1
|
Schmidt ENC, Evert BO, Pregler BEF, Melhem A, Hsieh MC, Raspe M, Strobel H, Roos J, Pietsch T, Schuss P, Fischer-Posovszky P, Westhoff MA, Hölzel M, Herrlinger U, Vatter H, Waha A, Schneider M, Potthoff AL. Tonabersat enhances temozolomide-mediated cytotoxicity in glioblastoma by disrupting intercellular connectivity through connexin 43 inhibition. Mol Oncol 2024. [PMID: 39680504 DOI: 10.1002/1878-0261.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma cells rely on connexin 43 (Cx43)-based gap junctions (GJs) for intercellular communication, enabling them to integrate into a widely branched malignant network. Although there are promising prospects for new targeted therapies, the lack of clinically feasible GJ inhibitors has impeded their adoption in clinical practice. In the present study, we investigated tonabersat (TO), a blood-brain-barrier-penetrating drug with GJ-inhibitory properties, in regard to its potential to disassemble intercellular connectivity in glioblastoma networks. Fluorescence-guided measurements of calcein cell-to-cell transfer were used to study functional intercellular connectivity. Specific DNA fragmentation rates of propidium iodide-stained nuclei were measured as a surrogate readout for cell death using flow cytometry. CRISPR/Cas9-mediated gene editing of Cx43 served as a validation tool of cellular effects related to Cx43 GJ inhibition. 3' mRNA sequencing was performed for molecular downstream analysis. We found that TO reduced intercellular GJ-mediated cytosolic traffic and yielded a significant reduction of tumor microtube (TM) length. TO-mediated inhibition of cellular tumor networks was accompanied by a synergistic effect for temozolomide-induced cell death. CRISPR/Cas9 Cx43-knockout revealed similar results, indicating that TO-mediated inhibitory effects rely on the inhibition of Cx43-based GJs. Gene set enrichment analyses found that GJ-mediated synergistic cytotoxic effects were linked to a significant upregulation of cell death signaling pathways. In conclusion, TO disrupts TM-based network connectivity via GJ inhibition and renders glioblastoma cells more susceptible to cytotoxic therapy. Given its previous use in clinical trials for migraine therapy, TO might harbor the potential of bridging the idea of a GJ-targeted therapeutic approach from bench to bedside.
Collapse
Affiliation(s)
- Elena N C Schmidt
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Bernd O Evert
- Department of Neurology, University Hospital Bonn, Germany
| | - Barbara E F Pregler
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Ahmad Melhem
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Meng-Chun Hsieh
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Markus Raspe
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Julian Roos
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University Hospital Bonn, Germany
| | - Patrick Schuss
- Department of Neurosurgery, University Hospital Bonn, Germany
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Germany
| | - Ulrich Herrlinger
- Department of Neurooncology, Center for Neurology and Center of Integrated Oncology ABCD, University Hospital Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Germany
| | - Andreas Waha
- Department of Neuropathology, University Hospital Bonn, Germany
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Anna-Laura Potthoff
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
- Department of Neuropathology, University Hospital Bonn, Germany
| |
Collapse
|
2
|
Tang ZQ, Xu HB, Cao C, Liu YJ, Ye YR, Shen Y. Induction of neuronal differentiation in glioma cells by histone deacetylase inhibitors based on Connectivity Map discovery. Anticancer Drugs 2024:00001813-990000000-00333. [PMID: 39589225 DOI: 10.1097/cad.0000000000001667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Neuron conversion leads to proliferation inhibition of glioma cells and may be an effective strategy to combat glioma and prevent recurrence. In this study, drug repositioning based on Connectivity Map (CMap) was conducted to discover drugs that could induce the differentiation of glioma cells into neuron-like cells, complemented by in vitro experimental validation. Downregulated neuronal genes in glioma were identified by the Human Protein Atlas database and the GeneCards database, and enrichment analysis and Gene Expression Profiling Interactive Analysis (GEPIA) were performed to ensure their reliability before they were uploaded to CMap for drug screening. The potential drug targets were screened through GEPIA and validated by the Chinese Glioma Genome Atlas database. Cell morphology, proliferation, and neuronal marker expression were detected to evaluate the differentiation-inducing effect of the selected drugs. The bioinformatics analysis identified histone deacetylase (HDAC) inhibitors as potential drugs. HDAC1/3/7 showed the relationship with neuronal genes, and HDAC1 showed the highest level of inverse correlation with neuronal gene expression and had the highest hazard ratio. In vitro study showed that both the pan-HDAC inhibitor belinostat, class I and class IIa HDAC inhibitor valproic acid, and selective HDAC1 inhibitor parthenolide induce morphology alteration, proliferation inhibition, expression of neuronal markers including microtubule-associated protein 2, neuronal nuclei antigen, and synaptophysin in U87 cells. This study suggests that the HDAC inhibitors belinostat, valproic acid, and parthenolide can induce glioma cells to differentiate into neuron-like cells, with HDAC1/3/7 being the likely drug targets and HDAC1 potentially playing an important role in this.
Collapse
Affiliation(s)
- Zhao-Qi Tang
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen
| | - Hong-Bin Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo University, Ningbo
| | - Chang Cao
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen
| | - Yue-Jin Liu
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen
| | - Yan-Rong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Tang Z, Cao C, Tang W, Ye Y, Chen Z, Shen Y. Neuronal Differentiation of Human Glioma Cells Induced by Parthenolide Under In Vitro Conditions. Biomedicines 2024; 12:2543. [PMID: 39595109 PMCID: PMC11591755 DOI: 10.3390/biomedicines12112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Objective: Previous drug repositioning studies have suggested that parthenolide may be a differentiation-inducing agent for glioma cells. This study aimed to experimentally verify the neuronal differentiation-inducing effects and proliferative impact of parthenolide on human glioma cells and explore its potential mechanisms. Methods: HE staining was used to observe the morphological changes in human glioma cell lines U87 and A172 induced by parthenolide. Immunocytochemistry was conducted to detect the expression of differentiation markers. The Ki-67 detection and CCK-8 assay were used to assess the effects of parthenolide on cell proliferation. The sphere formation assay was conducted to evaluate the self-renewal. Glioma stem cells (GSCs) derived from U87 cells were utilized to assess the ability of parthenolide to induce differentiation in GSCs. Western blot was used to detect the expression of histone deacetylase 1 (HDAC1). Bioinformatics analysis based on the CGGA database was conducted to evaluate the role of HDAC1 in glioma. Results: Parthenolide (4 μM) altered the morphology of U87 and A172 cells, as elongated cell projections were observed. Parthenolide induced glioma cells to express neuronal markers NeuN, MAP2, SYP, and NEFL, but not astrocyte or oligodendrocyte markers. Parthenolide significantly inhibited proliferation and self-renewal in glioma cells. Similar effects were observed in U87 GSCs. Furthermore, parthenolide downregulated HDAC1 expression in glioma cells, and the bioinformatics analysis revealed a potential relationship between neuronal characteristics and low expression of HDAC1 in glioma. Conclusion: Parthenolide induced neuronal differentiation and inhibited the cell proliferation in human glioma cells, which might be associated with the inhibition of HDAC1.
Collapse
Affiliation(s)
- Zhaoqi Tang
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361015, China
| | - Chang Cao
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361015, China
| | - Weiwei Tang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Fujian Medical University, Xiamen 361003, China
- Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Yanrong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhenhui Chen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361015, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Liang J, Xie J, He J, Li Y, Wei D, Zhou R, Wei G, Liu X, Chen Q, Li D. Inhibiting lncRNA NEAT1 Increases Glioblastoma Response to TMZ by Reducing Connexin 43 Expression. Cancer Rep (Hoboken) 2024; 7:e70031. [PMID: 39453684 PMCID: PMC11505515 DOI: 10.1002/cnr2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/13/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVES Glioblastoma multiforme (GBM) is considered the most assailant subtype of gliomas, presenting a formidable obstacle because of its inherent resistance to temozolomide (TMZ). This study aimed to characterize the function of lncRNA NEAT1 in facilitating the advancement of gliomas. METHODS The expression level of NEAT1 in glioma tissues and cells was detected by qRT-PCR. RNA interference experiment, cell proliferation assay, FITC/PI detection assay, immunoblotting, bioinformatics prediction, a double luciferase reporter gene assay, RNA immunoprecipitation (RIP) assay, SLDT assay and correlation analysis of clinical samples were performed to explore the regulatory effects of NEAT1, miR-454-3p and Cx43 and their role in malignant progression of GBM. The role of NEAT1 in vivo was investigated by an intracranial tumor formation experiment in mice. RESULTS The results showed that recurring gliomas displayed elevated levels of NEAT1 compared to primary gliomas. The suppression of NEAT1 led to a restoration of sensitivity in GBM cells to TMZ. NEAT1 functioned as a competitive endogenous RNA against miR-454-3p. Connexin 43 was identified as a miR-454-3p target. NEAT1 was found to regulate gap junctional intercellular communication by modulating Connexin 43, thereby impacting the response of GBM cells to TMZ chemotherapy. Downregulation of NEAT1 resulted in enhanced chemosensitivity to TMZ and extended the survival of mice. CONCLUSIONS Overall, these results indicated that the NEAT1/miR-454-3p/Connexin 43 pathway influences GBM cell response to TMZ and could offer a potential new strategy for treating GBM.
