1
|
Paliwal H, Nakpheng T, Kumar Paul P, Prem Ananth K, Srichana T. Development of a self-microemulsifying drug delivery system to deliver delamanid via a pressurized metered dose inhaler for treatment of multi-drug resistant pulmonary tuberculosis. Int J Pharm 2024; 655:124031. [PMID: 38521375 DOI: 10.1016/j.ijpharm.2024.124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Tuberculosis (TB) is a serious health issue that contributes to millions of deaths throughout the world and increases the threat of serious pulmonary infections in patients with respiratory illness. Delamanid is a novel drug approved in 2014 to deal with multi-drug resistant TB (MDR-TB). Despite its high efficiency in TB treatment, delamanid poses delivery challenges due to poor water solubility leading to inadequate absorption upon oral administration. This study involves the development of novel formulation-based pressurized metered dose inhalers (pMDIs) containing self-microemulsifying mixtures of delamanid for efficient delivery to the lungs. To identify the appropriate self-microemulsifying formulations, ternary diagrams were plotted using different combinations of surfactant to co-surfactant ratios (1:1, 2:1, and 3:1). The combinations used Cremophor RH40, Poly Ethylene Glycol 400 (PEG 400), and peppermint oil, and those that showed the maximum microemulsion region and rapid and stable emulsification were selected for further characterization. The diluted self-microemulsifying mixtures underwent evaluation of dose uniformity, droplet size, zeta potential, and transmission electron microscopy. The selected formulations exhibited uniform delivery of the dose throughout the canister life, along with droplet sizes and zeta potentials that ranged from 24.74 to 88.99 nm and - 19.27 to - 10.00 mV, respectively. The aerosol performance of each self-microemulsifying drug delivery system (SMEDDS)-pMDI was assessed using the Next Generation Impactor, which indicated their capability to deliver the drug to the deeper areas of the lungs. In vitro cytotoxicity testing on A549 and NCI-H358 cells revealed no significant signs of toxicity up to a concentration of 1.56 µg/mL. The antimycobacterial activity of the formulations was evaluated against Mycobacterium bovis using flow cytometry analysis, which showed complete inhibition by day 5 with a minimum bactericidal concentration of 0.313 µg/mL. Moreover, the cellular uptake studies showed efficient delivery of the formulations inside macrophage cells, which indicated the potential for intracellular antimycobacterial activity. These findings demonstrated the potential of the Delamanid-SMEDDS-pMDI for efficient pulmonary delivery of delamanid to improve its effectiveness in the treatment of multi-drug resistant pulmonary TB.
Collapse
Affiliation(s)
- Himanshu Paliwal
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Kopargaon 423603, Maharashtra, India
| | - Titpawan Nakpheng
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pijush Kumar Paul
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Department of Pharmacy, Gono Bishwabidyalay (University), Dhaka 1344, Bangladesh
| | - K Prem Ananth
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
2
|
MacLeod AK, Coquelin KS, Huertas L, Simeons FRC, Riley J, Casado P, Guijarro L, Casanueva R, Frame L, Pinto EG, Ferguson L, Duncan C, Mutter N, Shishikura Y, Henderson CJ, Cebrian D, Wolf CR, Read KD. Acceleration of infectious disease drug discovery and development using a humanized model of drug metabolism. Proc Natl Acad Sci U S A 2024; 121:e2315069121. [PMID: 38315851 PMCID: PMC10873626 DOI: 10.1073/pnas.2315069121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
A key step in drug discovery, common to many disease areas, is preclinical demonstration of efficacy in a mouse model of disease. However, this demonstration and its translation to the clinic can be impeded by mouse-specific pathways of drug metabolism. Here, we show that a mouse line extensively humanized for the cytochrome P450 gene superfamily ("8HUM") can circumvent these problems. The pharmacokinetics, metabolite profiles, and magnitude of drug-drug interactions of a test set of approved medicines were in much closer alignment with clinical observations than in wild-type mice. Infection with Mycobacterium tuberculosis, Leishmania donovani, and Trypanosoma cruzi was well tolerated in 8HUM, permitting efficacy assessment. During such assessments, mouse-specific metabolic liabilities were bypassed while the impact of clinically relevant active metabolites and DDI on efficacy were well captured. Removal of species differences in metabolism by replacement of wild-type mice with 8HUM therefore reduces compound attrition while improving clinical translation, accelerating drug discovery.
