1
|
Nunes-Pinto M, Bandeira de Mello RG, Pinto MN, Moro C, Vellas B, Martinez LO, Rolland Y, de Souto Barreto P. Sarcopenia and the biological determinants of aging: A narrative review from a geroscience perspective. Ageing Res Rev 2025; 103:102587. [PMID: 39571617 DOI: 10.1016/j.arr.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The physiopathology of sarcopenia shares common biological cascades with the aging process, as does any other age-related condition. However, our understanding of the interconnected pathways between diagnosed sarcopenia and aging remains limited, lacking sufficient scientific evidence. METHODS This narrative review aims to gather and describe the current evidence on the relationship between biological aging determinants, commonly referred to as the hallmarks of aging, and diagnosed sarcopenia in humans. RESULTS Among the twelve hallmarks of aging studied, there appears to be a substantial association between sarcopenia and mitochondrial dysfunction, epigenetic alterations, deregulated nutrient sensing, and altered intercellular communication. Although limited, preliminary evidence suggests a promising association between sarcopenia and genomic instability or stem cell exhaustion. DISCUSSION Overall, an imbalance in energy regulation, characterized by impaired mitochondrial energy production and alterations in circulatory markers, is commonly associated with sarcopenia and may reflect the interplay between aging physiology and sarcopenia biology.
Collapse
Affiliation(s)
- Mariá Nunes-Pinto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Renato Gorga Bandeira de Mello
- Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Master of Public Health Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Milena Nunes Pinto
- School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France
| | - Bruno Vellas
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France; IHU HealthAge, Toulouse, France
| | - Yves Rolland
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| |
Collapse
|
2
|
Motanova E, Pirazzini M, Negro S, Rossetto O, Narici M. Impact of ageing and disuse on neuromuscular junction and mitochondrial function and morphology: Current evidence and controversies. Ageing Res Rev 2024; 102:102586. [PMID: 39557298 DOI: 10.1016/j.arr.2024.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Inactivity and ageing can have a detrimental impact on skeletal muscle and the neuromuscular junction (NMJ). Decreased physical activity results in muscle atrophy, impaired mitochondrial function, and NMJ instability. Ageing is associated with a progressive decrease in muscle mass, deterioration of mitochondrial function in the motor axon terminals and in myofibres, NMJ instability and loss of motor units. Focusing on the impact of inactivity and ageing, this review examines the consequences on NMJ stability and the role of mitochondrial dysfunction, delving into their complex relationship with ageing and disuse. Evidence suggests that mitochondrial dysfunction can be a pathogenic driver for NMJ alterations, with studies revealing the role of mitochondrial defects in motor neuron degeneration and NMJ instability. Two perspectives behind NMJ instability are discussed: one is that mitochondrial dysfunction in skeletal muscle triggers NMJ deterioration, the other envisages dysfunction of motor terminal mitochondria as a primary contributor to NMJ instability. While evidence from these studies supports both perspectives on the relationship between NMJ dysfunction and mitochondrial impairment, gaps persist in the understanding of how mitochondrial dysfunction can cause NMJ deterioration. Further research, both in humans and in animal models, is essential for unravelling the mechanisms and potential interventions for age- and inactivity-related neuromuscular and mitochondrial alterations.
Collapse
Affiliation(s)
- Evgeniia Motanova
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| |
Collapse
|
3
|
Piétri-Rouxel F, Falcone S, Traoré M. [GDF5: a therapeutic candidate for combating sarcopenia]. Med Sci (Paris) 2023; 39 Hors série n° 1:47-53. [PMID: 37975770 DOI: 10.1051/medsci/2023143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Sarcopenia is a complex age-related muscular disease affecting 10 to 16 % of people over 65 years old. It is characterized by excessive loss of muscle mass and strength. Despite a plethora of studies aimed at understanding the physiological mechanisms underlying this pathology, the pathophysiology of sarcopenia remains poorly understood. To date, there is no pharmacological treatment for this disease. In this context, our team develop therapeutic approaches based on the GDF5 protein to counteract the loss of muscle mass and function in various pathological conditions, including sarcopenia. After deciphering one of the molecular mechanisms governing GDF5 expression, we have demonstrated the therapeutic potential of this protein in the preservation of muscle mass and strength in aged mice.
