1
|
Birkedal R, Branovets J, Vendelin M. Compartmentalization in cardiomyocytes modulates creatine kinase and adenylate kinase activities. FEBS Lett 2024; 598:2623-2640. [PMID: 39112921 DOI: 10.1002/1873-3468.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 07/21/2024] [Indexed: 11/12/2024]
Abstract
Intracellular molecules are transported by motor proteins or move by diffusion resulting from random molecular motion. Cardiomyocytes are packed with structures that are crucial for function, but also confine the diffusional spaces, providing cells with a means to control diffusion. They form compartments in which local concentrations are different from the overall, average concentrations. For example, calcium and cyclic AMP are highly compartmentalized, allowing these versatile second messengers to send different signals depending on their location. In energetic compartmentalization, the ratios of AMP and ADP to ATP are different from the average ratios. This is important for the performance of ATPases fuelling cardiac excitation-contraction coupling and mechanical work. A recent study suggested that compartmentalization modulates the activity of creatine kinase and adenylate kinase in situ. This could have implications for energetic signaling through, for example, AMP-activated kinase. It highlights the importance of taking compartmentalization into account in our interpretation of cellular physiology and developing methods to assess local concentrations of AMP and ADP to enhance our understanding of compartmentalization in different cell types.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| |
Collapse
|
2
|
Shi G, Jiang C, Wang J, Cui P, Shan W. Mechanical stimulation promotes the maturation of cardiomyocyte-like cells from P19 cells and the function in a mouse model of myocardial infarction. Cell Tissue Res 2024:10.1007/s00441-024-03922-6. [PMID: 39395051 DOI: 10.1007/s00441-024-03922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
In this study, we aimed to promote the maturation of cardiomyocytes-like cells by mechanical stimulation, and evaluate their therapeutic potential against myocardial infarction. The cyclic tensile strain was used to induce the maturation of cardsiomyocyte-like cells from P19 cells in vitro. Western blot and qPCR assays were performed to examine protein and gene expression, respectively. High-resolution respirometry was used to assay cell function. The induced cells were then evaluated for their therapeutic effect. In vitro, we observed cyclic tensile strain induced P19 cell differentiation into cardiomyocyte-like cells, as indicated by the increased expression of cardiomyocyte maturation-related genes such as Myh6, Myl2, and Gja1. Furthermore, cyclic tensile strain increased the antioxidant capacity of cardiomyocytes by upregulating the expression Sirt1, a gene important for P19 maturation into cardiomyocyte-like cells. High-resolution respirometry analysis of P19 cells following cyclic tensile strain showed enhanced metabolic function. In vivo, stimulated P19 cells enhanced cardiac function in a mouse model of myocardial infarction, and these mice showed decreased infarction-related biomarkers. The current study demonstrates a simple yet effective mean to induce the maturation of P19 cells into cardiomyocyte-like cells, with a promising therapeutic potential for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Guiliang Shi
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Chaopeng Jiang
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China.
| | - Jiwei Wang
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Ping Cui
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Weixin Shan
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| |
Collapse
|
3
|
Bolonduro OA, Chen Z, Fucetola CP, Lai YR, Cote M, Kajola RO, Rao AA, Liu H, Tzanakakis ES, Timko BP. An Integrated Optogenetic and Bioelectronic Platform for Regulating Cardiomyocyte Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402236. [PMID: 39054679 PMCID: PMC11423186 DOI: 10.1002/advs.202402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Bioelectronic medicine is emerging as a powerful approach for restoring lost endogenous functions and addressing life-altering maladies such as cardiac disorders. Systems that incorporate both modulation of cellular function and recording capabilities can enhance the utility of these approaches and their customization to the needs of each patient. Here we report an integrated optogenetic and bioelectronic platform for stable and long-term stimulation and monitoring of cardiomyocyte function in vitro. Optical inputs are achieved through the expression of a photoactivatable adenylyl cyclase, that when irradiated with blue light causes a dose-dependent and time-limited increase in the secondary messenger cyclic adenosine monophosphate with subsequent rise in autonomous cardiomyocyte beating rate. Bioelectronic readouts are obtained through a multi-electrode array that measures real-time electrophysiological responses at 32 spatially-distinct locations. Irradiation at 27 µW mm-2 results in a 14% elevation of the beating rate within 20-25 min, which remains stable for at least 2 h. The beating rate can be cycled through "on" and "off" light states, and its magnitude is a monotonic function of irradiation intensity. The integrated platform can be extended to stretchable and flexible substrates, and can open new avenues in bioelectronic medicine, including closed-loop systems for cardiac regulation and intervention, for example, in the context of arrythmias.