Collapse
Affiliation(s)
- Jinxing Liang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Jia‐xiu Xie
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Junhui He
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Yi Li
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Dongmei Wei
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Rongfei Zhou
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Guining Wei
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Xuehua Liu
- Department of CardiologySir Run Run Hospital of Nanjing Medical UniversityNanjingChina
| | - Qiudan Chen
- Department of Clinical Laboratory, Central Laboratory, Jing'an District Center Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Dongmei Li
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesGuangxi Normal UniversityGuilinChina
| |
Collapse
|
5
|
Matarrese P, Signore M, Ascione B, Fanelli G, Paggi MG, Abbruzzese C. Chlorpromazine overcomes temozolomide resistance in glioblastoma by inhibiting Cx43 and essential DNA repair pathways. J Transl Med 2024; 22:667. [PMID: 39026284 PMCID: PMC11256652 DOI: 10.1186/s12967-024-05501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND In the fight against GBM, drug repurposing emerges as a viable and time-saving approach to explore new treatment options. Chlorpromazine, an old antipsychotic medication, has recently arisen as a promising candidate for repositioning in GBM therapy in addition to temozolomide, the first-line standard of care. We previously demonstrated the antitumor efficacy of chlorpromazine and its synergistic effects with temozolomide in suppressing GBM cell malignant features in vitro. This prompted us to accomplish a Phase II clinical trial to evaluate the efficacy and safety of adding chlorpromazine to temozolomide in GBM patients with unmethylated MGMT gene promoter. In this in vitro study, we investigate the potential role of chlorpromazine in overcoming temozolomide resistance. METHODS In our experimental set, we analyzed Connexin-43 expression at both the transcriptional and protein levels in control- and chlorpromazine-treated GBM cells. DNA damage and subsequent repair were assessed by immunofluorescence of γ-H2AX and Reverse-Phase Protein microArrays in chlorpromazine treated GBM cell lines. To elucidate the relationship between DNA repair systems and chemoresistance, we analyzed a signature of DNA repair genes in GBM cells after treatment with chlorpromazine, temozolomide and Connexin-43 downregulation. RESULTS Chlorpromazine treatment significantly downregulated connexin-43 expression in GBM cells, consequently compromising connexin-dependent cellular resilience, and ultimately contributing to cell death. In line with this, we observed concordant post-translational modifications of molecular determinants involved in DNA damage and repair pathways. Our evaluation of DNA repair genes revealed that temozolomide elicited an increase, while chlorpromazine, as well as connexin-43 silencing, a decrease in DNA repair gene expression in GBM cells. CONCLUSIONS Chlorpromazine potentiates the cytotoxic effects of the alkylating agent temozolomide through a mechanism involving downregulation of Cx43 expression and disruption of the cell cycle arrest essential for DNA repair processes. This finding suggests that chlorpromazine may be a potential therapeutic strategy to overcome TMZ resistance in GBM cells by inhibiting their DNA repair mechanisms.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Barbara Ascione
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Giulia Fanelli
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Marco G Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Claudia Abbruzzese
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
6
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Krassnig S, Leber SL, Orthmann A, Golob-Schwarzl N, Huber HJ, Wohlrab C, Skofler C, Pennauer M, Raicht A, Birkl-Toeglhofer AM, Naumann M, Mahdy-Ali K, von Campe G, Leoni M, Alcaniz J, Hoffmann J, Wälchli T, Weis S, Benesch M, Haybaeck J. Decreased eukaryotic initiation factors expression upon temozolomide treatment-potential novel implications for eIFs in glioma therapy. J Neurooncol 2023; 165:91-100. [PMID: 37907716 PMCID: PMC10638187 DOI: 10.1007/s11060-023-04451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE Since glioma therapy is currently still limited until today, new treatment options for this heterogeneous group of tumours are of great interest. Eukaryotic initiation factors (eIFs) are altered in various cancer entities, including gliomas. The purpose of our study was to evaluate the potential of eIFs as novel targets in glioma treatment. METHODS We evaluated eIF protein expression and regulation in 22 glioblastoma patient-derived xenografts (GBM PDX) after treatment with established cytostatics and with regards to mutation profile analyses of GBM PDX. RESULTS We observed decreased expression of several eIFs upon temozolomide (TMZ) treatment independent from the phosphatidylinositol 3-kinase (PI3K)/ AKT/ mammalian target of the rapamycin (mTOR) signalling pathway. These effects of TMZ treatment were not present in TMZ-resistant PDX. Combination therapy of regorafenib and TMZ re- established the eIF/AKT/mTOR axis. CONCLUSION Our study provides novel insights into chemotherapeutic effects on eIF regulation in gliomas and suggests that eIFs are interesting candidates for future research to improve glioma therapy.
Collapse
Affiliation(s)
- Stefanie Krassnig
- Diagnostic & Research Center for Molecular BioMedicine, Department of Neuropathology, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Stefan L Leber
- Diagnostic & Research Center for Molecular BioMedicine, Department of Neuropathology, Institute of Pathology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular & Interventional Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, 8036, Austria
| | | | - Nicole Golob-Schwarzl
- Diagnostic & Research Center for Molecular BioMedicine, Department of Neuropathology, Institute of Pathology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, Graz, Austria
| | - Heinrich Johann Huber
- Drug Discovery Sciences, Dr. Boehringer Gasse 5-11 A-1121, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Christina Wohlrab
- Diagnostic & Research Center for Molecular BioMedicine, Department of Neuropathology, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christina Skofler
- Diagnostic & Research Center for Molecular BioMedicine, Department of Neuropathology, Institute of Pathology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, Graz, Austria
| | - Mirjam Pennauer
- Diagnostic & Research Center for Molecular BioMedicine, Department of Neuropathology, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Raicht
- Division of Paediatric Haematology and Oncology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Anna Maria Birkl-Toeglhofer
- Diagnostic & Research Center for Molecular BioMedicine, Department of Neuropathology, Institute of Pathology, Medical University of Graz, Graz, Austria
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, Innsbruck, 6020, Austria
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto Von Guericke University, Magdeburg, Germany
| | - Kariem Mahdy-Ali
- Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Gord von Campe
- Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Marlene Leoni
- Diagnostic & Research Center for Molecular BioMedicine, Department of Neuropathology, Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | | | - Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, Division of Neurosurgery, University and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Krembil Research Institute, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Serge Weis
- Division of Neuropathology, Kepler University Hospital, Johannes Kepler University, Neuromed Campus, Linz, Austria
| | - Martin Benesch
- Division of Paediatric Haematology and Oncology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Haybaeck
- Diagnostic & Research Center for Molecular BioMedicine, Department of Neuropathology, Institute of Pathology, Medical University of Graz, Graz, Austria.
- Center for Biomarker Research in Medicine, Graz, Austria.
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, Innsbruck, 6020, Austria.
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| |
Collapse
|
8
|
Bai P, Fan T, Wang X, Zhao L, Zhong R, Sun G. Modulating MGMT expression through interfering with cell signaling pathways. Biochem Pharmacol 2023; 215:115726. [PMID: 37524206 DOI: 10.1016/j.bcp.2023.115726] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Guanine O6-alkylating agents are widely used as first-line chemotherapeutic drugs due to their ability to induce cytotoxic DNA damage. However, a major hurdle in their effectiveness is the emergence of chemoresistance, largely attributed to the DNA repair pathway mediated by O6-methylguanine-DNA methyltransferase (MGMT). MGMT plays an important role in removing the alkyl groups from lethal O6-alkylguanine (O6-AlkylG) adducts formed by chemotherapeutic alkylating agents. By doing so, MGMT enables tumor cells to evade apoptosis and develop drug resistance toward DNA alkylating agents. Although covalent inhibitors of MGMT, such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl)guanine (O6-4-BTG or lomeguatrib), have been explored in clinical settings, their utility is limited due to severe delayed hematological toxicity observed in most patients when combined with alkylating agents. Therefore, there is an urgent need to identify new targets and unravel the underlying molecular mechanisms and to develop alternative therapeutic strategies that can overcome MGMT-mediated tumor resistance. In this context, the regulation of MGMT expression via interfering the specific cell signaling pathways (e.g., Wnt/β-catenin, NF-κB, Hedgehog, PI3K/AKT/mTOR, JAK/STAT) emerges as a promising strategy for overcoming tumor resistance, and ultimately enhancing the efficacy of DNA alkylating agents in chemotherapy.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
9
|
Shen Y, Ye YR, Tang ZQ. Expression, Significance, and Correlation of Histone Deacetylase 1/RE-1 Silencing Transcription Factor and Neuronal Markers in Glioma. World Neurosurg 2023; 172:e267-e277. [PMID: 36623722 DOI: 10.1016/j.wneu.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND Inducing the differentiation of glioma cells into neuron-like cells may be an effective strategy to combat glioma. The histone deacetylase 1/RE-1 silencing transcription factor (HDAC1/REST) complex regulates the expression of multiple neuronal genes. In this study, we analyzed the presence and significance of this regulatory effect in glioma based on bioinformatics methods. METHODS The Human Protein Atlas database was used to obtain immunohistochemical staining images. The Gene Expression Profiling Interactive Analysis and Chinese Glioma Genome Atlas databases were used to analyze the expression of HDAC1/REST and neuronal markers in glioma, their effects on survival, and the association between HDAC1/REST and the expression of neuronal markers and stem cell markers. The differentially expressed genes between the high and low HDAC1/REST groups were explored. The Database for Annotation, Visualization and Integrated Discovery database was used for gene ontology and kyoto encyclopedia of genes and genomes pathway enrichment analysis. RESULTS The results showed that the expression of HDAC1 and REST increased with the grade of glioma, while the expression of neuronal markers decreased with the grade of glioma. High expression of HDAC1/REST and low expression of neuronal markers were associated with poor prognosis. HDAC1/REST expression was negatively correlated with the expression of neuronal markers, and positively correlated with the expression of neural stem cell markers. The genes up-regulated in the high HDAC1/REST group were mainly related to extracellular matrix and inflammation, and the down-regulated genes were mainly related to synapsis. CONCLUSIONS This study suggested that HDAC1/REST may be involved in maintaining the malignant phenotype of glioma cells and the stem cell status of glioma stem cells by inhibiting the expression of neuronal markers, which promote the progression of glioma.
