of stem cell therapies to the clinic. Methods such as diffusion weighted MRI, hybrid imaging, and contrast-enhanced ultrasound hold great promise and should be routinely incorporated in the evaluation of patients receiving stem cell treatments.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece
| | - George A Kakkos
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
| | - Georgios Z Papadakis
- Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Kostas Marias
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Electrical and Computer Engineering, Hellenic Mediterranean University, Heraklion, Crete, Greece
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
7
|
Testa G, Giardina SMC, Culmone A, Vescio A, Turchetta M, Cannavò S, Pavone V. Intra-Articular Injections in Knee Osteoarthritis: A Review of Literature. J Funct Morphol Kinesiol 2021; 6:15. [PMID: 33546408 PMCID: PMC7931012 DOI: 10.3390/jfmk6010015] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Knee osteoarthritis (OA) is a chronic, degenerative, and progressive disease of articular cartilage, producing discomfort and physical disability in older adults. Thirteen percent of elderly people complain of knee OA. Management options for knee OA could be divided into the following categories: conservative, pharmacological, procedural, and surgical. Joint replacement is the gold standard, reserved for severe grades of knee OA, due to its complications rate and increased risk of joint revision. A nonsurgical approach is the first choice in the adult population with cartilage damage and knee OA. Yearly, more than 10% of knee OA-affected patients undergo intra-articular injections of different drugs, especially within three months after OA diagnosis. Several molecules, such as corticosteroids injection, hyaluronic acid (HA), and platelet-rich plasma (PRP), are managed to reduce the symptoms of patients with knee OA. The aim of this review was to offer an overview of intra-articular injections used for the treatment of OA and report the conventional pharmacological products used.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vito Pavone
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, P.O. “Policlinico Gaspare Rodolico”, University of Catania, 95123 Catania, Italy; (G.T.); (S.M.C.G.); (A.C.); (A.V.); (M.T.); (S.C.)
| |
Collapse
|
8
|
Dai W, Leng X, Wang J, Shi Z, Cheng J, Hu X, Ao Y. Intra-Articular Mesenchymal Stromal Cell Injections Are No Different From Placebo in the Treatment of Knee Osteoarthritis: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arthroscopy 2021; 37:340-358. [PMID: 33098949 DOI: 10.1016/j.arthro.2020.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the efficacy and safety of intra-articular mesenchymal stromal cells (MSCs) injections for knee osteoarthritis (OA) treatment. METHODS We performed a systematic literature search in PubMed, Embase, Scopus, and the Cochrane Library through April 2020 to identify level I randomized controlled trials (RCTs) that evaluated the clinical efficacy of MSCs versus control treatments for knee OA. Outcomes were analyzed on an intention-to-treat basis with random-effects models. RESULTS A total of 13 RCTs were included in the meta-analysis. Compared with placebo, there was no significant difference in VAS for pain (mean difference [MD] 1.62, 95% confidence interval [CI -0.60 to 3.85), WOMAC pain score (MD 1.88, 95% CI -0.21 to 3.98), WOMAC function score (MD -0.67, 95% CI -6.54 to 5.19), or WOMAC stiffness score (MD 0.64, 95% CI -0.86 to 2.14) for MSCs. Moreover, the smallest treatment effect of VAS for pain, WOMAC pain score, WOMAC function score, and WOMAC stiffness score did not exceed the minimum clinically important difference (MCID). Additionally, there was no significant difference in percentage of patients crossing the MCID threshold between MSC and placebo groups for VAS for pain (relative risk [RR] 0.93, 95% CI 0.55 to 1.57) or WOMAC total score (RR 0.40, 95% CI 0.13 to 1.21). Compared with hyaluronic acid (HA), MSC injection was associated with significantly better improvement in VAS for pain (MD 2.00, 95% CI 0.94 to 3.07), WOMAC pain score (MD 4.58, 95% CI 0.49 to 8.67), WOMAC total score (MD 14.86, 95% CI 10.59 to 19.13), and WOMAC stiffness score (MD 1.85, 95% CI 0.02 to 3.69). However, the smallest treatment effect of VAS for pain, WOMAC pain score, WOMAC function score, and WOMAC stiffness score did not exceed the MCID. Moreover, there was no significant difference in percentage of patients crossing the MCID threshold between MSC and HA groups for WOMAC total score (RR 0.57, 95% CI 0.21 to 1.55). We also found that MSCs did not increase adverse events compared with HA and placebo. CONCLUSIONS Intra-articular MSC injection was not found to be superior to placebo in pain relief and functional improvement for patients with symptomatic knee OA. However, additional direct testing and combination trials of different type of cells, doses, and number of injections of MSCs are required to further enhance clinical decision making for people with symptomatic knee OA. LEVEL OF EVIDENCE I, meta-analysis of level I studies.