Collapse
Affiliation(s)
- A. Kenneth MacLeod
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Kevin-Sebastien Coquelin
- Division of Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, DundeeDD2 4GD, United Kingdom
| | - Leticia Huertas
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - Frederick R. C. Simeons
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Jennifer Riley
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Patricia Casado
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - Laura Guijarro
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - Ruth Casanueva
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - Laura Frame
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Erika G. Pinto
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Liam Ferguson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Christina Duncan
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Nicole Mutter
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Yoko Shishikura
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Colin J. Henderson
- Division of Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, DundeeDD2 4GD, United Kingdom
| | - David Cebrian
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - C. Roland Wolf
- Division of Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, DundeeDD2 4GD, United Kingdom
| | - Kevin D. Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| |
Collapse
|
3
|
In Vitro, In Vivo and In Silico Assessment of the Antimicrobial and Immunomodulatory Effects of a Water Buffalo Cathelicidin (WBCATH) in Experimental Pulmonary Tuberculosis. Antibiotics (Basel) 2022; 12:antibiotics12010075. [PMID: 36671276 PMCID: PMC9855185 DOI: 10.3390/antibiotics12010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Tuberculosis (TB) is considered the oldest pandemic in human history. The emergence of multidrug-resistant (MDR) strains is currently considered a serious global health problem. As components of the innate immune response, antimicrobial peptides (AMPs) such as cathelicidins have been proposed to have efficacious antimicrobial activity against Mycobacterium tuberculosis (Mtb). In this work, we assessed a cathelicidin from water buffalo, Bubalus bubalis, (WBCATH), determining in vitro its antitubercular activity (MIC), cytotoxicity and the peptide effect on bacillary loads and cytokines production in infected alveolar macrophages. Our results showed that WBCATH has microbicidal activity against drug-sensitive and MDR Mtb, induces structural mycobacterial damage demonstrated by electron microscopy, improves Mtb killing and induces the production of protective cytokines by murine macrophages. Furthermore, in vivo WBCATH showed decreased bacterial loads in a model of progressive pulmonary TB in BALB/c mice infected with drug-sensitive or MDR mycobacteria. In addition, a synergistic therapeutic effect was observed when first-line antibiotics were administered with WBCATH. These results were supported by computational modeling of the potential effects of WBCATH on the cellular membrane of Mtb. Thus, this water buffalo-derived cathelicidin could be a promising adjuvant therapy for current anti-TB drugs by enhancing a protective immune response and potentially reducing antibiotic treatment duration.
Collapse
|
4
|
Gouws AC, Kruger HG, Gheysens O, Zeevaart JR, Govender T, Naicker T, Ebenhan T. Antibiotic-Derived Radiotracers for Positron Emission Tomography: Nuclear or "Unclear" Infection Imaging? Angew Chem Int Ed Engl 2022; 61:e202204955. [PMID: 35834311 PMCID: PMC9826354 DOI: 10.1002/anie.202204955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 01/11/2023]
Abstract
The excellent features of non-invasive molecular imaging, its progressive technology (real-time, whole-body imaging and quantification), and global impact by a growing infrastructure for positron emission tomography (PET) scanners are encouraging prospects to investigate new concepts, which could transform clinical care of complex infectious diseases. Researchers are aiming towards the extension beyond the routinely available radiopharmaceuticals and are looking for more effective tools that interact directly with causative pathogens. We reviewed and critically evaluated (challenges or pitfalls) antibiotic-derived PET radiopharmaceutical development efforts aimed at infection imaging. We considered both radiotracer development for infection imaging and radio-antibiotic PET imaging supplementing other tools for pharmacologic drug characterization; overall, a total of 20 original PET radiotracers derived from eleven approved antibiotics.
Collapse
Affiliation(s)
- Arno Christiaan Gouws
- Catalysis and Peptide Research UnitUniversity of KwaZulu-NatalDurban4000South Africa
| | | | - Olivier Gheysens
- Department of Nuclear MedicineCliniques Universitaires Saint-Luc, and Institute of Clinical and Experimental ResearchUniversité Catholique de LouvainBrusselsBelgium
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure NPCPretoria0001South Africa
- RadiochemistryThe South African Nuclear Energy CorporationBrits0420South Africa
- Preclinical Drug Development PlatformNorth West UniversityPotchefstroom2520South Africa
| | | | - Tricia Naicker
- Catalysis and Peptide Research UnitUniversity of KwaZulu-NatalDurban4000South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure NPCPretoria0001South Africa
- Preclinical Drug Development PlatformNorth West UniversityPotchefstroom2520South Africa
- Department of Nuclear MedicineUniversity of PretoriaPretoria0001South Africa
| |
Collapse
|
5
|
Gouws AC, Kruger HG, Gheysens O, Zeevaart JR, Govender T, Naiker T, Ebenhan T. Antibiotic‐Derived Radiotracers for Positron Emission Tomography: Nuclear or ‘Unclear’ Infection Imaging? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arno Christiaan Gouws