Collapse
Affiliation(s)
- France Piétri-Rouxel
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Massiré Traoré
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| |
Collapse
|
4
|
So HK, Kim H, Lee J, You CL, Yun CE, Jeong HJ, Jin EJ, Jo Y, Ryu D, Bae GU, Kang JS. Protein Arginine Methyltransferase 1 Ablation in Motor Neurons Causes Mitochondrial Dysfunction Leading to Age-related Motor Neuron Degeneration with Muscle Loss. RESEARCH (WASHINGTON, D.C.) 2023; 6:0158. [PMID: 37342629 PMCID: PMC10278992 DOI: 10.34133/research.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
Neuromuscular dysfunction is tightly associated with muscle wasting that occurs with age or due to degenerative diseases. However, the molecular mechanisms underlying neuromuscular dysfunction are currently unclear. Recent studies have proposed important roles of Protein arginine methyltransferase 1 (Prmt1) in muscle stem cell function and muscle maintenance. In the current study, we set out to determine the role of Prmt1 in neuromuscular function by generating mice with motor neuron-specific ablation of Prmt1 (mnKO) using Hb9-Cre. mnKO exhibited age-related motor neuron degeneration and neuromuscular dysfunction leading to premature muscle loss and lethality. Prmt1 deficiency also impaired motor function recovery and muscle reinnervation after sciatic nerve injury. The transcriptome analysis of aged mnKO lumbar spinal cords revealed alterations in genes related to inflammation, cell death, oxidative stress, and mitochondria. Consistently, mnKO lumbar spinal cords of sciatic nerve injury model or aged mice exhibited elevated cellular stress response in motor neurons. Furthermore, Prmt1 inhibition in motor neurons elicited mitochondrial dysfunction. Our findings demonstrate that Prmt1 ablation in motor neurons causes age-related motor neuron degeneration attributing to muscle loss. Thus, Prmt1 is a potential target for the prevention or intervention of sarcopenia and neuromuscular dysfunction related to aging.
Collapse
Affiliation(s)
- Hyun-Kyung So
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyebeen Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jinwoo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Research Institute of Aging-Related Diseases, AniMusCure, Inc., Suwon, Korea
| | - Chang-Lim You
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Chae-Eun Yun
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Eun-Ju Jin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Gyu-Un Bae
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
5
|
Barone C, Qi X. Altered Metabolism in Motor Neuron Diseases: Mechanism and Potential Therapeutic Target. Cells 2023; 12:1536. [PMID: 37296656 PMCID: PMC10252517 DOI: 10.3390/cells12111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Motor Neuron Diseases (MND) are neurological disorders characterized by a loss of varying motor neurons resulting in decreased physical capabilities. Current research is focused on hindering disease progression by determining causes of motor neuron death. Metabolic malfunction has been proposed as a promising topic when targeting motor neuron loss. Alterations in metabolism have also been noted at the neuromuscular junction (NMJ) and skeletal muscle tissue, emphasizing the importance of a cohesive system. Finding metabolism changes consistent throughout both neurons and skeletal muscle tissue could pose as a target for therapeutic intervention. This review will focus on metabolic deficits reported in MNDs and propose potential therapeutic targets for future intervention.
Collapse
Affiliation(s)
| | - Xin Qi
- Department of Physiology and Biophysics, School of Medicine Case Western Reserve University, Cleveland, OH 44106-4970, USA;
| |
Collapse
|
6
|
Dombrecht D, Van Daele U, Van Asbroeck B, Schieffelers D, Guns PJ, Gebruers N, Meirte J, van Breda E. Molecular mechanisms of post-burn muscle wasting and the therapeutic potential of physical exercise. J Cachexia Sarcopenia Muscle 2023; 14:758-770. [PMID: 36760077 PMCID: PMC10067483 DOI: 10.1002/jcsm.13188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
After a severe burn injury, a systemic stress response activates metabolic and inflammatory derangements that, among other, leads to muscle mass loss (muscle wasting). These negative effects on skeletal muscle continue for several months or years and are aggravated by short-term and long-term disuse. The dynamic balance between muscle protein synthesis and muscle protein breakdown (proteolysis) is regulated by complex signalling pathways that leads to an overall negative protein balance in skeletal muscle after a burn injury. Research concerning these molecular mechanisms is still scarce and inconclusive, understanding of which, if any, molecular mechanisms contribute to muscle wasting is of fundamental importance in designing of therapeutic interventions for burn patients as well. This review not only summarizes our present knowledge of the molecular mechanisms that underpin muscle protein balance but also summarizes the effects of exercise on muscle wasting post-burn as promising strategy to counteract the detrimental effects on skeletal muscle. Future research focusing on the pathways causing post-burn muscle wasting and the different effects of exercise on them is needed to confirm this hypothesis and to lay the foundation of therapeutic strategies.
