1
|
Tan T, Jiang L, He Z, Ding X, Xiong X, Tang M, Chen Y, Tang Y. NR1 Splicing Variant NR1a in Cerebellar Granule Neurons Constitutes a Better Motor Learning in the Mouse. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1112-1120. [PMID: 37880519 PMCID: PMC11102416 DOI: 10.1007/s12311-023-01614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
As an excitatory neuron in the cerebellum, the granule cells play a crucial role in motor learning. The assembly of NMDAR in these neurons varies in developmental stages, while the significance of this variety is still not clear. In this study, we found that motor training could specially upregulate the expression level of NR1a, a splicing form of NR1 subunit. Interestingly, overexpression of this splicing variant in a cerebellar granule cell-specific manner dramatically elevated the NMDAR binding activity. Furthermore, the NR1a transgenic mice did not only show an enhanced motor learning, but also exhibit a higher efficacy for motor training in motor learning. Our results suggested that as a "junior" receptor, NR1a facilitates NMDAR activity as well as motor skill learning.
Collapse
Affiliation(s)
- Ting Tan
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Linyan Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Zhengxiao He
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xuejiao Ding
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoli Xiong
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Mingxi Tang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yuan Chen
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yaping Tang
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
2
|
Varma A, Udupa S, Sengupta M, Ghosh PK, Thirumalai V. A machine-learning tool to identify bistable states from calcium imaging data. J Physiol 2024; 602:1243-1271. [PMID: 38482722 DOI: 10.1113/jp284373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Mapping neuronal activation using calcium imaging in vivo during behavioural tasks has advanced our understanding of nervous system function. In almost all of these studies, calcium imaging is used to infer spike probabilities because action potentials activate voltage-gated calcium channels and increase intracellular calcium levels. However, neurons not only fire action potentials, but also convey information via intrinsic dynamics such as by generating bistable membrane potential states. Although a number of tools for spike inference have been developed and are currently being used, no tool exists for converting calcium imaging signals to maps of cellular state in bistable neurons. Purkinje neurons in the larval zebrafish cerebellum exhibit membrane potential bistability, firing either tonically or in bursts. Several studies have implicated the role of a population code in cerebellar function, with bistability adding an extra layer of complexity to this code. In the present study, we develop a tool, CaMLSort, which uses convolutional recurrent neural networks to classify calcium imaging traces as arising from either tonic or bursting cells. We validate this classifier using a number of different methods and find that it performs well on simulated event rasters as well as real biological data that it had not previously seen. Moreover, we find that CaMLsort generalizes to other bistable neurons, such as dopaminergic neurons in the ventral tegmental area of mice. Thus, this tool offers a new way of analysing calcium imaging data from bistable neurons to understand how they participate in network computation and natural behaviours. KEY POINTS: Calcium imaging, compriising the gold standard of inferring neuronal activity, does not report cellular state in neurons that are bistable, such as Purkinje neurons in the cerebellum of larval zebrafish. We model the relationship between Purkinje neuron electrical activity and its corresponding calcium signal to compile a dataset of state-labelled simulated calcium signals. We apply machine-learning methods to this dataset to develop a tool that can classify the state of a Purkinje neuron using only its calcium signal, which works well on real data even though it was trained only on simulated data. CaMLsort (Calcium imaging and Machine Learning based tool to sort intracellular state) also generalizes well to bistable neurons in a different brain region (ventral tegmental area) in a different model organism (mouse). This tool can facilitate our understanding of how these neurons carry out their functions in a circuit.
