1
|
Zhang Z, Su J, Tang J, Chung L, Page JC, Winter CC, Liu Y, Kegeles E, Conti S, Zhang Y, Biundo J, Chalif JI, Hua CY, Yang Z, Yao X, Yang Y, Chen S, Schwab JM, Wang KH, Chen C, Prerau MJ, He Z. Spinal projecting neurons in rostral ventromedial medulla co-regulate motor and sympathetic tone. Cell 2024; 187:3427-3444.e21. [PMID: 38733990 PMCID: PMC11193620 DOI: 10.1016/j.cell.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Many behaviors require the coordinated actions of somatic and autonomic functions. However, the underlying mechanisms remain elusive. By opto-stimulating different populations of descending spinal projecting neurons (SPNs) in anesthetized mice, we show that stimulation of excitatory SPNs in the rostral ventromedial medulla (rVMM) resulted in a simultaneous increase in somatomotor and sympathetic activities. Conversely, opto-stimulation of rVMM inhibitory SPNs decreased both activities. Anatomically, these SPNs innervate both sympathetic preganglionic neurons and motor-related regions in the spinal cord. Fiber-photometry recording indicated that the activities of rVMM SPNs correlate with different levels of muscle and sympathetic tone during distinct arousal states. Inhibiting rVMM excitatory SPNs reduced basal muscle and sympathetic tone, impairing locomotion initiation and high-speed performance. In contrast, silencing the inhibitory population abolished muscle atonia and sympathetic hypoactivity during rapid eye movement (REM) sleep. Together, these results identify rVMM SPNs as descending spinal projecting pathways controlling the tone of both the somatomotor and sympathetic systems.
Collapse
Affiliation(s)
- Zicong Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jing Tang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Leeyup Chung
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jessica C Page
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Carla C Winter
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Yuchu Liu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Evgenii Kegeles
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Sara Conti
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yu Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jason Biundo
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Joshua I Chalif
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Charles Y Hua
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zhiyun Yang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xue Yao
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yang Yang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shuqiang Chen
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Jan M Schwab
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Departments of Neurology and Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kuan Hong Wang
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Chinfei Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Michael J Prerau
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Shokri-Kojori E, Tomasi D, Demiral SB, Wang GJ, Volkow ND. An autonomic mode of brain activity. Prog Neurobiol 2023; 229:102510. [PMID: 37516341 PMCID: PMC10591458 DOI: 10.1016/j.pneurobio.2023.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/11/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
The relevance of interactions between autonomic and central nervous systems remains unclear for human brain function and health, particularly when both systems are challenged under sleep deprivation (SD). We measured brain activity (with fMRI), pulse and respiratory signals, and baseline brain amyloid beta burden (with PET) in healthy participants. We found that SD relative to rested wakefulness (RW) resulted in a significant increase in synchronized low frequency (LF, < 0.1 Hz) activity in an autonomically-related network (AN), including dorsal attention, visual, and sensorimotor regions, which we previously found to have consistent temporal coupling with LF pulse signal changes (regulated by sympathetic tone). SD resulted in a significant phase coherence between the LF component of the pulse signal and a medial network with peak effects in the midbrain reticular formation, and between LF component of the respiratory variations (regulated by respiratory motor output) and a cerebellar network. The LF power of AN during SD was significantly and independently correlated with pulse-medial network and respiratory-cerebellar network phase coherences (total adjusted R2 = 0.78). Higher LF power of AN during SD (but not RW) was associated with lower amyloid beta burden (Cohen's d = 0.8). In sum, SD triggered an autonomic mode of synchronized brain activity that was associated with distinct autonomic-central interactions. Findings highlight the direct relevance of global cortical synchronization to brain clearance mechanisms.
