1
|
Xu X, Fan X, Dong J, Zhang X, Song Z, Bai D, Pu F. Enhancing motor imagery in the third-person perspective by manipulating sense of body ownership with virtual reality. Eur J Neurosci 2024; 60:5750-5763. [PMID: 39210784 DOI: 10.1111/ejn.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Virtual reality (VR)-guided motor imagery (MI) is a widely used approach for motor rehabilitation, especially for patients with severe motor impairments. Most approaches provide visual guidance from the first-person perspective (1PP). MI training with visual guidance from the third-person perspective (3PP) remains largely unexplored. We argue that 3PP MI training has its own advantages and can supplement 1PP MI. For some movements beyond the view of 1PP, such as shoulder shrugging and other axial movements, MI are suitable performed under 3PP. However, the efficiency of existing paradigms for 3PP MI is unsatisfactory. We speculate that the absence of sense of body ownership (SOO) from 3PP could be one possible factor and hypothesize that 3PP MI could be enhanced by eliciting SOO over a 3PP avatar. Based on our hypothesis, a novel paradigm was proposed to enhance 3PP MI by inducing full-body illusion (FBI) from 3PP, which is similar to the so-called out-of-body experience (OBE), using synchronous visuo-tactile stimulus with VR. The event-related Electroencephalograph (EEG) desynchronization (ERD) at motor-related regions from 31 healthy participants were calculated and compared with a control paradigm without "OBE" FBI induction. This study attempts to enhance 3PP MI with FBI induction. It offers an opportunity to perform MI guided by action observation from 3PP with elicited SOO to the observed avatar. We believe that 3PP MI could provide more possibilities for effective rehabilitation training, when SOO could be elicited to a virtual avatar and the present work demonstrates its viability and effectiveness.
Collapse
Affiliation(s)
- Xiaotian Xu
- Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoya Fan
- Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, School of Software, Dalian University of Technology, Dalian, Liaoning, China
| | - Jiaoyang Dong
- Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiting Zhang
- Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhe Song
- Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Pu
- Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and System, Beihang University, Beijing, China
- Research Unit of Virtual Body and Virtual Surgery Technologies, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Mateo S, Guillot A, Henkous S, Gelis A, Daligault S, Rode G, Collet C, Di Rienzo F. Implicit and explicit motor imagery ability after SCI: Moving the elbow makes the difference. Brain Res 2024; 1836:148911. [PMID: 38604558 DOI: 10.1016/j.brainres.2024.148911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Cervical spinal cord injury (SCI) causes dramatic sensorimotor deficits that restrict both activity and participation. Restoring activity and participation requires extensive upper limb rehabilitation focusing elbow and wrist movements, which can include motor imagery. Yet, it remains unclear whether MI ability is impaired or spared after SCI. We investigated implicit and explicit MI ability in individuals with C6 or C7 SCI (SCIC6 and SCIC7 groups), as well as in age- and gender-matched controls without SCI. Inspired by previous studies, implicit MI evaluations involved hand laterality judgments, hand orientation judgments (HOJT) and hand-object interaction judgments. Explicit MI evaluations involved mental chronometry assessments of physically possible or impossible movements due to the paralysis of upper limb muscles in both groups of participants with SCI. HOJT was the paradigm in which implicit MI ability profiles differed the most between groups, particularly in the SCIC6 group who had impaired elbow movements in the horizontal plane. MI ability profiles were similar between groups for explicit MI evaluations, but reflected task familiarity with higher durations in the case of unfamiliar movements in controls or attempt to perform movements which were no longer possible in persons with SCI. Present results, obtained from a homogeneous population of individuals with SCI, suggest that people with long-term SCI rely on embodied cognitive motor strategies, similar to controls. Differences found in behavioral response pattern during implicit MI mirrored the actual motor deficit, particularly during tasks that involved internal representations of affected body parts.