Collapse
Affiliation(s)
| | - Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
| | - Corey P Fucetola
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Yan-Ru Lai
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Megan Cote
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Rofiat O Kajola
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Akshita A Rao
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Haitao Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Emmanuel S Tzanakakis
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
- Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Brian P Timko
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
4
|
Qasim H, Rajaei M, Xu Y, Reyes-Alcaraz A, Abdelnasser HY, Stewart MD, Lahiri SK, Wehrens XHT, McConnell BK. AKAP12 Upregulation Associates With PDE8A to Accelerate Cardiac Dysfunction. Circ Res 2024; 134:1006-1022. [PMID: 38506047 DOI: 10.1161/circresaha.123.323655] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND In heart failure, signaling downstream the β2-adrenergic receptor is critical. Sympathetic stimulation of β2-adrenergic receptor alters cAMP (cyclic adenosine 3',5'-monophosphate) and triggers PKA (protein kinase A)-dependent phosphorylation of proteins that regulate cardiac function. cAMP levels are regulated in part by PDEs (phosphodiesterases). Several AKAPs (A kinase anchoring proteins) regulate cardiac function and are proposed as targets for precise pharmacology. AKAP12 is expressed in the heart and has been reported to directly bind β2-adrenergic receptor, PKA, and PDE4D. However, its roles in cardiac function are unclear. METHODS cAMP accumulation in real time downstream of the β2-adrenergic receptor was detected for 60 minutes in live cells using the luciferase-based biosensor (GloSensor) in AC16 human-derived cardiomyocyte cell lines overexpressing AKAP12 versus controls. Cardiomyocyte intracellular calcium and contractility were studied in adult primary cardiomyocytes from male and female mice overexpressing cardiac AKAP12 (AKAP12OX) and wild-type littermates post acute treatment with 100-nM isoproterenol (ISO). Systolic cardiac function was assessed in mice after 14 days of subcutaneous ISO administration (60 mg/kg per day). AKAP12 gene and protein expression levels were evaluated in left ventricular samples from patients with end-stage heart failure. RESULTS AKAP12 upregulation significantly reduced total intracellular cAMP levels in AC16 cells through PDE8. Adult primary cardiomyocytes from AKAP12OX mice had significantly reduced contractility and impaired calcium handling in response to ISO, which was reversed in the presence of the selective PDE8 inhibitor (PF-04957325). AKAP12OX mice had deteriorated systolic cardiac function and enlarged left ventricles. Patients with end-stage heart failure had upregulated gene and protein levels of AKAP12. CONCLUSIONS AKAP12 upregulation in cardiac tissue is associated with accelerated cardiac dysfunction through the AKAP12-PDE8 axis.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Mehrdad Rajaei
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Ying Xu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Hala Y Abdelnasser
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - M David Stewart
- Department of Biology and Biochemistry (M.D.S.), University of Houston, TX
| | - Satadru K Lahiri
- Cardiovascular Research Institute, Departments of Integrative Physiology, Medicine, Neuroscience, Pediatrics, and Center for Space Medicine, Baylor College of Medicine, Houston, TX (S.K.L., X.H.T.W.)
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Departments of Integrative Physiology, Medicine, Neuroscience, Pediatrics, and Center for Space Medicine, Baylor College of Medicine, Houston, TX (S.K.L., X.H.T.W.)