Collapse
Affiliation(s)
- Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China; Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan-Rong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China; Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao-Qi Tang
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China.
| |
Collapse
|
10
|
Che J, DePalma TJ, Sivakumar H, Mezache LS, Tallman MM, Venere M, Swindle-Reilly K, Veeraraghavan R, Skardal A. αCT1 peptide sensitizes glioma cells to temozolomide in a glioblastoma organoid platform. Biotechnol Bioeng 2023; 120:1108-1119. [PMID: 36544242 DOI: 10.1002/bit.28313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Glioblastoma (GBM) is the most common form of brain cancer. Even with aggressive treatment, tumor recurrence is almost universal and patient prognosis is poor because many GBM cell subpopulations, especially the mesenchymal and glioma stem cell populations, are resistant to temozolomide (TMZ), the most commonly used chemotherapeutic in GBM. For this reason, there is an urgent need for the development of new therapies that can more effectively treat GBM. Several recent studies have indicated that high expression of connexin 43 (Cx43) in GBM is associated with poor patient outcomes. It has been hypothesized that inhibition of the Cx43 hemichannels could prevent TMZ efflux and sensitize otherwise resistance cells to the treatment. In this study, we use a three-dimensional organoid model of GBM to demonstrate that combinatorial treatment with TMZ and αCT1, a Cx43 mimetic peptide, significantly improves treatment efficacy in certain populations of GBM. Confocal imaging was used to visualize changes in Cx43 expression in response to combinatorial treatment. These results indicate that Cx43 inhibition should be pursued further as an improved treatment for GBM.
Collapse
Affiliation(s)
- Jingru Che
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Thomas J DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Louisa S Mezache
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Miranda M Tallman
- Dorothy M. Davis Hearth and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Monica Venere
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Katelyn Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, Ohio, USA
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Center for Cancer Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Mulchandani V, Banerjee A, Vadlamannati AV, Kumar S, Das Sarma J. Connexin 43 trafficking and regulation of gap junctional intercellular communication alters ovarian cancer cell migration and tumorigenesis. Biomed Pharmacother 2023; 159:114296. [PMID: 36701988 DOI: 10.1016/j.biopha.2023.114296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Ovarian cancer persists to be the most lethal gynecological malignancy, demanding rigorous treatments involving radio-chemotherapy that trigger toxicity and consequently mortality among patients. An improved understanding of the disease progression may pioneer curative therapies. Mouse epithelial ovarian cancer cell lines, ID8 and ID8-VEGF (overexpressing VEGF) were intraperitoneally injected in C57BL/6 female mice to develop a Syngeneic Ovarian cancer mouse model. It was observed that ID8-VEGF cells were able to induce aggressive tumor growth in mice compared to ID8 cells. Furthermore, results of the current in vitro study comparing ID8 and ID8-VEGF demonstrated that highly tumorigenic ID8-VEGF had reduced gap junctional intercellular communication (GJIC) due to intracellular Connexin 43 (Cx43) expression. Additionally, ID8 cells with reduced tumorigenic capability expressed significant GJIC. Furthermore, loss of GJIC in ID8-VEGF cells induced shorter tunneling nanotube formations, while ID8 cells develops longer tunneling nanotube to maintain cellular crosstalk. The administration of a pharmacological drug 4-phenylbutyrate (4PBA) ensured the restoration of GJIC in both the ovarian cancer cell lines. Additionally, 4PBA treatment significantly inhibited the migration of ovarian cancer cell lines and tumor formation in ovarian cancer mice models. In summary, the 4PBA-mediated restoration of GJIC suppressed migration (in vitro) and tumorigenesis (in vivo) of ovarian cancer cells. The present study suggests that Cx43 assembled GJIC and its supportive signaling pathways are a prospective target for restricting ovarian cancer progression.
Collapse
Affiliation(s)
- Vaishali Mulchandani
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Anurag Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Arunima Vijaya Vadlamannati
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Saurav Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India; Department of Ophthalmology, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
12
|
Mohamadian M, Ahmadi SS, Bahrami A, Ferns GA. Review on the Therapeutic Potential of Curcumin and its Derivatives on Glioma Biology. Neurochem Res 2022; 47:2936-2953. [PMID: 35790698 DOI: 10.1007/s11064-022-03666-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022]
Abstract
Gliomas are common and aggressive brain tumors that carry a poor prognosis. The current multimodal therapeutic option for glioma includes surgery subsequently temozolomide chemotherapy and/or radiation; but gliomas are often associated with multidrug resistance, intensive adverse events, and tumor relapse. Thus, novel interventions that can enhance successful chemo-prevention and overcome therapeutic resistance are urgently needed. Phytochemicals have several biological properties with multi-target sites and relatively limited degrees of toxicity. Curcumin is a natural polyphenolic compound with several anti-tumor effects which potentially inhibit tumor growth, development, proliferation, invasion, dissemination, and angiogenesis in different human malignancies. Experimental model studies have demonstrated that curcumin attenuates glioma cell viability by G2/M cell cycle arrest, apoptosis, induction of autophagy, gene expression alteration, and disruption of multi-molecular pathways. Moreover, curcumin has been reported to re-sensitize cancer to chemotherapeutics as well as augment the effect of radiotherapy on glioma cells. In this review, we have provided an update on the in vitro and in vivo effects of curcumin-based therapy on gliomas. We have also discussed the use of curcumin in combination therapies, its effectiveness on drug-resistant cells, and new formulations of curcumin in the treatment of gliomas.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran. .,Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, BN1 9PH, Sussex, UK
| |
Collapse
|
13
|
Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022; 185:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
The strategy of using mesenchymal stem cells (MSCs) as a living carrier for active delivery of therapeutic agents targeting tumor sites has been attempted in a wide range of studies to validate the feasibility and efficacy for tumor treatment. This approach reveals powerful tumor targeting and tumor penetration. In addition, MSCs have been confirmed to actively participate in immunomodulation of the tumor microenvironment. Thus, MSCs are not inert delivery vehicles but have a strong impact on the fate of tumor cells. In this review, these active properties of MSCs are addressed to highlight the advantages and challenges of using MSCs for tumor-targeted delivery. In addition, some of the latest examples of using MSCs to carry a variety of anti-tumor agents for tumor-targeted therapy are summarized. Recent technologies to improve the performance and safety of this delivery strategy will be introduced. The advances, applications, and challenges summarized in this review will provide a general understanding of this promising strategy for actively delivering drugs to tumor tissues.
Collapse
|
14
|
Zhou J, Xu N, Liu B, Wang C, He Z, Lenahan C, Tang W, Zeng H, Guo H. LncRNA XLOC013218 promotes cell proliferation and TMZ resistance by targeting PIK3R2-mediated PI3K/AKT pathway in glioma. Cancer Sci 2022; 113:2681-2692. [PMID: 35637600 PMCID: PMC9357648 DOI: 10.1111/cas.15387] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022] Open
Abstract
The discovery of long non-coding RNAs (lncRNAs) has improved the understanding of development and progression in various cancer sub-types. However, the role of lncRNAs in temozolomide (TMZ) resistance in glioblastoma (GBM) remains largely undefined. In this present study, the differential expression of lncRNAs were identified between U87 and U87TR (TMZ-resistant) cells. LncRNA XLOC013218 (XLOC) was drastically upregulated in TMZ-resistant cells and was associated with poor prognosis in glioma. Overexpression of XLOC markedly increased TMZ resistance, promoted proliferation, and inhibited apoptosis in vitro and in vivo. In addition, RNA-seq analysis and gain-of-function or loss-of-function studies revealed that PIK3R2 was the potential target of XLOC. Mechanistically, XLOC recruited Specificity Protein 1 (Sp1) transcription factor and promoted the binding of Sp1 to the promoters of PIK3R2, which elevated the expression of PIK3R2 in both mRNA and protein levels. Finally, PIK3R2-mediated activation of the PI3K/AKT signaling pathway promoted TMZ resistance and cell proliferation, but inhibited cell apoptosis. In conclusion, these data highlight the vital role of XLOC/Sp1/PIK3R2/PI3K/AKT axis in GBM TMZ resistance.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ningbo Xu
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Boyang Liu
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Chenyang Wang
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhenyan He
- Department of Neurosurgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, 88003, NM, USA
| | - Wenhui Tang
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Huijun Zeng
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hongbo Guo
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| |
Collapse
|
15
|
Fei YQ, Shi RT, Zhou YF, Wu JZ, Song Z. Mannose inhibits proliferation and promotes apoptosis to enhance sensitivity of glioma cells to temozolomide through Wnt/β-catenin signaling pathway. Neurochem Int 2022; 157:105348. [DOI: 10.1016/j.neuint.2022.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|
16
|
Connexin 43 confers chemoresistance through activating PI3K. Oncogenesis 2022; 11:2. [PMID: 35022385 PMCID: PMC8755794 DOI: 10.1038/s41389-022-00378-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Circumventing chemoresistance is crucial for effectively treating cancer including glioblastoma, a lethal brain cancer. The gap junction protein connexin 43 (Cx43) renders glioblastoma resistant to chemotherapy; however, targeting Cx43 is difficult because mechanisms underlying Cx43-mediated chemoresistance remain elusive. Here we report that Cx43, but not other connexins, is highly expressed in a subpopulation of glioblastoma and Cx43 mRNA levels strongly correlate with poor prognosis and chemoresistance in this population, making Cx43 the prime therapeutic target among all connexins. Depleting Cx43 or treating cells with αCT1–a Cx43 peptide inhibitor that sensitizes glioblastoma to the chemotherapy temozolomide–inactivates phosphatidylinositol-3 kinase (PI3K), whereas overexpression of Cx43 activates this signaling. Moreover, αCT1-induced chemo-sensitization is counteracted by a PI3K active mutant. Further research reveals that αCT1 inactivates PI3K without blocking the release of PI3K-activating molecules from membrane channels and that Cx43 selectively binds to the PI3K catalytic subunit β (PIK3CB, also called PI3Kβ or p110β), suggesting that Cx43 activates PIK3CB/p110β independent of its channel functions. To explore the therapeutic potential of simultaneously targeting Cx43 and PIK3CB/p110β, αCT1 is combined with TGX-221 or GSK2636771, two PIK3CB/p110β-selective inhibitors. These two different treatments synergistically inactivate PI3K and sensitize glioblastoma cells to temozolomide in vitro and in vivo. Our study has revealed novel mechanistic insights into Cx43/PI3K-mediated temozolomide resistance in glioblastoma and demonstrated that targeting Cx43 and PIK3CB/p110β together is an effective therapeutic approach for overcoming chemoresistance.