Collapse
Affiliation(s)
- Wenli Dai
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, People's Republic of China
| | - Xi Leng
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Jian Wang
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangdong, People's Republic of China
| | - Zhanjun Shi
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangdong, People's Republic of China
| | - Jin Cheng
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, People's Republic of China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, People's Republic of China.
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Yao Z, Chen Y, Cao W, Shyh‐Chang N. Chromatin-modifying drugs and metabolites in cell fate control. Cell Prolif 2020; 53:e12898. [PMID: 32979011 PMCID: PMC7653270 DOI: 10.1111/cpr.12898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
For multicellular organisms, it is essential to produce a variety of specialized cells to perform a dazzling panoply of functions. Chromatin plays a vital role in determining cellular identities, and it dynamically regulates gene expression in response to changing nutrient metabolism and environmental conditions. Intermediates produced by cellular metabolic pathways are used as cofactors or substrates for chromatin modification. Drug analogues of metabolites that regulate chromatin-modifying enzyme reactions can also regulate cell fate by adjusting chromatin organization. In recent years, there have been many studies about how chromatin-modifying drug molecules or metabolites can interact with chromatin to regulate cell fate. In this review, we systematically discuss how DNA and histone-modifying molecules alter cell fate by regulating chromatin conformation and propose a mechanistic model that explains the process of cell fate transitions in a concise and qualitative manner.
Collapse
Affiliation(s)
- Ziyue Yao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Chen
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ng Shyh‐Chang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
CORR Synthesis: What Is the Evidence for the Clinical Use of Stem Cell-based Therapy in the Treatment of Osteoarthritis of the Knee? Clin Orthop Relat Res 2020; 478:964-978. [PMID: 31899738 PMCID: PMC7170666 DOI: 10.1097/corr.0000000000001105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Procedural Treatments for Knee Osteoarthritis: A Review of Current Injectable Therapies. Pain Res Manag 2020; 2020:3873098. [PMID: 32148599 PMCID: PMC7049418 DOI: 10.1155/2020/3873098] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/18/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Knee osteoarthritis is a common painful degenerative condition affecting the aging Canadian population. In addition to pain and disability, osteoarthritis is associated with depression, comorbid conditions such as diabetes, and increased caregiver burden. It is predicted to cost the Canadian healthcare system $7.6 billion dollars by 2031. Despite its high cost and prevalence, controversy persists in the medical community regarding optimal therapies to treat knee osteoarthritis. A variety of medications like nonsteroidal anti-inflammatories and opioids can cause severe side effects with limited benefits. Total knee arthroplasty, although a definitive management, comes with risk such as postoperative infections, revisions, and chronic pain. Newer injectable therapies are gaining attention as alternatives to medications because of a safer side effect profile and are much less invasive than a joint replacement. Platelet-rich plasma is beginning to replace the more common injectable therapies of intra-articular corticosteroids and hyaluronic acid, but larger trials are needed to confirm this effect. Small studies have examined prolotherapy and stem cell therapy and demonstrate some benefits. Trials involving genicular nerve block procedures have been successful. As treatments evolve, injectable therapies may offer a safe and effective pathway for patients suffering from knee osteoarthritis.