Collapse
Affiliation(s)
- Sébastien Mateo
- Universite Lyon, UCBL-Lyon 1, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Trajectoires Team, Centre Hospitalier Le Vinatier, Bâtiment 452, 95 Boulevard Pinel, F-69675 Bron, Auvergne-Rhône-Alpes, France; Lyon Neuroscience Research Center, Trajectoires Team, Centre Hospitalier Le Vinatier, Bâtiment 452, 95 Boulevard Pinel, F-69675 Bron, Auvergne-Rhône-Alpes, France
| | - Aymeric Guillot
- Universite Lyon, UCBL-Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, UR 7424, 27-29 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, Auvergne-Rhône-Alpes, France
| | - Sonia Henkous
- Hospices Civils de Lyon, Hôpital Henry Gabrielle, Plate-forme Mouvement et Handicap, 20 route de Vourles, F-69230, Saint Genis Laval, Auvergne-Rhône-Alpes, France; Universite Lyon, UCBL-Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, UR 7424, 27-29 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, Auvergne-Rhône-Alpes, France
| | - Anthony Gelis
- Centre Mutualiste Neurologique Propara, 263 rue du Caducée, F-34090, Montpellier, Occitanie, France
| | - Sébastien Daligault
- CERMEP, Imagerie du Vivant, 95 Boulevard Pinel, F-69677 Bron, Auvergne-Rhône-Alpes, France
| | - Gilles Rode
- Universite Lyon, UCBL-Lyon 1, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Trajectoires Team, Centre Hospitalier Le Vinatier, Bâtiment 452, 95 Boulevard Pinel, F-69675 Bron, Auvergne-Rhône-Alpes, France; Lyon Neuroscience Research Center, Trajectoires Team, Centre Hospitalier Le Vinatier, Bâtiment 452, 95 Boulevard Pinel, F-69675 Bron, Auvergne-Rhône-Alpes, France
| | - Christian Collet
- Universite Lyon, UCBL-Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, UR 7424, 27-29 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, Auvergne-Rhône-Alpes, France
| | - Franck Di Rienzo
- Universite Lyon, UCBL-Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, UR 7424, 27-29 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, Auvergne-Rhône-Alpes, France.
| |
Collapse
|
3
|
Tedeschi R. Unlocking the power of motor imagery: a comprehensive review on its application in alleviating foot pain. Acta Neurol Belg 2024:10.1007/s13760-024-02492-2. [PMID: 38460100 DOI: 10.1007/s13760-024-02492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/01/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Motor imagery is a cognitive process that involves mentally simulating movements without physical execution. It has been studied in the context of foot pain to understand the role of motor cortical reorganization and its impact on motor imagery abilities. However, further research is needed to establish consistent evidence regarding the relationship between motor imagery and foot pain. METHODS This review analyzed five relevant articles that investigated motor imagery in the context of foot pain. The studies involved participants with various conditions, including leg amputation, chronic leg pain, complex regional pain syndrome, and Achilles tendinopathy. Different methodologies were employed, including motor cortical mapping, foot laterality recognition tasks, EEG recordings, and treatment interventions incorporating motor imagery. RESULTS The findings indicated that individuals with leg amputation exhibited functional reorganization in upper limb motor cortical maps, with a breakdown in the inhibitory relationship between foot and hand representations. Participants with chronic leg pain demonstrated slower and less accurate performance on foot laterality recognition tasks compared to healthy controls. Complex regional pain syndrome patients displayed distinct motor imagery strategies and responded differently to first-person and third-person perspectives. EEG studies revealed differences in brain activity during motor imagery tasks under pain-free and pain conditions. Treatment interventions incorporating motor imagery showed promising outcomes in improving functional outcomes and reducing pain levels. CONCLUSIONS Motor imagery plays a significant role in foot pain conditions, although the evidence is still emerging. The findings suggest that motor imagery abilities may be affected by leg amputation, chronic pain, and complex regional pain syndrome. Further research is needed to establish standardized protocols for assessing motor imagery, identify specific patient populations that may benefit most from motor imagery interventions, and explore long-term effects. Integrating motor imagery into clinical practice has the potential to enhance rehabilitation approaches and improve outcomes in foot pain management.
Collapse
Affiliation(s)
- Roberto Tedeschi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Via Zamboni 33, 40126, Bologna, Italy.
| |
Collapse
|
4
|
Zhang K, Wang H, Wang X, Xiong X, Tong S, Sun C, Zhu B, Xu Y, Fan M, Sun L, Guo X. Neuroimaging prognostic factors for treatment response to motor imagery training after stroke. Cereb Cortex 2023; 33:9504-9513. [PMID: 37376787 DOI: 10.1093/cercor/bhad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The efficacy of motor imagery training for motor recovery is well acknowledged, but with substantial inter-individual variability in stroke patients. To help optimize motor imagery training therapy plans and screen suitable patients, this study aimed to explore neuroimaging biomarkers explaining variability in treatment response. Thirty-nine stroke patients were randomized to a motor imagery training group (n = 22, received a combination of conventional rehabilitation therapy and motor imagery training) and a control group (n = 17, received conventional rehabilitation therapy and health education) for 4 weeks of interventions. Their demography and clinical information, brain lesion from structural MRI, spontaneous brain activity and connectivity from rest fMRI, and sensorimotor brain activation from passive motor task fMRI were acquired to identify prognostic factors. We found that the variability of outcomes from sole conventional rehabilitation therapy could be explained by the reserved sensorimotor neural function, whereas the variability of outcomes from motor imagery training + conventional rehabilitation therapy was related to the spontaneous activity in the ipsilesional inferior parietal lobule and the local connectivity in the contralesional supplementary motor area. The results suggest that additional motor imagery training treatment is also efficient for severe patients with damaged sensorimotor neural function, but might be more effective for patients with impaired motor planning and reserved motor imagery.