Collapse
|
17
|
An S, Zheng S, Cai Z, Chen S, Wang C, Li Y, Deng Z. Connexin43 in Musculoskeletal System: New Targets for Development and Disease Progression. Aging Dis 2022; 13:1715-1732. [DOI: 10.14336/ad.2022.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
|
18
|
Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. NANO CONVERGENCE 2021; 8:34. [PMID: 34727233 PMCID: PMC8560887 DOI: 10.1186/s40580-021-00282-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/09/2023]
Abstract
Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
19
|
Chen XR, Zhang YG, Wang Q. miR-9-5p Mediates ABCC1 to Elevate the Sensitivity of Glioma Cells to Temozolomide. Front Oncol 2021; 11:661653. [PMID: 34532283 PMCID: PMC8438306 DOI: 10.3389/fonc.2021.661653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 01/14/2023] Open
Abstract
Chemotherapy combined with surgery is an important clinical treatment for glioma, but endogenous or acquired temozolomide (TMZ) resistance can lead to poor prognosis. microRNA (miR)-9-5p acts in biological function of glioma, but the drug resistance of miR-9-5p in glioma is under exploration. The study intended to test the molecular mechanism of miR-9-5p in glioma cells. MTT assay was applied to investigate the chemosensitivity enhancement of miR-9-5p on TMZ in glioma cells U87-TMZ and U251-TMZ, and in vivo experiments confirmed its role on tumor growth in nude mice. The results of double luciferase reporter gene assay, qRT-PCR and WB indicated that miR-9-5p directly targeted ABCC1 (ATP binding cassette subfamily C member 1) to reduce its expressions. MTT and flow cytometry indicated that elevation of miR-9-5p or down-regulation of ABCC1 could inhibit proliferation-induced apoptosis of drug-resistant cells, and the decrease of miR-9-5p could reverse the reduction of ABCC1 on proliferation-induced apoptosis of drug-resistant cells. In vivo experiments showed that miR-9-5p could promote the anti-tumor role of TMZ. To sum up, the increase of miR-9-5p directly targets ABCC1 and may make glioma cells sensitive to TMZ.
Collapse
Affiliation(s)
- Xiang-Rui Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Qiqihar Medical Unversity, Qiqihar, China
| | - Yan-Guo Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Qiqihar Medical Unversity, Qiqihar, China
| | - Qiang Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Qiqihar Medical Unversity, Qiqihar, China
| |
Collapse
|
20
|
Liu H, Li Z, Sun H. MiR-493-5p inhibits the malignant development of gliomas via suppressing E2F3-mediated dysfunctions of P53 and PI3K/AKT pathways. Clin Transl Oncol 2021; 24:363-370. [PMID: 34460057 DOI: 10.1007/s12094-021-02698-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Gliomas is a major challenge of current medical system, and thousands of people are struggling in the pain of this disease worldwide. In the last decade, the functions of miRNAs have been revealed by many studies, and the intervention on miRNA dysfunctions has been thought as a promising way to counter cancer. MiR-493-5p has been identified as a tumor inhibitor to suppress the progressions of several tumors while its role in gliomas remains unknown. Hence, the study investigated the expression levels of miR-493-5p in glioma tissues and cell lines. METHODS CCK-8 assay, transwell assay and flow cytometry assay were used to observe the effects of miR-493-5p on tumor cells. The downstream targets of miR-493-5p were also searched and verified with online databases and dual-luciferase reporter assay. Moreover, the activities of P53 and PI3K/AKT pathways were also explored by western blot to illustrate the regulation mechanism of miR-493-5p on glioma development. RESULTS The results showed that miR-493-5p was significantly downregulated in pathological tissues and glioma cell lines, and the increased miR-493-5p effectively inhibited the malignant behavior and promoted the apoptosis of glioma cells. CONCLUSIONS E2F3 was confirmed as a target of miR-493-5p, and the effects of miR-493-5p on the phenotype of glioma cells could be partly reversed by E2F3. Besides, it was also found that miR-493-5p could effectively suppress the expression of E2F3 and then improve the dysfunctions of the P53 and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Hong Liu
- Department of Oncology, Binzhou Center Hospital, Shandong, 251700, China
| | - Zhen Li
- Department of Neurosurgery, LinYi People's Hospital, Shandong, China
| | - Hu Sun
- Department of Neurosurgery, Zibo Central Hospital, No. 54 West Communist Youth League Road, Shandong, 255000, China.
| |
Collapse
|
21
|
Connexin 43 and Sonic Hedgehog Pathway Interplay in Glioblastoma Cell Proliferation and Migration. BIOLOGY 2021; 10:biology10080767. [PMID: 34439999 PMCID: PMC8389699 DOI: 10.3390/biology10080767] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Glioblastoma is the product of accumulated genetic and epigenetic alteration where tumor cells support each other through cellular communication mechanisms and deregulated signalling processes. The autocrine and paracrine pathways between the intracellular and extracellular milieu is mediated by connexin 43, the main gap junction-forming protein driving glioblastoma progression. In this scenario, sonic hedgehog pathway, a key deregulated pathway involved in cell network signalling may affect connexin 43 expression, promoting glioblastoma pathobiology. In this study, we sought to explore how the modulation of the sonic hedgehog affects connexin 43 inducing glioblastoma hallmarks. To do this we evaluated biological effects of sonic hedgehog pathway modulation by purmorphamine and cyclopamine, a smoothened agonist and antagonist, respectively. We revealed that cell migration and proliferation are associated with connexin 43 expression upon sonic hedgehog modulation. Our study suggests that sonic hedgehog and connexin 43 axis may represent a potential therapeutic strategy for glioblastoma. Abstract Glioblastoma (GBM) represents the most common primary brain tumor within the adult population. Current therapeutic options are still limited by high rate of recurrences and signalling axes that promote GBM aggressiveness. The contribution of gap junctions (GJs) to tumor growth and progression has been proven by experimental evidence. Concomitantly, tumor microenvironment has received increasing interest as a critical process in dysregulation and homeostatic escape, finding a close link between molecular mechanisms involved in connexin 43 (CX43)-based intercellular communication and tumorigenesis. Moreover, evidence has come to suggest a crucial role of sonic hedgehog (SHH) signalling pathway in GBM proliferation, cell fate and differentiation. Herein, we used two human GBM cell lines, modulating SHH signalling and CX43-based intercellular communication in in vitro models using proliferation and migration assays. Our evidence suggests that modulation of the SHH effector smoothened (SMO), by using a known agonist (i.e., purmorphamine) and a known antagonist (i.e., cyclopamine), affects the CX43 expression levels and therefore the related functions. Moreover, SMO activation also increased cell proliferation and migration. Importantly, inhibition of CX43 channels was able to prevent SMO-induced effects. SHH pathway and CX43 interplay acts inducing tumorigenic program and supporting cell migration, likely representing druggable targets to develop new therapeutic strategies for GBM.
Collapse
|
22
|
Li A, Zhang T, Huang T, Lin R, Mu J, Su Y, Sun H, Jiang X, Wu H, Xu D, Cao H, Sun X, Ling D, Gao J. Iron Oxide Nanoparticles Promote Cx43-Overexpression of Mesenchymal Stem Cells for Efficient Suicide Gene Therapy during Glioma Treatment. Am J Cancer Res 2021; 11:8254-8269. [PMID: 34373740 PMCID: PMC8344020 DOI: 10.7150/thno.60160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) have been applied as a promising vehicle for tumour-targeted delivery of suicide genes in the herpes simplex virus thymidine kinase (HSV-tk)/ganciclovir (GCV) suicide gene therapy against malignant gliomas. The efficiency of this strategy is largely dependent on the bystander effect, which relies on high suicide gene expression levels and efficient transportation of activated GCV towards glioma cells. However, up to now, the methods to enhance the bystander effect of this strategy in an efficient and safe way are still lacking and new approaches to improve this therapeutic strategy are required. Methods: In this study, MSCs were gene transfected using magnetosome-like ferrimagnetic iron oxide nanochains (MFIONs) to highly express HSV-tk. Both the suicide and bystander effects of HSV-tk expressed MSCs (MSCs-tk) were quantitatively evaluated. Connexin 43 (Cx43) expression by MSCs and glioma cells was measured under different treatments. Intercellular communication between MSCs and C6 glioma cells was examined using a dye transfer assay. Glioma tropism and the bio-distribution of MSCs-tk were observed. Anti-tumour activity was investigated in the orthotopic glioma of rats after intravenous administration of MSCs-tk followed by intraperitoneal injection of GCV. Results: Gene transfection using MFIONs achieved sufficient expression of HSV-tk and triggered Cx43 overexpression in MSCs. These Cx43 overexpressing MSCs promoted gap junction intercellular communication (GJIC) between MSCs and glioma cells, resulting in significantly inhibited growth of glioma through an improved bystander effect. Outstanding tumour targeting and significantly prolonged survival with decreased tumour size were observed after the treatment using MFION-transfected MSCs in glioma model rats. Conclusion: Our results show that iron oxide nanoparticles have the potential to improve the suicide gene expression levels of transfected MSCs, while promoting the GJIC formation between MSCs and tumour cells, which enhances the sensitivity of glioma cells to HSV-tk/GCV suicide gene therapy.
Collapse
|
23
|
The advanced development of Cx43 and GAP-43 mediated intercellular networking in IDH1 wildtype diffuse and anaplastic gliomas with lower mitotic rate. J Cancer Res Clin Oncol 2021; 147:3003-3009. [PMID: 34173871 DOI: 10.1007/s00432-021-03711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The biologic behavior and the therapeutic resistance of diffuse and anaplastic gliomas varies greatly. This may be explained by differences in cell-to-cell communication, determined by the Cx43-associated junctional activity and the microtubules-defined network, in which GAP-43 is the dominant structural component. We assessed the expression of these crucial communication proteins in samples of patients harboring WHO°II and III gliomas, graded according to the current 4th revised WHO classification. METHODS Tissue of adult patients with WHO°II and III gliomas, who underwent surgery between 2014 and 2018, were selected from our institutional biobank. GAP-43 and Cx43 expression was analyzed using IHC. Routine clinical and neuropathological findings were additionally retrieved from our institutional prospective database. RESULTS 43 (57%) males and 33 (43%) females with a median age of 47 (IqR: 35-61) years were selected. IDH1 wildtype tumors showed a significantly higher expression of Cx43 (p = 0.014) and a tendency for increased GAP-43 production. Advanced Cx43 expression significantly correlated with lower mitosis rate (p = 0.014): more in IDH1 wildtype (r = - 0.57, p = 0.003) than in mutated gliomas (r = - 0.37, p = 0.019). There was no difference in Cx43 or GAP-43 expression in relation to anaplastic phenotype, Gadolinum-contrasted enhancement (CE) on MRI and advanced EGFR or p53 expression. CONCLUSIONS Intercellular communication tends to be more relevant in slower proliferating, e.g. lower malignant tumors. They could have more time to establish this network, providing longitudinally acquired resistance against specific oncological therapy. This feature matches the unfavorable IDH1 wildtype status of glioma and supports the noted malignant behavior of these tumors in the upcoming 5th WHO classification of gliomas.