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| |
Collapse
|
5
|
Kawamatawong T. Phosphodiesterase-4 Inhibitors for Non-COPD Respiratory Diseases. Front Pharmacol 2021; 12:518345. [PMID: 34434103 PMCID: PMC8381854 DOI: 10.3389/fphar.2021.518345] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Selective phosphodiesterase (PDE) inhibitors are a class of nonsteroid anti-inflammatory drugs for treating chronic inflammatory diseases. Modulation of systemic and airway inflammation is their pivotal mechanism of action. Furthermore, PDE inhibitors modulate cough reflex and inhibit airway mucus secretion. Roflumilast, a selective PDE4 inhibitor, has been extensively studied for the efficacy and safety in chronic obstructive pulmonary disease (COPD) patients. According to the mechanisms of action, the potential roles of PDE inhibitors in treating chronic respiratory diseases including severe asthma, asthma-COPD overlap (ACO), noncystic fibrosis bronchiectasis, and chronic cough are discussed. Since roflumilast inhibits airway eosinophilia and neutrophilia in COPD patients, it reduces COPD exacerbations in the presence of chronic bronchitis in addition to baseline therapies. The clinical studies in asthma patients have shown the comparable efficacy of roflumilast to inhaled corticosteroids for improving lung function. However, the clinical trials of roflumilast in severe asthma have been limited. Although ACO is common and is also associated with poor outcomes, there is no clinical trial regarding its efficacy in patients with ACO despite a promising role in reducing COPD exacerbation. Since mucus hypersecretion is a result of neutrophil secretagogue in patients with chronic bronchitis, experimental studies have shown that PDE4s are regulators of the cystic fibrosis transmembrane conductance regulator (CFTR) in human airway epithelial cells. Besides, goblet cell hyperplasia is associated with an increased expression of PDE. Bronchiectasis and chronic bronchitis are considered neutrophilic airway diseases presenting with mucus hypersecretion. They commonly coexist and thus lead to severe disease. The role of roflumilast in noncystic fibrosis bronchiectasis is under investigation in clinical trials. Lastly, PDE inhibitors have been shown modulating cough from bronchodilation, suppressing transient receptors potential (TRP), and anti-inflammatory properties. Hence, there is the potential role of the drug in the management of unexplained cough. However, clinical trials for examining its antitussive efficacy are pivotal. In conclusion, selective PDE4 inhibitors may be potential treatment options for chronic respiratory diseases apart from COPD due to their promising mechanisms of action.
Collapse
Affiliation(s)
- Theerasuk Kawamatawong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Angelis I, Moussis V, Tsoukatos DC, Tsikaris V. Multidrug Resistance Protein 4 (MRP4/ABCC4): A Suspected Efflux Transporter for Human's Platelet Activation. Protein Pept Lett 2021; 28:983-995. [PMID: 33964863 DOI: 10.2174/0929866528666210505120659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
The main role of platelets is to contribute to hemostasis. However, under pathophysiological conditions, platelet activation may lead to thrombotic events of cardiovascular diseases. Thus, anti-thrombotic treatment is important in patients with cardiovascular disease. This review focuses on a platelet receptor, a transmembrane protein, the Multidrug Resistance Protein 4, MRP4, which contributes to platelet activation by extruding endogenous molecules responsible for their activation and accumulation. The regulation of the intracellular concentration levels of these molecules by MRP4 turned to make the protein suspicious and, at the same time, an interesting regulatory factor of normal platelet function. Especially, the possible role of MRP4 in the excretion of xenobiotic and antiplatelet drugs such as aspirin is discussed, thus imparting platelet aspirin tolerance and correlating the protein with the ineffectiveness of aspirin antiplatelet therapy. Based on the above, this review finally underlines that the development of a highly selective and targeted strategy for platelet MRP4 inhibition will also lead to inhibition of platelet activation and accumulation.
Collapse
Affiliation(s)
- Ioannis Angelis
- Department of Chemistry, Organic Chemistry & Biochemistry, University of Ioannina, Ioannina. Greece
| | - Vassilios Moussis
- Department of Chemistry, Organic Chemistry & Biochemistry, University of Ioannina, Ioannina. Greece
| | - Demokritos C Tsoukatos
- Department of Chemistry, Organic Chemistry & Biochemistry, University of Ioannina, Ioannina. Greece
| | - Vassilios Tsikaris
- Department of Chemistry, Organic Chemistry & Biochemistry, University of Ioannina, Ioannina. Greece
| |
Collapse
|
7
|
Nadur NF, de Azevedo LL, Caruso L, Graebin CS, Lacerda RB, Kümmerle AE. The long and winding road of designing phosphodiesterase inhibitors for the treatment of heart failure. Eur J Med Chem 2020; 212:113123. [PMID: 33412421 DOI: 10.1016/j.ejmech.2020.113123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes known to play a critical role in the indirect regulation of several intracellular metabolism pathways through the selective hydrolysis of the phosphodiester bonds of specific second messenger substrates such as cAMP (3',5'-cyclic adenosine monophosphate) and cGMP (3',5'-cyclic guanosine monophosphate), influencing the hypertrophy, contractility, apoptosis and fibroses in the cardiovascular system. The expression and/or activity of multiple PDEs is altered during heart failure (HF), which leads to changes in levels of cyclic nucleotides and function of cardiac muscle. Within the cardiovascular system, PDEs 1-5, 8 and 9 are expressed and are interesting targets for the HF treatment. In this comprehensive review we will present a briefly description of the biochemical importance of each cardiovascular related PDE to the HF, and cover almost all the "long and winding road" of designing and discovering ligands, hits, lead compounds, clinical candidates and drugs as PDE inhibitors in the last decade.