Collapse
Affiliation(s)
- Kexu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hewei Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Xu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Xiong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changhui Sun
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Bing Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Yiming Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China
| | - Limin Sun
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Xiaoli Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Choy CS, Fang Q, Neville K, Ding B, Kumar A, Mahmoud SS, Gu X, Fu J, Jelfs B. Virtual reality and motor imagery for early post-stroke rehabilitation. Biomed Eng Online 2023; 22:66. [PMID: 37407988 PMCID: PMC10320905 DOI: 10.1186/s12938-023-01124-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Motor impairment is a common consequence of stroke causing difficulty in independent movement. The first month of post-stroke rehabilitation is the most effective period for recovery. Movement imagination, known as motor imagery, in combination with virtual reality may provide a way for stroke patients with severe motor disabilities to begin rehabilitation. METHODS The aim of this study is to verify whether motor imagery and virtual reality help to activate stroke patients' motor cortex. 16 acute/subacute (< 6 months) stroke patients participated in this study. All participants performed motor imagery of basketball shooting which involved the following tasks: listening to audio instruction only, watching a basketball shooting animation in 3D with audio, and also performing motor imagery afterwards. Electroencephalogram (EEG) was recorded for analysis of motor-related features of the brain such as power spectral analysis in the [Formula: see text] and [Formula: see text] frequency bands and spectral entropy. 18 EEG channels over the motor cortex were used for all stroke patients. RESULTS All results are normalised relative to all tasks for each participant. The power spectral densities peak near the [Formula: see text] band for all participants and also the [Formula: see text] band for some participants. Tasks with instructions during motor imagery generally show greater power spectral peaks. The p-values of the Wilcoxon signed-rank test for band power comparison from the 18 EEG channels between different pairs of tasks show a 0.01 significance of rejecting the band powers being the same for most tasks done by stroke subjects. The motor cortex of most stroke patients is more active when virtual reality is involved during motor imagery as indicated by their respective scalp maps of band power and spectral entropy. CONCLUSION The resulting activation of stroke patient's motor cortices in this study reveals evidence that it is induced by imagination of movement and virtual reality supports motor imagery. The framework of the current study also provides an efficient way to investigate motor imagery and virtual reality during post-stroke rehabilitation.
Collapse
Affiliation(s)
- Chi S. Choy
- School of Engineering, RMIT University, Melbourne, Australia
| | - Qiang Fang
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | - Katrina Neville
- School of Engineering, RMIT University, Melbourne, Australia
| | - Bingrui Ding
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | - Akshay Kumar
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | | | - Xudong Gu
- Rehabilitation Center, Jiaxing 2nd Hospital, Jiaxing, 314000 China
| | - Jianming Fu
- Rehabilitation Center, Jiaxing 2nd Hospital, Jiaxing, 314000 China
| | - Beth Jelfs
- Department of Electrical, Electronic & Systems Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Bayram M, Palluel-Germain R, Lebon F, Durand E, Harquel S, Perrone-Bertolotti M. Motor imagery training to improve language processing: What are the arguments? Front Hum Neurosci 2023; 17:982849. [PMID: 36816506 PMCID: PMC9929469 DOI: 10.3389/fnhum.2023.982849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Studies showed that motor expertise was found to induce improvement in language processing. Grounded and situated approaches attributed this effect to an underlying automatic simulation of the motor experience elicited by action words, similar to motor imagery (MI), and suggest shared representations of action conceptualization. Interestingly, recent results also suggest that the mental simulation of action by MI training induces motor-system modifications and improves motor performance. Consequently, we hypothesize that, since MI training can induce motor-system modifications, it could be used to reinforce the functional connections between motor and language system, and could thus lead to improved language performance. Here, we explore these potential interactions by reviewing recent fundamental and clinical literature in the action-language and MI domains. We suggested that exploiting the link between action language and MI could open new avenues for complementary language improvement programs. We summarize the current literature to evaluate the rationale behind this novel training and to explore the mechanisms underlying MI and its impact on language performance.