Collapse
Affiliation(s)
- Aalok Varma
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sathvik Udupa
- Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
| | - Mohini Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Prasanta Kumar Ghosh
- Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
| | - Vatsala Thirumalai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
3
|
Narayanan S, Varma A, Thirumalai V. Predictive neural computations in the cerebellum contribute to motor planning and faster behavioral responses in larval zebrafish. SCIENCE ADVANCES 2024; 10:eadi6470. [PMID: 38170763 PMCID: PMC10775999 DOI: 10.1126/sciadv.adi6470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The ability to predict the future based on past experience lies at the core of the brain's ability to adapt behavior. However, the neural mechanisms that participate in generating and updating predictions are not clearly understood. Further, the evolutionary antecedents and the prevalence of predictive processing among vertebrates are even less explored. Here, we show evidence of predictive processing via the involvement of cerebellar circuits in larval zebrafish. We presented stereotyped optic flow stimuli to larval zebrafish to evoke swims and discovered that lesioning the cerebellum abolished prediction-dependent modulation of swim latency. When expectations of optic flow direction did not match with reality, error signals arrive at Purkinje cells via the olivary climbing fibers, whereas granule cells and Purkinje cells encode signals of expectation. Strong neural representations of expectation correlate with faster swim responses and vice versa. In sum, our results show evidence for predictive processing in nonmammalian vertebrates with the involvement of cerebellum, an evolutionarily conserved brain structure.
Collapse
|
4
|
Ninomiya A, Mshaty A, Haijima A, Yajima H, Kokubo M, Khairinisa MA, Ariyani W, Fujiwara Y, Ishii S, Hosoi N, Hirai H, Amano I, Koibuchi N. The neurotoxic effect of lactational PFOS exposure on cerebellar functional development in male mice. Food Chem Toxicol 2021; 159:112751. [PMID: 34871666 DOI: 10.1016/j.fct.2021.112751] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023]
Abstract
Recent studies showed a possible association between perfluorooctane sulfonate (PFOS) and developmental disabilities. We previously found the specific effects of PFOS exposure on learning and memory, however, its effect on the other developmental disabilities such as motor and social deficits remains unclear. We examined the effect of early lactational PFOS exposure on motor coordination, social activity, and anxiety in male mice. We orally administered a PFOS solution to dams from postnatal day 1-14. At 10 weeks old, we conducted a behavior test battery to evaluate motor performance, social activity, and anxiety, followed by electrophysiology and Western blot analysis. PFOS-exposed mice displayed impaired motor coordination. Whole-cell patch-clamp recordings from Purkinje cells revealed that the short-term and long-term plasticity at parallel fiber-Purkinje cell synapses are affected by PFOS exposure. Western blot analysis indicated that PFOS exposure increased syntaxin binding protein 1 (Munc18-1) and glutamate metabotropic receptor 1 (mGluR1) protein levels, which may be associated with the change in neurotransmitter release from parallel fibers and the level of long-term depression, respectively. The present study demonstrates that lactational PFOS exposure may have disrupted the pre- and postsynaptic plasticity at parallel fiber-Purkinje cell synapses, causing profound, long-lasting abnormal effects on the cerebellar function.
Collapse
Affiliation(s)
- Ayane Ninomiya
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Abdallah Mshaty
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Asahi Haijima
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan; Laboratory for Environmental Brain Science, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Hiroyuki Yajima
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Michifumi Kokubo
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Miski Aghnia Khairinisa
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM.21, Hegarmanah, Jatinangor, Sumedang, West Java, 45363, Indonesia
| | - Winda Ariyani
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Yuki Fujiwara
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Sumiyasu Ishii
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Nobutake Hosoi
- Department of Neurophysiology and Neural Repair, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan.
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan.