Collapse
Affiliation(s)
- Nathalia Fonseca Nadur
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Luciana Luiz de Azevedo
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Lucas Caruso
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Renata Barbosa Lacerda
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil.
| |
Collapse
|
8
|
New aspects in cardiac L-type Ca2+ channel regulation. Biochem Soc Trans 2020; 48:39-49. [PMID: 32065210 DOI: 10.1042/bst20190229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/23/2022]
Abstract
Cardiac excitation-contraction coupling is initiated with the influx of Ca2+ ions across the plasma membrane through voltage-gated L-type calcium channels. This process is tightly regulated by modulation of the channel open probability and channel localization. Protein kinase A (PKA) is found in close association with the channel and is one of the main regulators of its function. Whether this kinase is modulating the channel open probability by phosphorylation of key residues or via alternative mechanisms is unclear. This review summarizes recent findings regarding the PKA-mediated channel modulation and will highlight recently discovered regulatory mechanisms that are independent of PKA activity and involve protein-protein interactions and channel localization.
Collapse
|
9
|
Gao S, Zhang Q, Tian C, Li C, Lin Y, Gao W, Wu D, Jiao N, Zhu L, Li W, Zhu R, Wang W, Wang Y. The roles of Qishen granules recipes, Qingre Jiedu, Wenyang Yiqi and Huo Xue, in the treatment of heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112372. [PMID: 31683036 DOI: 10.1016/j.jep.2019.112372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Recipes (Qingre Jiedu (QJ), Wenyang Yiqi (WYYQ) and Huo Xue (HX)) in Qishen granules (QSG) are believed to synergistically exert cardio-protective effects. However, the underlying pattern of each decomposed recipe in QSG and their synergistic effects in the treatment of heart failure (HF) are not clear. OBJECTIVE The purpose of this study is to explore the biological contributions of decomposed recipes to therapeutic effects of QSG and reveal the pharmacological mechanism of QSG in treating HF. MATERIALS AND METHODS The therapeutic effects of QSG or its recipes on heart failure were examined in wet-lab at both transcription and phenotypic level using HF Sprague-Dawley rats. Sequencing and transcriptome analyses were performed using in silico approaches including identification of differentially expressed genes, pathway enrichment and protein-protein interaction network studies. Specially, an optimized in silico quantitative pathway analysis that maximally extracted gene expression information was developed to reveal differentially expressed pathways (DEPs) among various groups, and is publicly available as R package QPA on GitHub (https://github.com/github-gs/QPA). Finally, the HF-related genes predicted using DEP approach were validated by quantitative real-time polymerase chain reaction and western blot. RESULTS Multiple key genes and the associated signaling pathways were shown to be highly relevant for the therapeutic effect of QSG. Decreased expression of Spp1 gene required for inflammatory signaling and profibrotic signaling were observed in failing hearts treated with QJ, WYYQ and HX. Decreased expression of Cx3cr1 gene required for inflammatory signaling was observed in failing hearts treated with WYYQ and HX. Decreased expression of Myc gene required for oxidative stress and Fgfr2 gene required for profibrotic signaling were observed in failing hearts treated with HX and WYYQ, respectively. Increased expression of Adcy1 gene required for cAMP-PKA signaling cascade was observed in failing hearts treated with WYYQ and HX. CONCLUSIONS Our study suggests that QJ, WYYQ and HX recipes in QSG achieve synergistic and complementary therapeutic effects through alleviating inflammatory responses, attenuating ventricular remodeling and enhancing myocardial energy supply.
Collapse
Affiliation(s)
- Sheng Gao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China.
| | - Qian Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Chuan Tian
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States.
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Yunzheng Lin
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China.
| | - Wenxing Gao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China.
| | - Dingfeng Wu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China.
| | - Na Jiao
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, PR China.
| | - Lixin Zhu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, PR China; Department of Biochemistry, Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo, New York, 14214, United States.
| | - Wenzhe Li
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China.
| | - Ruixin Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China.