Collapse
|
24
|
Wu DP, Zhou Y, Hou LX, Zhu XX, Yi W, Yang SM, Lin TY, Huang JL, Zhang B, Yin XX. Cx43 deficiency confers EMT-mediated tamoxifen resistance to breast cancer via c-Src/PI3K/Akt pathway. Int J Biol Sci 2021; 17:2380-2398. [PMID: 34326682 PMCID: PMC8315014 DOI: 10.7150/ijbs.55453] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 12/25/2022] Open
Abstract
Tamoxifen (TAM) resistance has indicated a significant challenge during endocrine therapy for hormone-sensitive breast cancer. Thus, it is significant to elucidate the molecular events endowing TAM resistance to endocrine therapy. In this study, we found that epithelial-mesenchymal transition (EMT) was an important event to confer TAM resistance, and attenuating EMT by elevating connexin (Cx) 43 expression could reverse TAM resistance. Specifically, Cx43 overexpression improved TAM sensitivity, while Cx43 depletion facilitated TAM insensitivity by modulating EMT in T47D TAM-resistant and -sensitive cells, and transplanted xenografts. Importantly, we found a novel reciprocal regulation between Cx43 and c-Src/PI3K/Akt pathway contributing to EMT and TAM resistance in breast cancer. Moreover, we identified that Cx43 deficiency was significantly correlated with poor relapse-free survival in patients undergoing TAM treatment. Therefore, Cx43 represents a prognostic marker and an attractive target for breast cancer treatments. Therapeutic strategies designed to increase or maintain Cx43 function may be beneficial to overcome TAM resistance.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Yan Zhou
- Clinical Pharmacy, Jingjiang People's Hospital, 214500, Jingjiang City, Jiangsu Province, P.R. China
| | - Li-Xiang Hou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Xiao-Xiao Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Wen Yi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Si-Man Yang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| | - Tian-Yu Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Bei Zhang
- Department of gynaecology and obstetrics, Xuzhou Central Hospital, 221009, Xuzhou City, Jiangsu Province, P.R. China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| |
Collapse
|
25
|
Hu Y, Jiao B, Wang C, Wu J. Regulation of temozolomide resistance in glioma cells via the RIP2/NF-κB/MGMT pathway. CNS Neurosci Ther 2021; 27:552-563. [PMID: 33460245 PMCID: PMC8025621 DOI: 10.1111/cns.13591] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Temozolomide (TMZ) is a first-line chemotherapy drug for the treatment of malignant glioma and resistance to it poses a major challenge. Receptor-interacting protein 2 (RIP2) is associated with the malignant character of cancer cells. However, it remains unclear whether RIP2 is involved in TMZ resistance in glioma. METHODS RIP2 expression was inhibited in TMZ-resistant glioma cells and normal glioma cells by using small interfering RNA (siRNA) against RIP2. Plasmid transfection method was used to overexpress RIP2. Cell counting kit-8 assays were performed to evaluate cell viability. Western blotting or immunofluorescence was performed to determine RIP2, NF-κB, and MGMT expression in cells. Flow cytometry was used to investigate cell apoptosis. TMZ-resistant glioma xenograft models were established to evaluate the role of the RIP2/NF-κB/MGMT signaling pathway in drug resistance. RESULTS We observed that RIP2 expression was upregulated in TMZ-resistant glioma cells, whereas silencing of RIP2 expression enhanced cellular sensitivity to TMZ. Similarly, upon the induction of RIP2 overexpression, glioma cells developed resistance to TMZ. The molecular mechanism underlying the process indicated that RIP2 can activate the NF-κB signaling pathway and upregulate the expression of O6-methylguanine-DNA methyltransferase (MGMT), following which the glioma cells develop drug resistance. In the TMZ-resistant glioma xenograft model, treatment with JSH-23 (an NF-κB inhibitor) and lomeguatrib (an MGMT inhibitor) could enhance the sensitivity of the transplanted tumor to TMZ. CONCLUSION We report that the RIP2/NF-κB/MGMT signaling pathway is involved in the regulation of TMZ resistance. Interference with NF-κB or MGMT activity could constitute a novel strategy for the treatment of RIP2-positive TMZ-resistant glioma.
Collapse
Affiliation(s)
- Yu‐Hua Hu
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Bao‐Hua Jiao
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Cheng‐Ye Wang
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jian‐Liang Wu
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
26
|
Temozolomide Induces the Acquisition of Invasive Phenotype by O6-Methylguanine-DNA Methyltransferase (MGMT) + Glioblastoma Cells in a Snail-1/Cx43-Dependent Manner. Int J Mol Sci 2021; 22:ijms22084150. [PMID: 33923767 PMCID: PMC8073161 DOI: 10.3390/ijms22084150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma multiforme (GBM) recurrences after temozolomide (TMZ) treatment result from the expansion of drug-resistant and potentially invasive GBM cells. This process is facilitated by O6-Methylguanine-DNA Methyltransferase (MGMT), which counteracts alkylating TMZ activity. We traced the expansion of invasive cell lineages under persistent chemotherapeutic stress in MGMTlow (U87) and MGMThigh (T98G) GBM populations to look into the mechanisms of TMZ-induced microevolution of GBM invasiveness. TMZ treatment induced short-term, pro-invasive phenotypic shifts of U87 cells, in the absence of Snail-1 activation. They were illustrated by a transient induction of their motility and followed by the hypertrophy and the signs of senescence in scarce U87 sub-populations that survived long-term TMZ stress. In turn, MGMThigh T98G cells reacted to the long-term TMZ treatment with the permanent induction of invasiveness. Ectopic Snail-1 down-regulation attenuated this effect, whereas its up-regulation augmented T98G invasiveness. MGMTlow and MGMThigh cells both reacted to the long-term TMZ stress with the induction of Cx43 expression. However, only in MGMThigh T98G populations, Cx43 was directly involved in the induction of invasiveness, as manifested by the induction of T98G invasiveness after ectopic Cx43 up-regulation and by the opposite effect after Cx43 down-regulation. Collectively, Snail-1/Cx43-dependent signaling participates in the long-term TMZ-induced microevolution of the invasive GBM front. High MGMT activity remains a prerequisite for this process, even though MGMT-related GBM chemoresistance is not necessary for its initiation.
Collapse
|
27
|
Sheng Z. Connexin 43 peptidic medicine for glioblastoma stem cells. EBioMedicine 2021; 64:103205. [PMID: 33493796 PMCID: PMC7823208 DOI: 10.1016/j.ebiom.2020.103205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, United States; Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States; Faculty of Health Science, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
28
|
Pelaz SG, Jaraíz-Rodríguez M, Álvarez-Vázquez A, Talaverón R, García-Vicente L, Flores-Hernández R, Gómez de Cedrón M, Tabernero M, Ramírez de Molina A, Lillo C, Medina JM, Tabernero A. Targeting metabolic plasticity in glioma stem cells in vitro and in vivo through specific inhibition of c-Src by TAT-Cx43 266-283. EBioMedicine 2020; 62:103134. [PMID: 33254027 PMCID: PMC7708820 DOI: 10.1016/j.ebiom.2020.103134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Background Glioblastoma is the most aggressive primary brain tumour and has a very poor prognosis. Inhibition of c-Src activity in glioblastoma stem cells (GSCs, responsible for glioblastoma lethality) and primary glioblastoma cells by the peptide TAT-Cx43266–283 reduces tumorigenicity, and boosts survival in preclinical models. Because c-Src can modulate cell metabolism and several reports revealed poor clinical efficacy of various antitumoral drugs due to metabolic rewiring in cancer cells, here we explored the inhibition of advantageous GSC metabolic plasticity by the c-Src inhibitor TAT-Cx43266-283. Methods Metabolic impairment induced by the c-Src inhibitor TAT-Cx43266-283 in vitro was assessed by fluorometry, western blotting, immunofluorescence, qPCR, enzyme activity assays, electron microscopy, Seahorse analysis, time-lapse imaging, siRNA, and MTT assays. Protein expression in tumours from a xenograft orthotopic glioblastoma mouse model was evaluated by immunofluorescence. Findings TAT-Cx43266–283 decreased glucose uptake in human GSCs and reduced oxidative phosphorylation without a compensatory increase in glycolysis, with no effect on brain cell metabolism, including rat neurons, human and rat astrocytes, and human neural stem cells. TAT-Cx43266-283 impaired metabolic plasticity, reducing GSC growth and survival under different nutrient environments. Finally, GSCs intracranially implanted with TAT-Cx43266–283 showed decreased levels of important metabolic targets for cancer therapy, such as hexokinase-2 and GLUT-3. Interpretation The reduced ability of TAT-Cx43266-283–treated GSCs to survive in metabolically challenging settings, such as those with restricted nutrient availability or the ever-changing in vivo environment, allows us to conclude that the advantageous metabolic plasticity of GSCs can be therapeutically exploited through the specific and cell-selective inhibition of c-Src by TAT-Cx43266-283. Funding Spanish Ministerio de Economía y Competitividad (FEDER BFU2015-70040-R and FEDER RTI2018-099873-B-I00), Fundación Ramón Areces. Fellowships from the Junta de Castilla y León, European Social Fund, Ministerio de Ciencia and Asociación Española Contra el Cáncer (AECC).