Collapse
Affiliation(s)
- Mariam Bayram
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | | | - Florent Lebon
- Laboratoire INSERM U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, Faculté des Sciences du Sport (UFR STAPS), Dijon, France,Institut Universitaire de France (IUF), Paris, France
| | - Edith Durand
- Département d’Orthophonie, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Sylvain Harquel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Marcela Perrone-Bertolotti
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France,Institut Universitaire de France (IUF), Paris, France,*Correspondence: Marcela Perrone-Bertolotti,
| |
Collapse
|
7
|
Atypical influence of biomechanical knowledge in Complex Regional Pain Syndrome-towards a different perspective on body representation. Sci Rep 2023; 13:520. [PMID: 36627332 PMCID: PMC9832000 DOI: 10.1038/s41598-023-27733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Part of the multifaceted pathophysiology of Complex Regional Pain Syndrome (CRPS) is ascribed to lateralized maladaptive neuroplasticity in sensorimotor cortices, corroborated by behavioral studies indicating that patients present difficulties in mentally representing their painful limb. Such difficulties are widely measured with hand laterality judgment tasks (HLT), which are also used in the rehabilitation of CRPS to activate motor imagery and restore the cortical representation of the painful limb. The potential of these tasks to elicit motor imagery is critical to their use in therapy, yet, the influence of the body's biomechanical constraints (BMC) on HLT reaction time, supposed to index motor imagery activation, is rarely verified. Here we investigated the influence of BMC on the perception of hand postures and movements in upper-limb CRPS. Patients were slower than controls in judging hand laterality, whether or not stimuli corresponded to their painful hand. Reaction time patterns reflecting BMC were mostly absent in CRPS and controls. A second experiment therefore directly investigated the influence of implicit knowledge of BMC on hand movement judgments. Participants judged the perceived path of movement between two depicted hand positions, with only one of two proposed paths that was biomechanically plausible. While the controls mostly chose the biomechanically plausible path, patients did not. These findings show non-lateralized body representation impairments in CRPS, possibly related to difficulties in using correct knowledge of the body's biomechanics. Importantly, they demonstrate the challenge of reliably measuring motor imagery with the HLT, which has important implications for the rehabilitation with these tasks.
Collapse
|
8
|
Veldema J, Gharabaghi A, Jansen P. Non-invasive brain stimulation in modulation of mental rotation ability: A systematic review and meta-analysis. Eur J Neurosci 2021; 54:7493-7512. [PMID: 34651358 DOI: 10.1111/ejn.15490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Mental rotation, the ability to manipulate mental images, is an important function in human cognition. This systematic review and meta-analysis investigates the potential of non-invasive brain stimulation in modulation of this component of visuo-spatial perception. The PubMed database was reviewed prior to 31 September 2020 on randomized controlled trials investigating the effects of repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) on the mental rotation ability in healthy persons. A total of 17 studies (including 485 subjects) matched our inclusion criteria. Within their scope, overall, 46 sham-controlled experiments were performed. Methodology and results of each experiment are presented in a meta-analysis. The data show a large variety of methods and effects. The influence of (1) stimulation-technique (tDCS, tACS, and rTMS), (2) stimulation protocol (anodal, cathodal, bilateral tDCS, tACS, high-frequency rTMS, low-frequency rTMS, paired pulse rTMS, and theta burst stimulation), (3) stimulation timing (preconditioning and simultaneous), (4) stimulation location (left, right hemisphere, frontal, and parietal area), and (5) stimulus type (bodily and non-bodily) is discussed. The data indicate a beneficial effect of anodal tDCS and of tACS and no effect of cathodal tDCS on the mental rotation ability. Bilateral tDCS protocols both improved and worsened the parameters assessed. The small effect sizes obtained in mostly rTMS experiments require cautious interpretation.