- University of KwaZulu-Natal School of Health Sciences Catalysis and Peptide Research Unit SOUTH AFRICA
| | - Hendrik Gerhardus Kruger
- University of KwaZulu-Natal School of Health Sciences Catalysis and Peptide Research Unit SOUTH AFRICA
| | - Olivier Gheysens
- Cliniques Universitaires Saint-Luc Department of Nuclear Medicine BELGIUM
| | - Jan Rijn Zeevaart
- North-West University Potchefstroom Campus: North-West University Preclinical Drug Development Platform SOUTH AFRICA
| | | | - Tricia Naiker
- University of KwaZulu-Natal School of Health Sciences Catalysis and Peptide Research Unit SOUTH AFRICA
| | - Thomas Ebenhan
- University of Pretoria Nuclear Medicine Steve Biko and Malherbe St 0001 Pretoria SOUTH AFRICA
| |
Collapse
|
6
|
Novel In Silico Insights into Rv1417 and Rv2617c as Potential Protein Targets: The Importance of the Medium on the Structural Interactions with Exported Repetitive Protein (Erp) of Mycobacterium tuberculosis. Polymers (Basel) 2022; 14:polym14132577. [PMID: 35808623 PMCID: PMC9269478 DOI: 10.3390/polym14132577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Nowadays, tuberculosis is the second leading cause of death from a monopathogenic transmitted disease, only ahead of COVID-19. The role of exported repetitive protein (Erp) in the virulence of Mycobacterium tuberculosis has been extensively demonstrated. In vitro and in vivo assays have identified that Erp interacts with Rv1417 and Rv2617c proteins, forming putative transient molecular complexes prior to localization to the cell envelope. Although new insights into the interactions and functions of Erp have emerged over the years, knowledge about its structure and protein–protein interactions at the atomistic level has not been sufficiently explored. In this work, we have combined several in silico methodologies to gain new insights into the structural relationship between these proteins. Two system conditions were evaluated by MD simulations: Rv1417 and Rv2617c embedded in a lipid membrane and another with a semi-polar solvent to mimic the electrostatic conditions on the membrane surface. The Erp protein was simulated as an unanchored structure. Stabilized structures were docked, and complexes were evaluated to recognize the main residues involved in protein–protein interactions. Our results show the influence of the medium on the structural conformation of proteins. Globular conformations were favored under high polarity conditions and showed a higher energetic affinity in complex formation. Meanwhile, disordered conformations were favored under semi-polar conditions and an increase in the number of contacts between residues was observed. In addition, the electrostatic potential analysis showed remarkable changes in protein interactions due to the polarity of the medium, demonstrating the relevance of Erp protein in heterodimer formation. On the other hand, contact analysis showed that several C-terminal residues of Erp were involved in the protein interactions, which seems to contradict experimental observations; however, these complexes could be transient forms. The findings presented in this work are intended to open new perspectives in the studies of Erp protein molecular interactions and to improve the knowledge about its function and role in the virulence of Mycobacterium tuberculosis.
Collapse
|
7
|
Zhao X, Mei Y, Guo Z, Si S, Ma X, Li Y, Li Y, Song D. Discovery of new riminophenazine analogues as antimycobacterial agents against drug-resistant Mycobacterium tuberculosis. Bioorg Chem 2022; 128:105929. [PMID: 35701239 DOI: 10.1016/j.bioorg.2022.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
Twenty-three new riminophenazine and pyrido[3,2-b]quinoxaline derivatives were prepared and examined for their antimycobacterial activities against Mycobacterium marinum and Mycobacterium tuberculosis H37Rv, taking clofazimine (1) as the lead. Structure-activity relationship (SAR) analysis revealed that the introduction of a heterocycle or diethylamine substituted benzene moiety on the N-5 atom might be beneficial for activity. The most potent compound 7m also displayed enhanced activity against wild-type as well as multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB clinical isolates, with the MICs ranging from 0.08 to 1.25 μg/mL, especially effective toward strain M20A507, resistant to 1. Further mechanism study indicated that its anti-TB activity was independent of cell membrane disruption, but related to NDH-2 reduction and the resulting high ROS production. Our study provides instructive guidance for the further development of clofazimine derivatives into promising antimicrobial agents against MDR and XDR TB.
Collapse
Affiliation(s)
- Xiaoqiang Zhao
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuheng Mei
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhihao Guo
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuyi Si
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xican Ma
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yinghong Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Yan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Danqing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Cazzola M, Matera MG, Calzetta L, Rogliani P. Editorial overview: Respiratory: Pulmonary pharmacology-The emergence of new treatments in pulmonary medicine is finally providing real therapeutic perspectives. Curr Opin Pharmacol 2021; 60:54-58. [PMID: 34352485 PMCID: PMC8327753 DOI: 10.1016/j.coph.2021.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome Tor Vergata, Italy.
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Camapia Luigi Vanvitelli, Naples, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome Tor Vergata, Italy
| |
Collapse
|