Collapse
Affiliation(s)
- Sara G Pelaz
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Myriam Jaraíz-Rodríguez
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Andrea Álvarez-Vázquez
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Rocío Talaverón
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Laura García-Vicente
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Raquel Flores-Hernández
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Canto Blanco 8 E, Madrid 28049, Spain
| | - María Tabernero
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Canto Blanco 8 E, Madrid 28049, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Canto Blanco 8 E, Madrid 28049, Spain
| | - Concepción Lillo
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - José M Medina
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain.
| |
Collapse
|
29
|
Ding Y, Zhou Y, Li Z, Zhang H, Yang Y, Qin H, Xu Q, Zhao L. Oroxylin A reversed Fibronectin-induced glioma insensitivity to Temozolomide by suppressing IP 3R1/AKT/β-catenin pathway. Life Sci 2020; 260:118411. [PMID: 32918978 DOI: 10.1016/j.lfs.2020.118411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
AIMS Cell adhesion mediated-drug resistance (CAM-DR) is one of main reasons for. the limitation to chemotherapy, but the underlying mechanism remains unclear in glioma. In this study, we investigated the mechanism of CAM-DR induced by Fibronectin (Fn). Besides, we studied the reversal effect of Oroxylin A, a natural flavonoid extracted from Scutellaria radix, on Temozolomide (TMZ) insensitivity of glioma cells. MAIN METHODS Human Fn protein was used to mimic cell adhesion model and investigate its effect on the insensitivity of glioma cells to TMZ. Moreover, Oroxylin A was studied regarding its reversal effect on TMZ insensitivity of glioma via multiple molecular biological methods such as MTT, cell apoptosis assay, siRNA transfection, western blot, immunofluorescence assay. KEY FINDINGS Fn could decrease the apoptosis-inducing effect of TMZ and led to the CAM-DR in glioma cells. Further studies showed that up-regulations of IP3R1 and intracellular Ca2+ level induced the activation of AKT kinase which increased the phosphorylation of GSK-3β and subsequently caused the entry of β-catenin into the nucleus. Knocking down IP3R1 significantly improved the sensitivity of glioma cells to TMZ. Meanwhile, after treatment with low-toxic concentration of Oroxylin A, the apoptosis induced by TMZ under Fn condition increased dramatically. Furthermore, our results revealed that Oroxylin A markedly inhibited the expression of IP3R1 and the activation of AKT/β-catenin pathway. SIGNIFICANCE Oroxylin A could reverse the insensitivity of TMZ via suppressing IP3R1/AKT/β-catenin pathway and it might be helpful for enhancing the anti-cancer effect of TMZ in glioma.
Collapse
Affiliation(s)
- Youxiang Ding
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - You Zhou
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - Zhaohe Li
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - Heng Zhang
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - Yue Yang
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - Hongkun Qin
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - Qingxiang Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated to Medical College of Nanjing University, Nanjing 210009, China.
| | - Li Zhao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China.
| |
Collapse
|
30
|
Khosla K, Naus CC, Sin WC. Cx43 in Neural Progenitors Promotes Glioma Invasion in a 3D Culture System. Int J Mol Sci 2020; 21:ijms21155216. [PMID: 32717889 PMCID: PMC7432065 DOI: 10.3390/ijms21155216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
The environment that envelops the cancer cells intimately affects the malignancy of human cancers. In the case of glioma, an aggressive adult brain cancer, its high rate of recurrence after total resection is responsible for a poor prognosis. Connexin43 (Cx43) is a gap junction protein with a prominent presence in glioma-associated normal brain cells, specifically in the reactive astrocytes. We previously demonstrated that elimination of Cx43 in these astrocytes reduces glioma invasion in a syngeneic mouse model. To further our investigation in human glioma cells, we developed a scaffold-free 3D platform that takes into account both the tumor and its interaction with the surrounding tissue. Using cell-tracking dyes and 3D laser scanning confocal microscopy, we now report that the elimination of Cx43 protein in neural progenitor spheroids reduced the invasiveness of human brain tumor-initiating cells, confirming our earlier observation in an intact mouse brain. By investigating the glioma invasion in a defined multicellular system with a tumor boundary that mimics the intact brain environment, our findings strengthen Cx43 as a candidate target for glioma control.
Collapse
|
31
|
Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, Cruz-Salgado A, Sotelo J, Trejo-Solís C. Autophagy as a Potential Therapy for Malignant Glioma. Pharmaceuticals (Basel) 2020; 13:ph13070156. [PMID: 32707662 PMCID: PMC7407942 DOI: 10.3390/ph13070156] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells.
Collapse
Affiliation(s)
- Angel Escamilla-Ramírez
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Rosa A. Castillo-Rodríguez
- Laboratorio de Oncología Experimental, CONACYT-Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Isabel Anaya-Rubio
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Eduardo Briseño
- Clínica de Neurooncología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Patricia Guevara
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Julio Sotelo
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Cristina Trejo-Solís
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
- Correspondence: ; Tel.: +52-555-060-4040
| |
Collapse
|
32
|
Hosseindoost S, Hashemizadeh S, Gharaylou Z, Dehpour AR, Javadi SAH, Arjmand B, Hadjighassem M. β2-Adrenergic Receptor Stimulation Upregulates Cx43 Expression on Glioblastoma Multiforme and Olfactory Ensheathing Cells. J Mol Neurosci 2020; 70:1451-1460. [PMID: 32506304 DOI: 10.1007/s12031-020-01542-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is described as an invasive astrocytic tumor in adults. Despite current standard treatment approaches, the outcome of GBM remains unfavorable. The downregulation of connexin 43 (Cx43) expression is one of the molecular transformations in GBM cells. The Cx43 levels and subsequently gap junctional intercellular communication (GJIC) have an important role in the efficient transfer of cytotoxic drugs to whole tumor cells. As shown in our previous study, the stimulation of the β2-adrenergic receptor (β2-AR) leads to the modulation of Cx43 expression level in the GBM cell line. Here we further examine the effect of clenbuterol hydrochloride as a selective β2-AR agonist on the Cx43 expression in human GBM-derived astrocyte cells and human olfactory ensheathing cells (OECs) as a potent vector for future gene therapy. In this experiment, first we established a primary culture of astrocytes from GBM samples and verified the purity using immunocytofluorescent staining. Western blot analysis was performed to evaluate the Cx43 protein level. Our western blot findings reveal that clenbuterol hydrochloride upregulates the Cx43 protein level in both primary human astrocyte cells and human OECs. Conversely, ICI 118551 as a β2-AR antagonist inhibits these effects. Moreover, clenbuterol hydrochloride increases the Cx43 expression in primary human astrocyte cells and OECs co-culture systems, and ICI 118551 reverses these effects. To confirm the western blot results, immunocytofluorescent staining was performed to evaluate the β2-AR agonist effect on Cx43 expression. Our immunocytofluorescent results supported western blot analysis in primary human astrocyte cells and the OECs co-culture system. The results of this study suggest that the activation of β2-AR with regard to Cx43 protein levels enhancement in GBM cells and OECs might be a promising approach for GBM treatment in the future.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Hashemizadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Gharaylou
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Javadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Neurosurgery department, Imam Khomeini hospital complex, TUMS, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Lin J, Ding S, Xie C, Yi R, Wu Z, Luo J, Huang T, Zeng Y, Wang X, Xu A, Xiao J, Song Y, Zhang X. MicroRNA-4476 promotes glioma progression through a miR-4476/APC/β-catenin/c-Jun positive feedback loop. Cell Death Dis 2020; 11:269. [PMID: 32327666 PMCID: PMC7181615 DOI: 10.1038/s41419-020-2474-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Glioma has been a major healthcare burden; however, the specific molecular regulatory mechanism underlying its initiation and progression remains to be elucidated. Although it is known that many miRNAs are involved in the regulation of malignant phenotypes of glioma, the role of miR-4476 has not been reported yet. In the present study, we identify miR-4476 as an upregulated microRNA, which promotes cell proliferation, migration, and invasion in glioma. Further mechanistic analyses indicate that the adenomatous polyposis coli (APC), a negative regulator of the Wnt/β-catenin signaling pathway, is a direct target of miR-4476 and mediates the oncogenic effects of miR-4476 in glioma. C-Jun, a downstream effector of the Wnt/β-catenin signaling, is upregulated by miR-4476 overexpression. In turn, c-Jun could positively regulate miR-4476 expression by binding to the upstream of its transcription start site (TSS). Furthermore, in our clinical samples, increased miR-4476 is an unfavorable prognostic factor, and its expression positively correlates with c-Jun expression but negatively correlates with that of APC. In conclusion, our study demonstrates that miR-4476 acts as a tumor enhancer, directly targeting APC to stimulate its own expression and promoting the malignant phenotypes of glioma.
Collapse
Affiliation(s)
- Jie Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China
| | - Shengfeng Ding
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China
| | - Cheng Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China
| | - Renhui Yi
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, Jiangxi, PR China
| | - Zhiyong Wu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China
| | - Jie Luo
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China
| | - Tengyue Huang
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, Jiangxi, PR China
| | - Yu Zeng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China.,Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, PR China
| | - Xizhao Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China.,Department of Neurosurgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, 362000, Quanzhou, Fujian Province, PR China
| | - Anqi Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China
| | - Jianqi Xiao
- Department of Neurosurgery, The First Hospital of Qiqihar City, 161005, Qiqihar, PR China.