Collapse
Affiliation(s)
- Jitka Veldema
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Petra Jansen
- Faculty of Human Science, University of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Debarnot U, Perrault AA, Sterpenich V, Legendre G, Huber C, Guillot A, Schwartz S. Motor imagery practice benefits during arm immobilization. Sci Rep 2021; 11:8928. [PMID: 33903619 PMCID: PMC8076317 DOI: 10.1038/s41598-021-88142-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/30/2021] [Indexed: 11/26/2022] Open
Abstract
Motor imagery (MI) is known to engage motor networks and is increasingly used as a relevant strategy in functional rehabilitation following immobilization, whereas its effects when applied during immobilization remain underexplored. Here, we hypothesized that MI practice during 11 h of arm-immobilization prevents immobilization-related changes at the sensorimotor and cortical representations of hand, as well as on sleep features. Fourteen participants were tested after a normal day (without immobilization), followed by two 11-h periods of immobilization, either with concomitant MI treatment or control tasks, one week apart. At the end of each condition, participants were tested on a hand laterality judgment task, then underwent transcranial magnetic stimulation to measure cortical excitability of the primary motor cortices (M1), followed by a night of sleep during which polysomnography data was recorded. We show that MI treatment applied during arm immobilization had beneficial effects on (1) the sensorimotor representation of hands, (2) the cortical excitability over M1 contralateral to arm-immobilization, and (3) sleep spindles over both M1s during the post-immobilization night. Furthermore, (4) the time spent in REM sleep was significantly longer, following the MI treatment. Altogether, these results support that implementing MI during immobilization may limit deleterious effects of limb disuse, at several levels of sensorimotor functioning.
Collapse
Affiliation(s)
- Ursula Debarnot
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland. .,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland. .,Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard Lyon 1, Villeurbanne, France. .,Institut Universitaire de France, Paris, France.
| | - Aurore A Perrault
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland.,Sleep, Cognition and Neuroimaging Laboratory, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
| | - Virginie Sterpenich
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Guillaume Legendre
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Chieko Huber
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Sophie Schwartz
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| |
Collapse
|
10
|
Lane D, Tessari A, Ottoboni G, Marsden J. Body representation in people with apraxia post Stroke- an observational study. Brain Inj 2021; 35:468-475. [PMID: 33587684 DOI: 10.1080/02699052.2021.1880637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: To investigate how two types of body representation (body schema and body image) were affected in people with and without apraxia following a supratentorial stroke.Design: Observational cross-sectional studySetting: Level 1 Specialist Neurological Rehabilitation UnitParticipants: 30 participants post-stroke diagnosed with (n = 10) and without apraxia (n = 20) according to a modified version of the short Ideomotor Apraxia Test.Interventions: Not applicableMain Outcome Measures: Body schema assessed using the hand laterality recognition test and body part knowledge test; Implicit body image assessed using the sidedness test.Results: Left-sided lesions were more common in the apraxic group. Compared to people without apraxia post-stroke, those with apraxia showed significantly reduced accuracy and longer reaction times on the hand laterality test and fewer correct responses on the body part knowledge test. There was no between-groups difference in the sidedness test.Conclusions: People with apraxia showed deficits in online body representations (body schema) that are used to plan and execute actions. Future research studies could target body schema deficits as an adjunct in the rehabilitation of apraxia.
Collapse
Affiliation(s)
- Donncha Lane
- National Rehabilitation Hospital, Dublin, Ireland.,School of Health Professions, Faculty of Health, Plymouth University, Plymouth, UK
| | - Alessia Tessari
- Department of Psychology, University of Bologna, Bologna, Italy
| | | | - Jonathan Marsden
- School of Health Professions, Faculty of Health, Plymouth University, Plymouth, UK
| |
Collapse
|
11
|
Schütz C, Schack T. Hemispheric lateralization does not affect the cognitive and mechanical cost of a sequential motor task. Exp Brain Res 2019; 237:3133-3142. [PMID: 31559448 DOI: 10.1007/s00221-019-05652-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/05/2019] [Indexed: 01/10/2023]
Abstract
In sequential, repetitive tasks, we often partially reuse former motor plans. This causes a persistence of an earlier adopted posture (termed motor hysteresis). The cost-optimization hypothesis states that a partial reuse reduces the cognitive cost of a movement, while the persistence in a former posture increases its mechanical cost. An optimal fraction of reuse, which depends on the relative cognitive and mechanical cost, minimizes the total movement cost. Several studies postulate differences in mechanical or cognitive cost as a result of hemispheric lateralization. In the current study, we asked whether these differences would result in different fractions of motor plan reuse. To this end, left- and right-handed dominant participants executed a sequential motor task (opening a column of drawers) with their dominant and non-dominant hand. The size of the motor hysteresis effect was measured as a proxy for the fraction of plan reuse. Participants used similar postures and exhibited a similar hysteresis effect, irrespective of hand and handedness. This finding indicates that either the cognitive and mechanical costs of a motor task are unaffected by hemispheric differences or that their effect on motor planning is negligible.