Collapse
|
12
|
Lee WS, Kim HJ, Kim KI, Kim GB, Jin W. Intra-Articular Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis: A Phase IIb, Randomized, Placebo-Controlled Clinical Trial. Stem Cells Transl Med 2019; 8:504-511. [PMID: 30835956 PMCID: PMC6525553 DOI: 10.1002/sctm.18-0122] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been the focus of an emerging treatment for osteoarthritis. However, few studies reported about outcomes of an intra-articular injection of autologous adipose-derived mesenchymal stem cells (AD-MSCs). This study aimed to assess the efficacy and safety of a single intra-articular injection of AD-MSCs for patients with knee osteoarthritis. It was a prospective double-blinded, randomized controlled, phase IIb clinical trial. AD-MSCs were administered for 12 patients (MSC group), and the group was compared with 12 knees with injection of normal saline (control group) up to 6 months. All procedures were performed in the outpatient clinic. Primary outcome measure was the Western Ontario and McMaster Universities Osteoarthritis index (WOMAC) score. Secondary outcome measure included various clinical and radiologic examination, and safety after injection. Change of cartilage defect after injection was evaluated using magnetic resonance imaging (MRI). Single injection of AD-MSCs led to a significant improvement of the WOMAC score at 6 months. In the control group, there was no significant change in the WOMAC score at 6 months. No serious adverse events were observed in both groups during the follow-up period. In MRI, there was no significant change of cartilage defect at 6 months in MSC group whereas the defect in the control group was increased. An intra-articular injection of autologous AD-MSCs provided satisfactory functional improvement and pain relief for patients with knee osteoarthritis in the outpatient setting, without causing adverse events at 6 months' follow-up. Larger sample size and long-term follow-up are required. Stem Cells Translational Medicine 2019;8:504-511.
Collapse
Affiliation(s)
- Woo-Suk Lee
- Department of Orthopaedic Surgery, College of Medicine, Gangnam Severance Hospital, Yonsei University, Seoul, South Korea
| | - Hwan Jin Kim
- Department of Orthopaedic Surgery, Center for Joint Diseases and Rheumatism, Kyung Hee University Hospital at Gangdong, Seoul, South Korea.,School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Kang-Il Kim
- Department of Orthopaedic Surgery, Center for Joint Diseases and Rheumatism, Kyung Hee University Hospital at Gangdong, Seoul, South Korea.,School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Gi Beom Kim
- Department of Orthopaedic Surgery, Center for Joint Diseases and Rheumatism, Kyung Hee University Hospital at Gangdong, Seoul, South Korea.,School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Wook Jin
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| |
Collapse
|
13
|
Intra-articular injections of expanded mesenchymal stem cells with and without addition of platelet-rich plasma are safe and effective for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2018; 26:3342-3350. [PMID: 29511819 DOI: 10.1007/s00167-018-4883-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/28/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To compare the effectiveness and safety of intra-articular injections of autologous expanded mesenchymal stromal stem cells alone (MSCs), or in combination with platelet-rich plasma (MSCs + PRP), in patients with knee osteoarthritis. METHODS Eighteen patients (57.6 ± 9.6 years) with radiographic symptomatic knee osteoarthritis (Dejour grades II-IV) were randomized to receive intra-articular injections of MSCs (n = 9) or MSCs + PRP (n = 9). Injections were performed 2-3 weeks after bone marrow aspiration (± 80-100 ml) which was obtained from both posterior iliac crests. RESULTS The Knee Injury and Osteoarthritis Outcome Score (KOOS) improved significantly throughout the 12 months for both groups (p < 0.05). No statistically significant differences between groups were found in KOOS subscales and global score improvements at 12-month end-point (n.s.). The MSCs group showed significant improvements in the pain, function and daily living activities, and sports and recreational activities subscales (p < 0.05). Similarly, the MSCs + PRP group showed significant improvements in the pain, function and daily living activities and quality of life subscales (p < 0.05). The average number of fibroblast colony forming units (CFU-F) was 56.8 + 21.9 for MSCs group and 50.7 ± 21.7 for MSCs + PRP group. Minimal adverse effects were seen in both groups (10 adverse events, in 5 patients). CONCLUSIONS Intra-articular injections of expanded MSCs alone or in combination with PRP are safe and have a beneficial effect on symptoms in patients with symptomatic knee osteoarthritis. Adding PRP to the MSCs injections did not provide additional benefit. These results are encouraging and support the recommendation of this minimally invasive procedure in patients with knee osteoarthritis, without requiring hospitalization. The CFU-F results may be used as reference for future research. LEVEL OF EVIDENCE Prospective cohort study, Level II.