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China.
| | - Xian Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China.
| |
Collapse
|
34
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan JJ, Albarracin SL. Role of Connexins 30, 36, and 43 in Brain Tumors, Neurodegenerative Diseases, and Neuroprotection. Cells 2020; 9:E846. [PMID: 32244528 PMCID: PMC7226843 DOI: 10.3390/cells9040846] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Gap junction (GJ) channels and their connexins (Cxs) are complex proteins that have essential functions in cell communication processes in the central nervous system (CNS). Neurons, astrocytes, oligodendrocytes, and microglial cells express an extraordinary repertory of Cxs that are important for cell to cell communication and diffusion of metabolites, ions, neurotransmitters, and gliotransmitters. GJs and Cxs not only contribute to the normal function of the CNS but also the pathological progress of several diseases, such as cancer and neurodegenerative diseases. Besides, they have important roles in mediating neuroprotection by internal or external molecules. However, regulation of Cx expression by epigenetic mechanisms has not been fully elucidated. In this review, we provide an overview of the known mechanisms that regulate the expression of the most abundant Cxs in the central nervous system, Cx30, Cx36, and Cx43, and their role in brain cancer, CNS disorders, and neuroprotection. Initially, we focus on describing the Cx gene structure and how this is regulated by epigenetic mechanisms. Then, the posttranslational modifications that mediate the activity and stability of Cxs are reviewed. Finally, the role of GJs and Cxs in glioblastoma, Alzheimer's, Parkinson's, and Huntington's diseases, and neuroprotection are analyzed with the aim of shedding light in the possibility of using Cx regulators as potential therapeutic molecules.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| | | | | | | | | | - Sonia-Luz Albarracin
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| |
Collapse
|
36
|
Long Non-coding RNA EPIC1 Promotes Cell Proliferation and Motility and Drug Resistance in Glioma. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:130-137. [PMID: 32322669 PMCID: PMC7163045 DOI: 10.1016/j.omto.2020.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Evidence has revealed that long non-coding RNAs (lncRNAs) are involved in carcinogenesis and tumor progression. lncRNAs play an important role in regulation of numerous cellular processes including cell proliferation, apoptosis, cell cycle, differentiation, and motility. Several studies have demonstrated that lncRNA EPIC1 governs cell growth, cell cycle, migration, invasion, and drug resistance in human malignancies. However, the role of EPIC1 and its underlying molecular mechanisms in glioma have not been investigated. In this study, we determined the function of EPIC1 in glioma cells via upregulation or downregulation of EPIC1. We further dissected the mechanism of EPIC1-mediated tumor progression in glioma. Our results showed that inhibition of EPIC1 suppressed cell viability, induced apoptosis, inhibited cell invasion, and increased cell sensitivity to temozolomide in glioma cells. Consistently, overexpression of EPIC1 exhibited the opposite effects in glioma cells. Moreover, our data suggest that EPIC1 exerts its biological functions via targeting Cdc20 in glioma cells. In line with this, overexpression of Cdc20 reversed the EPIC1-mediated tumor progression in glioma cells. Therefore, targeting EPIC1 might be a useful approach for glioma treatment.
Collapse
|
37
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Sahib S, Bryukhovetskiy I, Bryukhovetskiy A, Buzoianu AD, Patnaik R, Wiklund L, Sharma A. Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:1-66. [PMID: 32448602 DOI: 10.1016/bs.irn.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
De Meulenaere V, Bonte E, Verhoeven J, Kalala Okito JP, Pieters L, Vral A, De Wever O, Leybaert L, Goethals I, Vanhove C, Descamps B, Deblaere K. Adjuvant therapeutic potential of tonabersat in the standard treatment of glioblastoma: A preclinical F98 glioblastoma rat model study. PLoS One 2019; 14:e0224130. [PMID: 31634381 PMCID: PMC6802836 DOI: 10.1371/journal.pone.0224130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose Even with an optimal treatment protocol, the median survival of glioblastoma (GB) patients is only 12–15 months. Hence, there is need for novel effective therapies that improve survival outcomes. Recent evidence suggests an important role for connexin (Cx) proteins (especially Cx43) in the microenvironment of malignant glioma. Cx43-mediated gap junctional communication has been observed between tumor cells, between astrocytes and between tumor cells and astrocytes. Therefore, gap junction directed therapy using a pharmacological suppressor or modulator, such as tonabersat, could be a promising target in the treatment of GB. In this preclinical study, we evaluated the possible therapeutic potential of tonabersat in the F98 model. Procedures Female Fischer rats were inoculated with ± 25.000 F98 tumor cells in the right frontal lobe. Eight days post-inoculation contrast-enhanced T1-weighted (CE-T1w) magnetic resonance (MR) images were acquired to confirm tumor growth in the brain. After tumor confirmation, rats were randomized into a Control Group, a Connexin Modulation Group (CM), a Standard Medical Treatment Group (ST), and a Standard Medical Treatment with adjuvant Connexin Modulation Group (STCM). To evaluate therapy response, T2-weighted (T2w) and CE-T1w sequences were acquired at several time points. Tumor volume analysis was performed on CE-T1w images and statistical analysis was performed using a linear mixed model. Results Significant differences in estimated geometric mean tumor volumes were found between the ST Group and the Control Group and also between the STCM Group and the Control Group. In addition, significant differences in estimated geometric mean tumor volumes between the ST Group and the STCM Group were demonstrated. No significant differences in estimated geometric mean tumor volumes were found between the Control Group and the CM Group. Conclusion Our results demonstrate a therapeutic potential of tonabersat for the treatment of GB when used in combination with radiotherapy and temozolomide chemotherapy.
Collapse
Affiliation(s)
| | - Ellen Bonte
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| | - Jeroen Verhoeven
- Department of Pharmaceutical analysis, Ghent University, Ghent, Belgium
| | | | - Leen Pieters
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Department of Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | - Karel Deblaere
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
39
|
Haustrate A, Hantute-Ghesquier A, Prevarskaya N, Lehen'kyi V. Monoclonal Antibodies Targeting Ion Channels and Their Therapeutic Potential. Front Pharmacol 2019; 10:606. [PMID: 31231216 PMCID: PMC6561378 DOI: 10.3389/fphar.2019.00606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Monoclonal antibodies (mAbs) represent a rapidly growing pharmaceutical class of protein drugs that becomes an important part of the precision therapy. mAbs are characterized by their high specificity and affinity for the target antigen, which is mostly present on the cell surface. Ion channels are a large family of transmembrane proteins that control ion transport across the cell membrane. They are involved in almost all biological processes in both health and disease and are widely considered as prospective targets. However, no antibody-based drug targeting ion channel has been developed so far that has progressed to clinical use. Thus, we provide a comprehensive review of the elaborated mAbs against ion channels, describe their mechanisms of action, and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Aurélien Haustrate
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, Villeneuve d'Ascq, France
| | - Aline Hantute-Ghesquier
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, Villeneuve d'Ascq, France
| | - V'yacheslav Lehen'kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, Villeneuve d'Ascq, France.,FONDATION ARC, Villejuif, France
| |
Collapse
|
40
|
Voce DJ, Bernal GM, Wu L, Crawley CD, Zhang W, Mansour NM, Cahill KE, Szymura SJ, Uppal A, Raleigh DR, Spretz R, Nunez L, Larsen G, Khodarev NN, Weichselbaum RR, Yamini B. Temozolomide Treatment Induces lncRNA MALAT1 in an NF-κB and p53 Codependent Manner in Glioblastoma. Cancer Res 2019; 79:2536-2548. [PMID: 30940658 DOI: 10.1158/0008-5472.can-18-2170] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/17/2019] [Accepted: 03/28/2019] [Indexed: 01/03/2023]
Abstract
Alkylating chemotherapy is a central component of the management of glioblastoma (GBM). Among the factors that regulate the response to alkylation damage, NF-κB acts to both promote and block cytotoxicity. In this study, we used genome-wide expression analysis in U87 GBM to identify NF-κB-dependent factors altered in response to temozolomide and found the long noncoding RNA (lncRNA) MALAT1 as one of the most significantly upregulated. In addition, we demonstrated that MALAT1 expression was coregulated by p50 (p105) and p53 via novel κB- and p53-binding sites in the proximal MALAT1 coding region. Temozolomide treatment inhibited p50 recruitment to its cognate element as a function of Ser329 phosphorylation while concomitantly increasing p53 recruitment. Moreover, luciferase reporter studies demonstrated that both κB and p53 cis-elements were required for efficient transactivation in response to temozolomide. Depletion of MALAT1 sensitized patient-derived GBM cells to temozolomide cytotoxicity, and in vivo delivery of nanoparticle-encapsulated anti-MALAT1 siRNA increased the efficacy of temozolomide in mice bearing intracranial GBM xenografts. Despite these observations, in situ hybridization of GBM specimens and analysis of publicly available datasets revealed that MALAT1 expression within GBM tissue was not prognostic of overall survival. Together, these findings support MALAT1 as a target for chemosensitization of GBM and identify p50 and p52 as primary regulators of this ncRNA. SIGNIFICANCE: These findings identify NF-κB and p53 as regulators of the lncRNA MALAT1 and suggest MALAT1 as a potential target for the chemosensitization of GBM.
Collapse
Affiliation(s)
- David J Voce
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Giovanna M Bernal
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Longtao Wu
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Clayton D Crawley
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Wei Zhang
- Department of Preventative Medicine, Northwestern University, Chicago, Illinois
| | - Nassir M Mansour
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Kirk E Cahill
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Szymon J Szymura
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Abhineet Uppal
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - David R Raleigh
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | | | - Luis Nunez
- LNK Chemsolutions LLC, Lincoln, Nebraska
| | | | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Bakhtiar Yamini
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
41
|
Aftab Q, Mesnil M, Ojefua E, Poole A, Noordenbos J, Strale PO, Sitko C, Le C, Stoynov N, Foster LJ, Sin WC, Naus CC, Chen VC. Cx43-Associated Secretome and Interactome Reveal Synergistic Mechanisms for Glioma Migration and MMP3 Activation. Front Neurosci 2019; 13:143. [PMID: 30941001 PMCID: PMC6433981 DOI: 10.3389/fnins.2019.00143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular matrix (ECM) remodeling, degradation and glioma cell motility are critical aspects of glioblastoma multiforme (GBM). Despite being a rich source of potential biomarkers and targets for therapeutic advance, the dynamic changes occurring within the extracellular environment that are specific to GBM motility have yet to be fully resolved. The gap junction protein connexin43 (Cx43) increases glioma migration and invasion in a variety of in vitro and in vivo models. In this study, the upregulation of Cx43 in C6 glioma cells induced morphological changes and the secretion of proteins associated with cell motility. Demonstrating the selective engagement of ECM remodeling networks, secretome analysis revealed the near-binary increase of osteopontin and matrix metalloproteinase-3 (MMP3), with gelatinase and NFF-3 assays confirming the proteolytic activities. Informatic analysis of interactome and secretome downstream of Cx43 identifies networks of glioma motility that appear to be synergistically engaged. The data presented here implicate ECM remodeling and matrikine signals downstream of Cx43/MMP3/osteopontin and ARK1B10 inhibition as possible avenues to inhibit GBM.