Collapse
Affiliation(s)
- Dorien Dombrecht
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - Ulrike Van Daele
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Oscare, Organisation for Burns, Scar After-Care and Research, Antwerp, Belgium
| | - Birgit Van Asbroeck
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - David Schieffelers
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Nick Gebruers
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Multidisciplinary Edema Clinic, Antwerp University Hospital, Edegem, Belgium
| | - Jill Meirte
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Oscare, Organisation for Burns, Scar After-Care and Research, Antwerp, Belgium
| | - Eric van Breda
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Jones EJ, Chiou S, Atherton PJ, Phillips BE, Piasecki M. Ageing and exercise-induced motor unit remodelling. J Physiol 2022; 600:1839-1849. [PMID: 35278221 PMCID: PMC9314090 DOI: 10.1113/jp281726] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
A motor unit (MU) comprises the neuron cell body, its corresponding axon and each of the muscle fibres it innervates. Many studies highlight age-related reductions in the number of MUs, yet the ability of a MU to undergo remodelling and to expand to rescue denervated muscle fibres is also a defining feature of MU plasticity. Remodelling of MUs involves two coordinated processes: (i) axonal sprouting and new branching growth from adjacent surviving neurons, and (ii) the formation of key structures around the neuromuscular junction to resume muscle-nerve communication. These processes rely on neurotrophins and coordinated signalling in muscle-nerve interactions. To date, several neurotrophins have attracted focus in animal models, including brain-derived neurotrophic factor and insulin-like growth factors I and II. Exercise in older age has demonstrated benefits in multiple physiological systems including skeletal muscle, yet evidence suggests this may also extend to peripheral MU remodelling. There is, however, a lack of research in humans due to methodological limitations which are easily surmountable in animal models. To improve mechanistic insight of the effects of exercise on MU remodelling with advancing age, future research should focus on combining methodological approaches to explore the in vivo physiological function of the MU alongside alterations of the localised molecular environment.
Collapse
Affiliation(s)
- Eleanor J. Jones
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Shin‐Yi Chiou
- School of SportExercise, and Rehabilitation Sciences, MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
| | - Philip J. Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
8
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. A neuromuscular perspective of sarcopenia pathogenesis: deciphering the signaling pathways involved. GeroScience 2022; 44:1199-1213. [PMID: 34981273 DOI: 10.1007/s11357-021-00510-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/18/2022] Open
Abstract
The escalation of life expectancy is accompanied by an increase in the prevalence of age-related conditions, such as sarcopenia. Sarcopenia, a muscle condition defined by low muscle strength, muscle quality or quantity, and physical performance, has a high prevalence among the elderly and is associated to increased mortality. The neuromuscular system has been emerging as a key contributor to sarcopenia pathogenesis. Indeed, the age-related degeneration of the neuromuscular junction (NMJ) function and structure may contribute to the loss of muscle strength and ultimately to the loss of muscle mass that characterize sarcopenia. The present mini-review discusses important signaling pathways involved in the function and maintenance of the NMJ, giving emphasis to the ones that might contribute to sarcopenia pathogenesis. Some conceivable biomarkers, such as C-terminal agrin fragment (CAF) and brain-derived neurotrophic factor (BDNF), and therapeutic targets, namely acetylcholine and calcitonin gene-related peptide (CGRP), can be retrieved, making way to future studies to validate their clinical use.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal.,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| |
Collapse
|
9
|
Gorza L, Germinario E, Tibaudo L, Vitadello M, Tusa C, Guerra I, Bondì M, Salmaso S, Caliceti P, Vitiello L, Danieli-Betto D. Chronic Systemic Curcumin Administration Antagonizes Murine Sarcopenia and Presarcopenia. Int J Mol Sci 2021; 22:ijms222111789. [PMID: 34769220 PMCID: PMC8584127 DOI: 10.3390/ijms222111789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022] Open
Abstract
Curcumin administration attenuates muscle disuse atrophy, but its effectiveness against aging-induced, selective loss of mass or force (presarcopenia or asthenia/dynopenia), or combined loss (sarcopenia), remains controversial. A new systemic curcumin treatment was developed and tested in 18-month-old C57BL6J and C57BL10ScSn male mice. The effects on survival, liver toxicity, loss of muscle mass and force, and satellite cell responsivity and commitment were evaluated after 6-month treatment. Although only 24-month-old C57BL10ScSn mice displayed age-related muscle impairment, curcumin significantly increased survival of both strains (+20–35%), without signs of liver toxicity. Treatment prevented sarcopenia in soleus and presarcopenia in EDL of C57BL10ScSn mice, whereas it did not affect healthy-aged muscles of C57BL6J. Curcumin-treated old C57BL10ScSn soleus preserved type-1 myofiber size and increased type-2A one, whereas EDL maintained adult values of total myofiber number and fiber-type composition. Mechanistically, curcumin only partially prevented the age-related changes in protein level and subcellular distribution of major costamere components and regulators. Conversely, it affected satellite cells, by maintaining adult levels of myofiber maturation in old regenerating soleus and increasing percentage of isolated, MyoD-positive satellite cells from old hindlimb muscles. Therefore, curcumin treatment successfully prevents presarcopenia and sarcopenia development by improving satellite cell commitment and recruitment.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
- Correspondence:
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Lucia Tibaudo
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.T.); (L.V.)