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| |
Collapse
|
10
|
Sevim Bayrak C, Zhang P, Tristani-Firouzi M, Gelb BD, Itan Y. De novo variants in exomes of congenital heart disease patients identify risk genes and pathways. Genome Med 2020; 12:9. [PMID: 31941532 PMCID: PMC6961332 DOI: 10.1186/s13073-019-0709-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
Background Congenital heart disease (CHD) affects ~ 1% of live births and is the most common birth defect. Although the genetic contribution to the CHD has been long suspected, it has only been well established recently. De novo variants are estimated to contribute to approximately 8% of sporadic CHD. Methods CHD is genetically heterogeneous, making pathway enrichment analysis an effective approach to explore and statistically validate CHD-associated genes. In this study, we performed novel gene and pathway enrichment analyses of high-impact de novo variants in the recently published whole-exome sequencing (WES) data generated from a cohort of CHD 2645 parent-offspring trios to identify new CHD-causing candidate genes and mutations. We performed rigorous variant- and gene-level filtrations to identify potentially damaging variants, followed by enrichment analyses and gene prioritization. Results Our analyses revealed 23 novel genes that are likely to cause CHD, including HSP90AA1, ROCK2, IQGAP1, and CHD4, and sharing biological functions, pathways, molecular interactions, and properties with known CHD-causing genes. Conclusions Ultimately, these findings suggest novel genes that are likely to be contributing to CHD pathogenesis.
Collapse
Affiliation(s)
- Cigdem Sevim Bayrak
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuval Itan
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Cyclic nucleotide phosphodiesterases: New targets in the metabolic syndrome? Pharmacol Ther 2020; 208:107475. [PMID: 31926200 DOI: 10.1016/j.pharmthera.2020.107475] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Metabolic diseases have a tremendous impact on human morbidity and mortality. Numerous targets regulating adenosine monophosphate kinase (AMPK) have been identified for treating the metabolic syndrome (MetS), and many compounds are being used or developed to increase AMPK activity. In parallel, the cyclic nucleotide phosphodiesterase families (PDEs) have emerged as new therapeutic targets in cardiovascular diseases, as well as in non-resolved pathologies. Since some PDE subfamilies inactivate cAMP into 5'-AMP, while the beneficial effects in MetS are related to 5'-AMP-dependent activation of AMPK, an analysis of the various controversial relationships between PDEs and AMPK in MetS appears interesting. The present review will describe the various PDE families, AMPK and molecular mechanisms in the MetS and discuss the PDEs/PDE modulators related to the tissues involved, thus supporting the discovery of original molecules and the design of new therapeutic approaches in MetS.
Collapse
|
12
|
A Software Tool for High-Throughput Real-Time Measurement of Intensity-Based Ratio-Metric FRET. Cells 2019; 8:cells8121541. [PMID: 31795419 PMCID: PMC6952787 DOI: 10.3390/cells8121541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Förster resonance energy transfer (FRET) is increasingly used for non-invasive measurement of fluorescently tagged molecules in live cells. In this study, we have developed a freely available software tool MultiFRET, which, together with the use of a motorised microscope stage, allows multiple single cells to be studied in one experiment. MultiFRET is a Java plugin for Micro-Manager software, which provides real-time calculations of ratio-metric signals during acquisition and can simultaneously record from multiple cells in the same experiment. It can also make other custom-determined live calculations that can be easily exported to Excel at the end of the experiment. It is flexible and can work with multiple spectral acquisition channels. We validated this software by comparing the output of MultiFRET to that of a previously established and well-documented method for live ratio-metric FRET experiments and found no significant difference between the data produced with the use of the new MultiFRET and other methods. In this validation, we used several cAMP FRET sensors and cell models: i) isolated adult cardiomyocytes from transgenic mice expressing the cytosolic epac1-camps and targeted pmEpac1 and Epac1-PLN sensors, ii) isolated neonatal mouse cardiomyocytes transfected with the AKAP79-CUTie sensor, and iii) human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) transfected with the Epac-SH74 sensor. The MultiFRET plugin is an open source freely available package that can be used in a wide area of live cell imaging when live ratio-metric calculations are required.