Collapse
Affiliation(s)
- Christoph Schütz
- Cluster of Excellence Cognitive Interaction Technology, Bielefeld University, Inspiration 1, 33619, Bielefeld, Germany.
| | - Thomas Schack
- Cluster of Excellence Cognitive Interaction Technology, Bielefeld University, Inspiration 1, 33619, Bielefeld, Germany.,Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany.,CoR-Lab, Research Institute for Cognition and Robotics, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
12
|
Santoro S, Lo Buono V, Corallo F, Cartella E, Micchia K, Palmeri R, Arcadi FA, Bramanti A, Marino S. Motor imagery in stroke patients: a descriptive review on a multidimensional ability. Int J Neurosci 2019; 129:821-832. [DOI: 10.1080/00207454.2019.1567509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Simona Santoro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Viviana Lo Buono
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Emanuele Cartella
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Katia Micchia
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Rosanna Palmeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | | | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
13
|
Zapparoli L, Gandola M, Banfi G, Paulesu E. A Breakdown of Imagined Visuomotor Transformations and Its Neural Correlates in Young Elderly Subjects. Cereb Cortex 2018; 29:1682-1696. [DOI: 10.1093/cercor/bhy314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Martina Gandola
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- University Vita e Salute San Raffaele, Milan, Italy
| | - Eraldo Paulesu
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
14
|
Ding L, Wang X, Guo X, Chen S, Wang H, Jiang N, Jia J. Camera-Based Mirror Visual Feedback: Potential to Improve Motor Preparation in Stroke Patients. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1897-1905. [PMID: 30106735 DOI: 10.1109/tnsre.2018.2864990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mirror visual feedback (MVF) is used widely for motor recovery after stroke, but an optimal training setup and systematic procedure are lacking. New optimization strategies have been proposed, one of which is a camera technique. We investigated the effects of a camera-based MVF setup on motor function and motor processes upstream for upper-limb rehabilitation. Seventy-nine stroke patients were assigned randomly to the MVF group (MG; ${N} = {38}$ ) or conventional group (CG; ${N} = {41}$ ), which, respectively, received camera-based MVF and dosage-equivalent physiotherapy or/and occupational therapy for 1 h/day and five days/week for four weeks. Two clinical scales were used to quantify the effect of the intervention methods: the Fugl-Meyer assessment-upper limb (FMA-UL) subscale and Barthel index. The hand laterality task was used to evaluate the ability of mental rotation, including the reaction time and accuracy. All measurements were improved significantly for both groups following intervention. FMA-UL was improved significantly in the MG compared with that in the CG. In lateralization tasks, the RT of the MG was significantly shorter than that of the CG at the endpoint. For all patients, judgments for the affected side were significantly slower and less accurate than for the less-affected side. Subgroup analyses suggested greater benefits of motor function, the activities of daily life, and mental rotation were achieved in subacute patients after MVF. A trend toward greater improvements in motor function for patients with severe-moderate motor impairment and patients with right-hemisphere damage were also revealed. Camera-based MVF has improved the motor function and ability of mental rotation for stroke patients, especially for patients in the subacute stage, which indicates the potential to improve motor preparation. Further studies might combine mental rotation with electroencephalography to investigate the neuro-mechanism of MVF.