| | - Maurizio Vitadello
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Chiara Tusa
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Irene Guerra
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Michela Bondì
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Stefano Salmaso
- Department of Pharmaceutical Sciences, University of Padova, 35131 Padova, Italy; (S.S.); (P.C.)
| | - Paolo Caliceti
- Department of Pharmaceutical Sciences, University of Padova, 35131 Padova, Italy; (S.S.); (P.C.)
| | - Libero Vitiello
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.T.); (L.V.)
| | - Daniela Danieli-Betto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| |
Collapse
|
10
|
Fuertes-Alvarez S, Izeta A. Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. Aging Dis 2021; 12:494-514. [PMID: 33815879 PMCID: PMC7990373 DOI: 10.14336/ad.2020.0708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Action potential is transmitted to muscle fibers through specialized synaptic interfaces called neuromuscular junctions (NMJs). These structures are capped by terminal Schwann cells (tSCs), which play essential roles during formation and maintenance of the NMJ. tSCs are implicated in the correct communication between nerves and muscles, and in reinnervation upon injury. During aging, loss of muscle mass and strength (sarcopenia and dynapenia) are due, at least in part, to the progressive loss of contacts between muscle fibers and nerves. Despite the important role of tSCs in NMJ function, very little is known on their implication in the NMJ-aging process and in age-associated denervation. This review summarizes the current knowledge about the implication of tSCs in the age-associated degeneration of NMJs. We also speculate on the possible mechanisms underlying the observed phenotypes.
Collapse
Affiliation(s)
- Sandra Fuertes-Alvarez
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain
| | - Ander Izeta
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain.,2Tecnun-University of Navarra, School of Engineering, Department of Biomedical Engineering and Science, Paseo Mikeletegi, 48, San Sebastian 20009, Spain
| |
Collapse
|
11
|
The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. Nat Commun 2020; 11:4510. [PMID: 32908143 PMCID: PMC7481251 DOI: 10.1038/s41467-020-18140-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
With human median lifespan extending into the 80s in many developed countries, the societal burden of age-related muscle loss (sarcopenia) is increasing. mTORC1 promotes skeletal muscle hypertrophy, but also drives organismal aging. Here, we address the question of whether mTORC1 activation or suppression is beneficial for skeletal muscle aging. We demonstrate that chronic mTORC1 inhibition with rapamycin is overwhelmingly, but not entirely, positive for aging mouse skeletal muscle, while genetic, muscle fiber-specific activation of mTORC1 is sufficient to induce molecular signatures of sarcopenia. Through integration of comprehensive physiological and extensive gene expression profiling in young and old mice, and following genetic activation or pharmacological inhibition of mTORC1, we establish the phenotypically-backed, mTORC1-focused, multi-muscle gene expression atlas, SarcoAtlas (https://sarcoatlas.scicore.unibas.ch/), as a user-friendly gene discovery tool. We uncover inter-muscle divergence in the primary drivers of sarcopenia and identify the neuromuscular junction as a focal point of mTORC1-driven muscle aging.
Collapse
|
12
|
Castets P, Ham DJ, Rüegg MA. The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player? Front Mol Neurosci 2020; 13:162. [PMID: 32982690 PMCID: PMC7485269 DOI: 10.3389/fnmol.2020.00162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
The neuromuscular junction (NMJ) is the chemical synapse connecting motor neurons and skeletal muscle fibers. NMJs allow all voluntary movements, and ensure vital functions like breathing. Changes in the structure and function of NMJs are hallmarks of numerous pathological conditions that affect muscle function including sarcopenia, the age-related loss of muscle mass and function. However, the molecular mechanisms leading to the morphological and functional perturbations in the pre- and post-synaptic compartments of the NMJ remain poorly understood. Here, we discuss the role of the metabolic pathway associated to the kinase TOR (Target of Rapamycin) in the development, maintenance and alterations of the NMJ. This is of particular interest as the TOR pathway has been implicated in aging, but its role at the NMJ is still ill-defined. We highlight the respective functions of the two TOR-associated complexes, TORC1 and TORC2, and discuss the role of localized protein synthesis and autophagy regulation in motor neuron terminals and sub-synaptic regions of muscle fibers and their possible effects on NMJ maintenance.
Collapse
Affiliation(s)
- Perrine Castets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
13
|
Implications of increased S100β and Tau5 proteins in dystrophic nerves of two mdx mouse models for Duchenne muscular dystrophy. Mol Cell Neurosci 2020; 105:103484. [DOI: 10.1016/j.mcn.2020.103484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022] Open
|