Collapse
|
13
|
Freihat LA, Wheeler JI, Wong A, Turek I, Manallack DT, Irving HR. IRAK3 modulates downstream innate immune signalling through its guanylate cyclase activity. Sci Rep 2019; 9:15468. [PMID: 31664109 PMCID: PMC6820782 DOI: 10.1038/s41598-019-51913-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
Interleukin-1 receptor associated kinase 3 (IRAK3) is a cytoplasmic homeostatic mediator of inflammatory responses and is potentially useful as a prognostic marker in inflammation. IRAK3 inhibits signalling cascades downstream of myddosome complexes associated with toll like receptors. IRAK3 contains a death domain that interacts with other IRAK family members, a pseudokinase domain and a C-terminus domain involved with tumour necrosis factor receptor associated factor 6 (TRAF6). Previous bioinformatic studies revealed that IRAK3 contained a guanylate cyclase centre in its pseudokinase domain but its role in IRAK3 action is unresolved. We demonstrate that wildtype IRAK3 is capable of producing cGMP. Furthermore, we show that a specific point mutation in the guanylate cyclase centre reduced cGMP production. Cells containing toll like receptor 4 and a nuclear factor kappa-light-chain-enhancer of activated B cells (NFĸB) reporter system were transfected with IRAK3 or mutant IRAK3 proteins. Cell-permeable cGMP treatment of untransfected control cells suppresses downstream signalling through modulation of the NFĸB in the presence of lipopolysaccharides. Cells transfected with wildtype IRAK3 also suppress lipopolysaccharide induced NFĸB activity in the absence of exogenous cGMP. Lipopolysaccharide induced NFĸB activity was not suppressed in cells transfected with the IRAK3 mutant with reduced cGMP-generating capacity. Whereas in the presence of exogenously applied cell-permeable cGMP the IRAK3 mutant was able to retain its function by suppressing lipopolysaccharide induced NFĸB activity. Furthermore, increasing the amount of membrane permeable cGMP did not affect IRAK3's ability to reduce NFĸB activity. These results suggest that cGMP generated by IRAK3 may be involved in regulatory function of the protein where the presence of cGMP may selectively affect downstream signalling pathway(s) by modulating binding and/or activity of nearby proteins that interact in the inflammatory signalling cascade.
Collapse
Affiliation(s)
- L A Freihat
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, 3552, Australia
| | - J I Wheeler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- AgriBio, La Trobe University, Bundoora, VIC, 3083, Australia
| | - A Wong
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| | - I Turek
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, 3552, Australia
| | - D T Manallack
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - H R Irving
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, 3552, Australia.
| |
Collapse
|
14
|
Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model. J Mol Cell Cardiol 2019; 133:57-66. [PMID: 31158360 DOI: 10.1016/j.yjmcc.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 11/23/2022]
Abstract
AIMS Cyclic AMP phosphodiesterases (PDEs) are important modulators of the cardiac response to β-adrenergic receptor (β-AR) stimulation. PDE3 is classically considered as the major cardiac PDE in large mammals and human, while PDE4 is preponderant in rodents. However, it remains unclear whether PDE4 also plays a functional role in large mammals. Our purpose was to understand the role of PDE4 in cAMP hydrolysis and excitation-contraction coupling (ECC) in the pig heart, a relevant pre-clinical model. METHODS AND RESULTS Real-time cAMP variations were measured in isolated adult pig right ventricular myocytes (APVMs) using a Förster resonance energy transfer (FRET) biosensor. ECC was investigated in APVMs loaded with Fura-2 and paced at 1 Hz allowing simultaneous measurement of intracellular Ca2+ and sarcomere shortening. The expression of the different PDE4 subfamilies was assessed by Western blot in pig right ventricles and APVMs. Similarly to PDE3 inhibition with cilostamide (Cil), PDE4 inhibition with Ro 20-1724 (Ro) increased cAMP levels and inotropy under basal conditions. PDE4 inhibition enhanced the effects of the non-selective β-AR agonist isoprenaline (Iso) and the effects of Cil, and increased spontaneous diastolic Ca2+ waves (SCWs) in these conditions. PDE3A, PDE4A, PDE4B and PDE4D subfamilies are expressed in pig ventricles. In APVMs isolated from a porcine model of repaired tetralogy of Fallot which leads to right ventricular failure, PDE4 inhibition also exerts inotropic and pro-arrhythmic effects. CONCLUSIONS Our results show that PDE4 controls ECC in APVMs and suggest that PDE4 inhibitors exert inotropic and pro-arrhythmic effects upon PDE3 inhibition or β-AR stimulation in our pre-clinical model. Thus, PDE4 inhibitors should be used with caution in clinics as they may lead to arrhythmogenic events upon stress.
Collapse
|