Collapse
|
14
|
Marshall J, Barnes A, Genever P. Analysis of the Intrinsic Self-Organising Properties of Mesenchymal Stromal Cells in Three-Dimensional Co-Culture Models with Endothelial Cells. Bioengineering (Basel) 2018; 5:E92. [PMID: 30373192 PMCID: PMC6315484 DOI: 10.3390/bioengineering5040092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are typically characterised by their ability to differentiate into skeletal (osteogenic, chondrogenic and adipogenic) lineages. MSCs also appear to have additional non-stem cell functions in coordinating tissue morphogenesis and organising vascular networks through interactions with endothelial cells (ECs). However, suitable experimental models to examine these apparently unique MSC properties are lacking. Following previous work, we have developed our 3D in vitro co-culture models to enable us to track cellular self-organisation events in heterotypic cell spheroids combining ECs, MSCs and their differentiated progeny. In these systems, MSCs, but not related fibroblastic cell types, promote the assembly of ECs into interconnected networks through intrinsic mechanisms, dependent on the relative abundance of MSC and EC numbers. Perturbation of endogenous platelet-derived growth factor (PDGF) signalling significantly increased EC network length, width and branching. When MSCs were pre-differentiated towards an osteogenic or chondrogenic lineage and co-cultured as mixed 3D spheroids, they segregated into polarised osseous and chondral regions. In the presence of ECs, the pre-differentiated MSCs redistributed to form a central mixed cell core with an outer osseous layer. Our findings demonstrate the intrinsic self-organising properties of MSCs, which may broaden their use in regenerative medicine and advance current approaches.
Collapse
Affiliation(s)
- Julia Marshall
- Department of Biology, University of York, York YO10 5DD, UK.
| | - Amanda Barnes
- Department of Biology, University of York, York YO10 5DD, UK.
| | - Paul Genever
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
15
|
Knight C, James S, Kuntin D, Fox J, Newling K, Hollings S, Pennock R, Genever P. Epidermal growth factor can signal via β-catenin to control proliferation of mesenchymal stem cells independently of canonical Wnt signalling. Cell Signal 2018; 53:256-268. [PMID: 30287279 PMCID: PMC6293317 DOI: 10.1016/j.cellsig.2018.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022]
Abstract
Bone marrow mesenchymal stem/stromal cells (MSCs) maintain bone homeostasis and repair through the ability to expand in response to mitotic stimuli and differentiate into skeletal lineages. Signalling mechanisms that enable precise control of MSC function remain unclear. Here we report that by initially examining differences in signalling pathway expression profiles of individual MSC clones, we identified a previously unrecognised signalling mechanism regulated by epidermal growth factor (EGF) in primary human MSCs. We demonstrate that EGF is able to activate β-catenin, a key component of the canonical Wnt signalling pathway. EGF is able to induce nuclear translocation of β-catenin in human MSCs but does not drive expression of Wnt target genes or T cell factor (TCF) activity in MSC reporter cell lines. Using an efficient Design of Experiments (DoE) statistical analysis, with different combinations and concentrations of EGF and Wnt ligands, we were able to confirm that EGF does not influence the Wnt/β-catenin pathway in MSCs. We show that the effects of EGF on MSCs are temporally regulated to initiate early “classical” EGF signalling mechanisms (e.g via mitogen activated protein kinase) with delayed activation of β-catenin. By RNA-sequencing, we identified gene sets that were exclusively regulated by the EGF/β-catenin pathway, which were distinct from classical EGF-regulated genes. However, subsets of classical EGF gene targets were significantly influenced by EGF/β-catenin activation. These signalling pathways cooperate to enable EGF-mediated proliferation of MSCs by alleviating the suppression of cell cycle pathways induced by classical EGF signalling. Epidermal growth factor (EGF) controls mesenchymal stem cell (MSC) proliferation. EGF signals through β-catenin in MSCs but not in related fibroblastic cells. Classical EGF and EGF/β-catenin cooperatively regulate distinct gene sets in MSCs. EGF/β-catenin enables MSC proliferation by alleviating cell cycle suppression.