Collapse
|
15
|
Tacchino A, Saiote C, Brichetto G, Bommarito G, Roccatagliata L, Cordano C, Battaglia MA, Mancardi GL, Inglese M. Motor Imagery as a Function of Disease Severity in Multiple Sclerosis: An fMRI Study. Front Hum Neurosci 2018; 11:628. [PMID: 29375340 PMCID: PMC5768615 DOI: 10.3389/fnhum.2017.00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/08/2017] [Indexed: 11/13/2022] Open
Abstract
Motor imagery (MI) is defined as mental execution without any actual movement. While healthy adults usually show temporal equivalence, i.e., isochrony, between the mental simulation of an action and its actual performance, neurological disorders are associated with anisochrony. Unlike in patients with stroke and Parkinson disease, only a few studies have investigated differences of MI ability in multiple sclerosis (MS). However, the relationship among disease severity, anisochrony and brain activation patterns during MI has not been investigated yet. Here, we propose to investigate MI in MS patients using fMRI during a behavioral task executed with dominant/non-dominant hand and to evaluate whether anisochrony is associated with disease severity. Thirty-seven right-handed MS patients, 17 with clinically isolated syndrome (CIS) suggestive of MS and 20 with relapsing-remitting MS (RR-MS) and 20 right-handed healthy controls (HC) underwent fMRI during a motor task consisting in the actual or imaged movement of squeezing a foam ball with the dominant and non-dominant hand. The same tasks were performed outside the MRI room to record the number of actual and imagined ball squeezes, and calculate an Index of performance (IP) based on the ratio between actual and imagined movements. IP showed that a progressive loss of ability in simulating actions (i.e., anisochrony) more pronounced for non-dominant hand, was found as function of the disease course. Moreover, anisochrony was associated with activation of occipito-parieto-frontal areas that were more extensive at the early stages of the disease, probably in order to counteract the changes due to MS. However, the neural engagement of compensatory brain areas becomes more difficult with more challenging tasks, i.e., dominant vs. non-dominant hand, with a consequent deficit in behavioral performance. These results show a strict association between MI performance and disease severity, suggesting that, at early stages of the disease, anisochrony in MI could be considered as surrogate behavioral marker of MS severity.
Collapse
Affiliation(s)
- Andrea Tacchino
- Scientific Research Area, Italian MS Foundation (FISM), Genoa, Italy
| | - Catarina Saiote
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Giulia Bommarito
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Luca Roccatagliata
- Department of Health Sciences (DISSAL), IRCCS San Martino University Hospital and IST, Genoa, Italy.,Neuroradiology Department, IRCCS San Martino University Hospital and IST, Genoa, Italy
| | - Christian Cordano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Gian L Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
16
|
Braun N, Kranczioch C, Liepert J, Dettmers C, Zich C, Büsching I, Debener S. Motor Imagery Impairment in Postacute Stroke Patients. Neural Plast 2017; 2017:4653256. [PMID: 28458926 PMCID: PMC5387846 DOI: 10.1155/2017/4653256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/14/2017] [Indexed: 01/26/2023] Open
Abstract
Not much is known about how well stroke patients are able to perform motor imagery (MI) and which MI abilities are preserved after stroke. We therefore applied three different MI tasks (one mental chronometry task, one mental rotation task, and one EEG-based neurofeedback task) to a sample of postacute stroke patients (n = 20) and age-matched healthy controls (n = 20) for addressing the following questions: First, which of the MI tasks indicate impairment in stroke patients and are impairments restricted to the paretic side? Second, is there a relationship between MI impairment and sensory loss or paresis severity? And third, do the results of the different MI tasks converge? Significant differences between the stroke and control groups were found in all three MI tasks. However, only the mental chronometry task and EEG analysis revealed paresis side-specific effects. Moreover, sensitivity loss contributed to a performance drop in the mental rotation task. The findings indicate that although MI abilities may be impaired after stroke, most patients retain their ability for MI EEG-based neurofeedback. Interestingly, performance in the different MI measures did not strongly correlate, neither in stroke patients nor in healthy controls. We conclude that one MI measure is not sufficient to fully assess an individual's MI abilities.
Collapse
Affiliation(s)
- Niclas Braun
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Cornelia Kranczioch
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | | | | | - Catharina Zich
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | | | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4All, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
17
|
Amesz S, Tessari A, Ottoboni G, Marsden J. An observational study of implicit motor imagery using laterality recognition of the hand after stroke. Brain Inj 2016; 30:999-1004. [DOI: 10.3109/02699052.2016.1147600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Jongsma MLA, Baas CM, Sangen AFM, Aarts PBM, van der Lubbe RHJ, Meulenbroek RGJ, Steenbergen B. Children with unilateral cerebral palsy show diminished implicit motor imagery with the affected hand. Dev Med Child Neurol 2016; 58:277-84. [PMID: 26095695 DOI: 10.1111/dmcn.12819] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 11/30/2022]
Abstract
AIM Motor imagery refers to the mental simulation of a motor action without producing an overt movement. Implicit motor imagery can be regarded as a first-person kinesthetic perceptual judgement, and addresses the capacity to engage into the manipulation of one's body schema. In this study, we examined whether children with unilateral cerebral palsy (CP) are able to engage in implicit motor imagery. METHOD A modified version of the hand laterality judgment task was employed. Erroneous responses, reaction times, and event-related potentials from the electroencephalograph were analysed. RESULTS In 13 children with typical development (mean age 10y 7mo, SD 1y 2mo; seven male, six female), we observed the classic rotation direction effect. Specifically, when comparing outward rotated with inward rotated hand pictures, decreased accuracy and increased response times were observed. Event-related potentials analyses of the electroencephalogram revealed a more marked N1 and an enhanced rotation-related negativity. INTERPRETATION These findings suggest that an implicit motor imagery strategy was used to solve the task. However, in 10 children with unilateral CP (mean age 10y 7mo, SD 2y 5mo; five male, five female), these effects were observed only when the less-affected hand was involved. This observation suggests that children with CP could benefit from visual training strategies.