Collapse
Affiliation(s)
- Qurratulain Aftab
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Marc Mesnil
- Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, University of Poitiers, Poitiers, France
| | - Emmanuel Ojefua
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Alisha Poole
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Jenna Noordenbos
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Pierre-Olivier Strale
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Chris Sitko
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Caitlin Le
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Nikolay Stoynov
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Wun-Chey Sin
- Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, University of Poitiers, Poitiers, France
| | - Christian C Naus
- Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, University of Poitiers, Poitiers, France
| | - Vincent C Chen
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| |
Collapse
|
42
|
Xing L, Yang T, Cui S, Chen G. Connexin Hemichannels in Astrocytes: Role in CNS Disorders. Front Mol Neurosci 2019; 12:23. [PMID: 30787868 PMCID: PMC6372977 DOI: 10.3389/fnmol.2019.00023] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
In the central nervous system (CNS), astrocytes form networks interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. When unopposed by an adjoining hemichannel, astrocytic connexins can act as hemichannels to control the release of small molecules such as ATP and glutamate into the extracellular space. Accruing evidence indicates that astrocytic connexins are crucial for the coordination and maintenance of physiologic CNS activity. Here we provide an update on the role of astrocytic connexins in neurodegenerative disorders, glioma, and ischemia. In addition, we address the regulation of Cx43 in chronic pain.
Collapse
Affiliation(s)
- LingYan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ShuSen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
43
|
Towner RA, Smith N, Saunders D, Brown CA, Cai X, Ziegler J, Mallory S, Dozmorov MG, Coutinho De Souza P, Wiley G, Kim K, Kang S, Kong DS, Kim YT, Fung KM, Wren JD, Battiste J. OKN-007 Increases temozolomide (TMZ) Sensitivity and Suppresses TMZ-Resistant Glioblastoma (GBM) Tumor Growth. Transl Oncol 2019; 12:320-335. [PMID: 30468988 PMCID: PMC6251232 DOI: 10.1016/j.tranon.2018.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023] Open
Abstract
Treatment of glioblastoma (GBM) remains a challenge using conventional chemotherapy, such as temozolomide (TMZ), and is often ineffective as a result of drug resistance. We have assessed a novel nitrone-based agent, OKN-007, and found it to be effective in decreasing tumor volumes and increasing survival in orthotopic GBM xenografts by decreasing cell proliferation and angiogenesis and increasing apoptosis. In this study, we assessed combining OKN-007 with TMZ in vivo in a human G55 GBM orthotopic xenograft model and in vitro in TMZ-resistant and TMZ-sensitive human GBM cell lines. For the in vivo studies, magnetic resonance imaging was used to assess tumor growth and vascular alterations. Percent animal survival was also determined. For the in vitro studies, cell growth, IC50 values, RNA-seq, RT-PCR, and ELISA were used to assess growth inhibition, possible mechanism-of actions (MOAs) associated with combined OKN-007 + TMZ versus TMZ alone, and gene and protein expression levels, respectively. Microarray analysis of OKN-007-treated rat F98 glioma tumors was also carried out to determine possible MOAs of OKN-007 in glioma-bearing animals either treated or not treated with OKN-007. OKN-007 seems to elicit its effect on GBM tumors via inhibition of tumorigenic TGF-β1, which affects the extracellular matrix. When combined with TMZ, OKN-007 significantly increases percent survival, decreases tumor volumes, and normalizes tumor blood vasculature in vivo compared to untreated tumors and seems to affect TMZ-resistant GBM cells possibly via IDO-1, SUMO2, and PFN1 in vitro. Combined OKN-007 + TMZ may be a potentially potent treatment strategy for GBM patients.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of PathologyUniversity of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Chase A Brown
- Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xue Cai
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jadith Ziegler
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of PathologyUniversity of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Graham Wiley
- Clinical Genomics Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kyeongsoon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongsangnam-do, Republic of Korea; Oblato, Inc., Princeton, NJ, USA
| | | | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Young-Tae Kim
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Kar-Ming Fung
- Department of PathologyUniversity of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan D Wren
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - James Battiste
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of NeurologyUniversity of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
44
|
Tong H, Zhao K, Zhang J, Zhu J, Xiao J. YB-1 modulates the drug resistance of glioma cells by activation of MDM2/p53 pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:317-326. [PMID: 30679904 PMCID: PMC6338113 DOI: 10.2147/dddt.s185514] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Y-box-binding protein-1 (YB-1) is aberrantly expressed in a variety of cancers. However, the biological functional role of YB-1 in glioma is not yet clear. Methods The expression of MDM2 and YB-1 was analyzed by real time PCR. Overexpression and knockdown of YB-1 in glioma cells were created by transfection of pcDNA-YB-1 and siRNA against YB-1, respectively. Cell viability was performed by CCK8 assay. Results Our findings showed that glioma tissues had higher expressions of YB-1 than that in cancer-free tissues in 54 glioma patients, which were also positively correlated with Murine MDM2 expression. Overexpression of YB-1 or MDM2 renders a drug resistance feature in glioma cell exposed to temozolomide (TMZ), by directly targeting p53. Genetic or chemical inhibition of MDM2 significantly blocked YB-1-modulated response of glioma cells to TMZ. Moreover, inhibition of YB-1 or MDM2 reduced glioma cells metastasis and mortality in mice. Conclusion YB-1 facilitates the resistance of glioma cells to TMZ by direct activation of MDM2/p53 signaling and represents a promising molecular target for glioma treatment.
Collapse
Affiliation(s)
- Hui Tong
- Department of Neurosurgery, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| | - Kai Zhao
- Department of Neurosurgery, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang 161005, People's Republic of China,
| | - Jingyu Zhang
- Department of Internal Medicine, Jiangpu District Health Center of Huai'an, Huai'an, Jiangsu, 223001, People's Republic of China
| | - Jinxin Zhu
- Department of Neurosurgery, Lianshui County People's Hospital, Huai'an, Jiangsu 223400, People's Republic of China,
| | - Jianqi Xiao
- Department of Neurosurgery, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang 161005, People's Republic of China,
| |
Collapse
|
45
|
Sinyuk M, Mulkearns-Hubert EE, Reizes O, Lathia J. Cancer Connectors: Connexins, Gap Junctions, and Communication. Front Oncol 2018; 8:646. [PMID: 30622930 PMCID: PMC6308394 DOI: 10.3389/fonc.2018.00646] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Despite concerted clinical and research efforts, cancer is a leading cause of death worldwide. Surgery, radiation, and chemotherapy have remained the most common standard-of-care strategies against cancer for decades. However, the side effects of these therapies demonstrate the need to investigate adjuvant novel treatment modalities that minimize the harm caused to healthy cells and tissues. Normal and cancerous cells require communication amongst themselves and with their surroundings to proliferate and drive tumor growth. It is vital to understand how intercellular and external communication impacts tumor cell malignancy. To survive and grow, tumor cells, and their normal counterparts utilize cell junction molecules including gap junctions (GJs), tight junctions, and adherens junctions to provide contact points between neighboring cells and the extracellular matrix. GJs are specialized structures composed of a family of connexin proteins that allow the free diffusion of small molecules and ions directly from the cytoplasm of adjacent cells, without encountering the extracellular milieu, which enables rapid, and coordinated cellular responses to internal and external stimuli. Importantly, connexins perform three main cellular functions. They enable direct gap junction intercellular communication (GJIC) between cells, form hemichannels to allow cell communication with the extracellular environment, and serve as a site for protein-protein interactions to regulate signaling pathways. Connexins themselves have been found to promote tumor cell growth and invasiveness, contributing to the overall tumorigenicity and have emerged as attractive anti-tumor targets due to their functional diversity. However, connexins can also serve as tumor suppressors, and therefore, a complete understanding of the roles of the connexins and GJs in physiological and pathophysiological conditions is needed before connexin targeting strategies are applied. Here, we discuss how the three aspects of connexin function, namely GJIC, hemichannel formation, and connexin-protein interactions, function in normal cells, and contribute to tumor cell growth, proliferation, and death. Finally, we discuss the current state of anti-connexin therapies and speculate which role may be most amenable for the development of targeting strategies.
Collapse
Affiliation(s)
- Maksim Sinyuk
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Erin E. Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ofer Reizes
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
| | - Justin Lathia
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
46
|
Casein Kinase 1 Epsilon Regulates Glioblastoma Cell Survival. Sci Rep 2018; 8:13621. [PMID: 30206363 PMCID: PMC6134061 DOI: 10.1038/s41598-018-31864-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most common malignant brain cancer with a dismal prognosis. The difficulty in treating glioblastoma is largely attributed to the lack of effective therapeutic targets. In our previous work, we identified casein kinase 1 ε (CK1ε, also known as CSNK1E) as a potential survival factor in glioblastoma. However, how CK1ε controls cell survival remains elusive and whether targeting CK1ε is a possible treatment for glioblastoma requires further investigation. Here we report that CK1ε was expressed at the highest level among six CK1 isoforms in glioblastoma and enriched in high-grade glioma, but not glia cells. Depletion of CK1ε remarkably inhibited the growth of glioblastoma cells and suppressed self-renewal of glioblastoma stem cells, while having limited effect on astrocytes. CK1ε deprivation activated β-catenin and induced apoptosis, which was further counteracted by knockdown of β-catenin. The CK1ε inhibitor IC261, but not PF-4800567, activated β-catenin and blocked the growth of glioblastoma cells and glioblastoma stem cells. Congruently, IC261 elicited a robust growth inhibition of human glioblastoma xenografts in mice. Together, our results demonstrate that CK1ε regulates the survival of glioblastoma cells and glioblastoma stem cells through β-catenin signaling, underscoring the importance of targeting CK1ε as an effective treatment for glioblastoma.
Collapse
|