Collapse
Affiliation(s)
- Charlotte Knight
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Sally James
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - David Kuntin
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - James Fox
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Katherine Newling
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Sam Hollings
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Rebecca Pennock
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Paul Genever
- Department of Biology, University of York, York YO10 5DD, United Kingdom.
| |
Collapse
|
16
|
Xing D, Wang Q, Yang Z, Hou Y, Zhang W, Chen Y, Lin J. Mesenchymal stem cells injections for knee osteoarthritis: a systematic overview. Rheumatol Int 2017; 38:1399-1411. [DOI: 10.1007/s00296-017-3906-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
|
17
|
Pas HIMFL, Winters M, Haisma HJ, Koenis MJJ, Tol JL, Moen MH. Stem cell injections in knee osteoarthritis: a systematic review of the literature. Br J Sports Med 2017; 51:1125-1133. [DOI: 10.1136/bjsports-2016-096793] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
|
18
|
Real-Time Analysis of Endogenous Wnt Signalling in 3D Mesenchymal Stromal Cells. Stem Cells Int 2016; 2016:7132529. [PMID: 27668000 PMCID: PMC5030414 DOI: 10.1155/2016/7132529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/08/2016] [Indexed: 01/08/2023] Open
Abstract
Wnt signalling has been implicated in the regulation of stem cell self-renewal and differentiation; however, the majority of in vitro studies are carried out using monolayer 2D culture techniques. Here, we used mesenchymal stromal cell (MSC) EGFP reporter lines responsive to Wnt pathway activation in a 3D spheroid culture system to mimic better the in vivo environment. Endogenous Wnt signalling was then investigated under basal conditions and when MSCs were induced to undergo osteogenic and adipogenic differentiation. Interestingly, endogenous Wnt signalling was only active during 3D differentiation whereas 2D cultures showed no EGFP expression throughout an extended differentiation time-course. Furthermore, exogenous Wnt signalling in 3D adipogenic conditions inhibited differentiation compared to unstimulated controls. In addition, suppressing Wnt signalling by Dkk-1 restored and facilitated adipogenic differentiation in MSC spheroids. Our findings indicate that endogenous Wnt signalling is active and can be tracked in 3D MSC cultures where it may act as a molecular switch in adipogenesis. The identification of the signalling pathways that regulate MSCs in a 3D in vivo-like environment will advance our understanding of the molecular mechanisms that control MSC fate.
Collapse
|
19
|
Filipowska J, Reilly GC, Osyczka AM. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage. Biotechnol Bioeng 2016; 113:1814-24. [PMID: 26806539 DOI: 10.1002/bit.25937] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 01/02/2023]
Abstract
Perfusing culture media through porous cell-seeded scaffolds is now a common approach within many tissue engineering strategies. Human bone-marrow derived mesenchymal stem cells (hBMSC) are a clinically valuable source of osteoprogenitors that respond to mechanical stimuli. However, the optimal mechanical conditions for their osteogenic stimulation in vitro have not been defined. Whereas the effects of short durations of media fluid flow have been studied in monolayers of osteoblastic cells, in 3D culture continuous or repeated perfusion is usually applied. Here, we investigated whether a short, single perfusion session applied to hBMSCs cultured in 3D would enhance their osteogenesis in vitro. We cultured hBMSCs on gelatine-coated, porous polyurethane scaffolds with osteogenic supplements and stimulated them with a single 2-h session of unidirectional, steady, 2.5 mL/min media perfusion, at either early or late stages of culture in 3D. Some cells were pre-treated in monolayer with osteogenic supplements to advance cell differentiation, followed by 3D culture also with the osteogenic supplements. We report that this single, short session of media perfusion can markedly enhance the expression of bone-related transcription and growth factors, and matrix components, by hBMSCs but that it is more effective when cells reach the pre-osteoblast or osteoblast differentiation stage. These findings could aid in the optimization of 3D culture protocols for efficient bone tissue engineering. Biotechnol. Bioeng. 2016;113: 1814-1824. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna Filipowska
- Faculty of Biology and Earth Sciences, Department of Cell Biology and Imaging, Jagiellonian University, 30-387 Kraków, Malopolska, Poland
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Anna M Osyczka
- Faculty of Biology and Earth Sciences, Department of Cell Biology and Imaging, Jagiellonian University, 30-387 Kraków, Malopolska, Poland.
| |
Collapse
|
20
|
Elboghdady I, Hassanzadeh H, Stein BE, An HS. Controversies and potential risk of mesenchymal stem cells application. ACTA ACUST UNITED AC 2015. [DOI: 10.1053/j.semss.2015.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|