Collapse
Affiliation(s)
- Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sukru B Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Lynch E, Dempsey B, Saleeba C, Monteiro E, Turner A, Burke PGR, Allen AM, Dampney RAL, Hildreth CM, Cornish JL, Goodchild AK, McMullan S. Descending pathways from the superior colliculus mediating autonomic and respiratory effects associated with orienting behaviour. J Physiol 2022; 600:5311-5332. [PMID: 36271640 PMCID: PMC10107157 DOI: 10.1113/jp283789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 01/05/2023] Open
Abstract
The ability to discriminate competing external stimuli and initiate contextually appropriate behaviours is a key brain function. Neurons in the deep superior colliculus (dSC) integrate multisensory inputs and activate descending projections to premotor pathways responsible for orienting, attention and defence, behaviours which involve adjustments to respiratory and cardiovascular parameters. However, the neural pathways that subserve the physiological components of orienting are poorly understood. We report that orienting responses to optogenetic dSC stimulation are accompanied by short-latency autonomic, respiratory and electroencephalographic effects in awake rats, closely mimicking those evoked by naturalistic alerting stimuli. Physiological responses were not accompanied by detectable aversion or fear, and persisted under urethane anaesthesia, indicating independence from emotional stress. Anterograde and trans-synaptic viral tracing identified a monosynaptic pathway that links the dSC to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA), a key hub for the coordination of orienting and locomotor behaviours. In urethane-anaesthetized animals, sympathoexcitatory and cardiovascular, but not respiratory, responses to dSC stimulation were replicated by optogenetic stimulation of the dSC-GiA terminals, suggesting a likely role for this pathway in mediating the autonomic components of dSC-mediated responses. Similarly, extracellular recordings from putative GiA sympathetic premotor neurons confirmed short-latency excitatory inputs from the dSC. This pathway represents a likely substrate for autonomic components of orienting responses that are mediated by dSC neurons and suggests a mechanism through which physiological and motor components of orienting behaviours may be integrated without the involvement of higher centres that mediate affective components of defensive responses. KEY POINTS: Neurons in the deep superior colliculus (dSC) integrate multimodal sensory signals to elicit context-dependent innate behaviours that are accompanied by stereotypical cardiovascular and respiratory activities. The pathways responsible for mediating the physiological components of colliculus-mediated orienting behaviours are unknown. We show that optogenetic dSC stimulation evokes transient orienting, respiratory and autonomic effects in awake rats which persist under urethane anaesthesia. Anterograde tracing from the dSC identified projections to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA). Stimulation of this pathway recapitulated autonomic effects evoked by stimulation of dSC neurons. Electrophysiological recordings from putative GiA sympathetic premotor neurons confirmed short latency excitatory input from dSC neurons. This disynaptic dSC-GiA-spinal sympathoexcitatory pathway may underlie autonomic adjustments to salient environmental cues independent of input from higher centres.
Collapse
Affiliation(s)
- Erin Lynch
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Bowen Dempsey
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Christine Saleeba
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Eloise Monteiro
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Anita Turner
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peter G R Burke
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Andrew M Allen
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Roger A L Dampney
- School of Medical Sciences (Physiology), University of Sydney, Sydney, New South Wales, Australia
| | - Cara M Hildreth
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jennifer L Cornish
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ann K Goodchild
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Simon McMullan
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Beine Z, Wang Z, Tsoulfas P, Blackmore MG. Single Nuclei Analyses Reveal Transcriptional Profiles and Marker Genes for Diverse Supraspinal Populations. J Neurosci 2022; 42:8780-8794. [PMID: 36202615 PMCID: PMC9698772 DOI: 10.1523/jneurosci.1197-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 01/18/2023] Open
Abstract
The mammalian brain contains numerous neurons distributed across forebrain, midbrain, and hindbrain that project axons to the lower spinal cord and work in concert to control movement and achieve homeostasis. Extensive work has mapped the anatomic location of supraspinal cell types and continues to establish specific physiological functions. The patterns of gene expression that typify and distinguish these disparate populations, however, are mostly unknown. Here, using adult mice of mixed sex, we combined retrograde labeling of supraspinal cell nuclei with fluorescence-activated nuclei sorting and single-nuclei RNA sequencing analyses to transcriptionally profile neurons that project axons from the brain to lumbar spinal cord. We identified 14 transcriptionally distinct cell types and used a combination of established and newly identified marker genes to assign an anatomic location to each. To validate the putative marker genes, we visualized selected transcripts and confirmed selective expression within lumbar-projecting neurons in discrete supraspinal regions. Finally, we illustrate the potential utility of these data by examining the expression of transcription factors that distinguish different supraspinal cell types and by surveying the expression of receptors for growth and guidance cues that may be present in the spinal cord. Collectively, these data establish transcriptional differences between anatomically defined supraspinal populations, identify a new set of marker genes of use in future experiments, and provide insight into potential differences in cellular and physiological activity across the supraspinal connectome.SIGNIFICANCE STATEMENT The brain communicates with the body through a wide variety of neuronal populations with distinct functions and differential sensitivity to damage and disease. We have used single-nuclei RNA sequencing technology to distinguish patterns of gene expression within a diverse set of neurons that project axons from the mouse brain to the lumbar spinal cord. The results reveal transcriptional differences between populations previously defined on the basis of anatomy, provide new marker genes to facilitate rapid identification of cell type in future work, and suggest distinct responsiveness of different supraspinal populations to external growth and guidance cues.
Collapse
Affiliation(s)
- Zachary Beine
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Zimei Wang
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Pantelis Tsoulfas
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Murray G Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
5
|
Wang Z, Romanski A, Mehra V, Wang Y, Brannigan M, Campbell BC, Petsko GA, Tsoulfas P, Blackmore MG. Brain-wide analysis of the supraspinal connectome reveals anatomical correlates to functional recovery after spinal injury. eLife 2022; 11:76254. [PMID: 35838234 PMCID: PMC9345604 DOI: 10.7554/elife.76254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
The supraspinal connectome is essential for normal behavior and homeostasis and consists of numerous sensory, motor, and autonomic projections from brain to spinal cord. Study of supraspinal control and its restoration after damage has focused mostly on a handful of major populations that carry motor commands, with only limited consideration of dozens more that provide autonomic or crucial motor modulation. Here, we assemble an experimental workflow to rapidly profile the entire supraspinal mesoconnectome in adult mice and disseminate the output in a web-based resource. Optimized viral labeling, 3D imaging, and registration to a mouse digital neuroanatomical atlas assigned tens of thousands of supraspinal neurons to 69 identified regions. We demonstrate the ability of this approach to clarify essential points of topographic mapping between spinal levels, measure population-specific sensitivity to spinal injury, and test the relationships between region-specific neuronal sparing and variability in functional recovery. This work will spur progress by broadening understanding of essential but understudied supraspinal populations.