| |
Collapse
|
5
|
Day LB, Helmhout W, Pano G, Olsson U, Hoeksema JD, Lindsay WR. Correlated evolution of acrobatic display and both neural and somatic phenotypic traits in manakins (Pipridae). Integr Comp Biol 2021; 61:1343-1362. [PMID: 34143205 DOI: 10.1093/icb/icab139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022] Open
Abstract
Brightly colored manakin (Aves: Pipridae) males are known for performing acrobatic displays punctuated by non-vocal sounds (sonations) in order to attract dull colored females. The complexity of the display sequence and assortment of display elements involved (e.g., sonations, acrobatic maneuvers, and cooperative performances) varies considerably across manakin species. Species-specific display elements coevolve with display-distinct specializations of the neuroanatomical, muscular, endocrine, cardiovascular, and skeletal systems in the handful of species studied. Conducting a broader comparative study, we previously found positive associations between display complexity and both brain mass and body mass across 8 manakin genera, indicating selection for neural and somatic expansion to accommodate display elaboration. Whether this gross morphological variation is due to overall brain and body mass expansion (concerted evolution) versus size increases in only functionally relevant brain regions and growth of particular body ("somatic") features (mosaic evolution) remains to be explored. Here we test the hypothesis that cross-species variation in male brain mass and body mass is driven by mosaic evolution. We predicted positive associations between display complexity and variation in the volume of the cerebellum and sensorimotor arcopallium, brain regions which have roles in sensorimotor processes, and learning and performance of precisely timed and sequenced thoughts and movements, respectively. In contrast, we predicted no associations between the volume of a limbic arcopallial nucleus or a visual thalamic nucleus and display complexity as these regions have no-specific functional relationship to display behavior. For somatic features, we predicted that the relationship between body mass and complexity would not include contributions of tarsus length based on a recent study suggesting selection on tarsus length is less labile than body mass. We tested our hypotheses in males from 12 manakin species and a closely related flycatcher. Our analyses support mosaic evolution of neural and somatic features functionally relevant to display and indicate sexual selection for acrobatic complexity may increase the capacity for procedural learning via cerebellar enlargement and maneuverability via a reduction in tarsus length in species with lower overall complexity scores.
Collapse
Affiliation(s)
- Lainy B Day
- Department of Biology, University of Mississippi, 30 University Avenue, University, MS 38677, USA.,Neuroscience Minor, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Wilson Helmhout
- Neuroscience Minor, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Glendin Pano
- Neuroscience Minor, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Urban Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413-90 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Willow R Lindsay
- Department of Biology, University of Mississippi, 30 University Avenue, University, MS 38677, USA.,Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413-90 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
6
|
Palacios ER, Houghton C, Chadderton P. Accounting for uncertainty: inhibition for neural inference in the cerebellum. Proc Biol Sci 2021; 288:20210276. [PMID: 33757352 PMCID: PMC8059656 DOI: 10.1098/rspb.2021.0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sensorimotor coordination is thought to rely on cerebellar-based internal models for state estimation, but the underlying neural mechanisms and specific contribution of the cerebellar components is unknown. A central aspect of any inferential process is the representation of uncertainty or conversely precision characterizing the ensuing estimates. Here, we discuss the possible contribution of inhibition to the encoding of precision of neural representations in the granular layer of the cerebellar cortex. Within this layer, Golgi cells influence excitatory granule cells, and their action is critical in shaping information transmission downstream to Purkinje cells. In this review, we equate the ensuing excitation-inhibition balance in the granular layer with the outcome of a precision-weighted inferential process, and highlight the physiological characteristics of Golgi cell inhibition that are consistent with such computations.
Collapse
Affiliation(s)
- Ensor Rafael Palacios
- School of Physiology Pharmachology and Neuroscience, University of Bristol, Bristol BS8 1TH, UK
| | - Conor Houghton
- School of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Paul Chadderton
- School of Physiology Pharmachology and Neuroscience, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
7
|
Sadeghinezhad J, Aghabalazadeh Asl M, Saeidi A, De Silva M. Morphometrical study of the cat cerebellum using unbiased design‐based stereology. Anat Histol Embryol 2020; 49:788-797. [DOI: 10.1111/ahe.12583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Javad Sadeghinezhad
- Department of Basic Sciences Faculty of Veterinary Medicine University of Tehran Tehran Iran
| | - Mahdi Aghabalazadeh Asl
- Department of Basic Sciences Faculty of Veterinary Medicine University of Tehran Tehran Iran
| | - Ava Saeidi
- Department of Basic Sciences Faculty of Veterinary Medicine University of Tehran Tehran Iran
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008) University of Bologna Bologna Italy
| |
Collapse
|