Collapse
Affiliation(s)
- Zimei Wang
- Department of Biomedical Sciences, Marquette University, Milwaukee, United States
| | - Adam Romanski
- Department of Biomedical Sciences, Marquette University, Milwaukee, United States
| | - Vatsal Mehra
- Department of Biomedical Sciences, Marquette University, Milwaukee, United States
| | - Yunfang Wang
- Department of Neurological Surgery, University of Miami, Miami, United States
| | - Matthew Brannigan
- Department of Biomedical Sciences, Marquette University, Milwaukee, United States
| | - Benjamin C Campbell
- Helen and Robert Appel Alzheimer's Disease Research Institute, Cornell University, New York, United States
| | - Gregory A Petsko
- Helen and Robert Appel Alzheimer's Disease Research Institute, Cornell University, New York, United States
| | - Pantelis Tsoulfas
- Department of Neurological Surgery, University of Miami, Miami, United States
| | - Murray G Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, United States
| |
Collapse
|
6
|
Kitazawa M, Sutani A, Kaneko‐Ishino T, Ishino F. The role of eutherian-specific RTL1 in the nervous system and its implications for the Kagami-Ogata and Temple syndromes. Genes Cells 2021; 26:165-179. [PMID: 33484574 PMCID: PMC7986171 DOI: 10.1111/gtc.12830] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
RTL1 (also termed paternal expressed 11 (PEG11)) is considered the major imprinted gene responsible for the placental and fetal/neonatal muscle defects that occur in the Kagami-Ogata and Temple syndromes (KOS14 and TS14, respectively). However, it remains elusive whether RTL1 is also involved in their neurological symptoms, such as behavioral and developmental delay/intellectual disability, feeding difficulties, motor delay, and delayed speech. Here, we demonstrate that the mouse RTL1 protein is widely expressed in the central nervous system (CNS), including the limbic system. Importantly, two disease model mice with over- and under-expression of Rtl1 exhibited reduced locomotor activity, increased anxiety, and impaired amygdala-dependent cued fear, demonstrating that Rtl1 also plays an important role in the CNS. These results indicate that the KOS14 and TS14 are neuromuscular as well as neuropsychiatric diseases caused by irregular CNS RTL1 expression, presumably leading to impaired innervation of motor neurons to skeletal muscles as well as malfunction of the hippocampus-amygdala complex. It is of considerable interest that eutherian-specific RTL1 is expressed in mammalian- and eutherian-specific brain structures, that is, the corticospinal tract and corpus callosum, respectively, suggesting that RTL1 might have contributed to the acquisition of both these structures themselves and fine motor skill in eutherian brain evolution.
Collapse
Affiliation(s)
- Moe Kitazawa
- Department of EpigeneticsMedical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Akito Sutani
- Department of EpigeneticsMedical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental University (TMDU)TokyoJapan
| | | | - Fumitoshi Ishino
- Department of EpigeneticsMedical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
7
|
LaPallo BK, Giorgi A, Perreault MC. Crossed activation of thoracic trunk motoneurons by medullary reticulospinal neurons. J Neurophysiol 2019; 122:2601-2613. [PMID: 31664872 DOI: 10.1152/jn.00194.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Activation of contralateral muscles by supraspinal neurons, or crossed activation, is critical for bilateral coordination. Studies in mammals have focused on the neural circuits that mediate cross activation of limb muscles, but the neural circuits involved in crossed activation of trunk muscles are still poorly understood. In this study, we characterized functional connections between reticulospinal (RS) neurons in the medial and lateral regions of the medullary reticular formation (medMRF and latMRF) and contralateral trunk motoneurons (MNs) in the thoracic cord (T7 and T10 segments). To do this, we combined electrical microstimulation of the medMRF and latMRF and calcium imaging from single cells in an ex vivo brain stem-spinal cord preparation of neonatal mice. Our findings substantiate two spatially distinct RS pathways to contralateral trunk MNs. Both pathways originate in the latMRF and are midline crossing, one at the level of the spinal cord via excitatory descending commissural interneurons (reticulo-commissural pathway) and the other at the level of the brain stem (crossed RS pathway). Activation of these RS pathways may enable different patterns of bilateral trunk coordination. Possible implications for recovery of trunk function after stroke or spinal cord injury are discussed.NEW & NOTEWORTHY We identify two spatially distinct reticulospinal pathways for crossed activation of trunk motoneurons. Both pathways cross the midline, one at the level of the brain stem and the other at the level of the spinal cord via excitatory commissural interneurons. Jointly, these pathways provide new opportunities for repair interventions aimed at recovering trunk functions after stroke or spinal cord injury.
Collapse
Affiliation(s)
- Brandon K LaPallo
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Andrea Giorgi
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | | |
Collapse
|