Collapse
Affiliation(s)
- Marijtje L A Jongsma
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - C Marjolein Baas
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Anouk F M Sangen
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Pauline B M Aarts
- Department of Pediatric Rehabilitation, Sint Maartenskliniek, Nijmegen, the Netherlands
| | - Rob H J van der Lubbe
- Cognitive Psychology and Ergonomics, University of Twente, Enschede, the Netherlands.,Department of Cognitive Psychology, University of Finance and Management, Warsaw, Poland
| | - Ruud G J Meulenbroek
- Donders Institute for Brain, Cognition, and Behaviour, Donders Centre for Cognition, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Bert Steenbergen
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.,School of Psychology, Australian Catholic University, Melbourne, Vic., Australia
| |
Collapse
|
19
|
Zapparoli L, Saetta G, De Santis C, Gandola M, Zerbi A, Banfi G, Paulesu E. When I am (almost) 64: The effect of normal ageing on implicit motor imagery in young elderlies. Behav Brain Res 2016; 303:137-51. [PMID: 26851363 DOI: 10.1016/j.bbr.2016.01.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/18/2016] [Accepted: 01/24/2016] [Indexed: 12/13/2022]
Abstract
Motor imagery (M.I.) is a cognitive process in which movements are mentally evoked without overt actions. Behavioral and fMRI studies show a decline of explicit M.I. ability (e.g., the mental rehearsal of finger oppositions) with normal ageing: this decline is accompanied by the recruitment of additional cortical networks. However, none of these studies investigated behavioral and the related fMRI ageing modifications in implicit M.I. tasks, like the hand laterality task (HLT). To address this issue, we performed a behavioral and fMRI study: 27 younger subjects (mean age: 31 years) and 29 older subjects (mean age: 61 years) underwent two event-related design fMRI experiments. In the HLT, participants were asked to decide whether a hand rotated at different angles was a left or right hand. To test the specificity of any age related difference in the HLT, we used a letter rotation task as a control experiment: here subjects had to decide whether rotated letters were presented in a standard or a mirror orientation. We did not find any group difference in either behavioral task; however, we found significant additional neural activation in the elderly group in occipito-temporal regions: these differences were stronger for the HLT rather than for the LRT with group by task interactions effects in right occipital cortices. We interpret these results as evidence of compensatory processes associated with ageing that permit a behavioral performance comparable to that of younger subjects. This process appears to be more marked when the task specifically involves motor representations, even when these are implicitly evoked.
Collapse
Affiliation(s)
- Laura Zapparoli
- fMRI Unit-IRCCS Galeazzi, Milan, Italy; Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.
| | - Gianluca Saetta
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Carlo De Santis
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Martina Gandola
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Giuseppe Banfi
- fMRI Unit-IRCCS Galeazzi, Milan, Italy; University Vita e Salute San Raffaele, Milan, Italy
| | - Eraldo Paulesu
- fMRI Unit-IRCCS Galeazzi, Milan, Italy; Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
20
|
Ackerley R, Borich M, Oddo CM, Ionta S. Insights and Perspectives on Sensory-Motor Integration and Rehabilitation. Multisens Res 2016. [DOI: 10.1163/22134808-00002530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present review focuses on the flow and interaction of somatosensory-motor signals in the central and peripheral nervous system. Specifically, where incoming sensory signals from the periphery are processed and interpreted to initiate behaviors, and how ongoing behaviors produce sensory consequences encoded and used to fine-tune subsequent actions. We describe the structure–function relations of this loop, how these relations can be modeled and aspects of somatosensory-motor rehabilitation. The work reviewed here shows that it is imperative to understand the fundamental mechanisms of the somatosensory-motor system to restore accurate motor abilities and appropriate somatosensory feedback. Knowledge of the salient neural mechanisms of sensory-motor integration has begun to generate innovative approaches to improve rehabilitation training following neurological impairments such as stroke. The present work supports the integration of basic science principles of sensory-motor integration into rehabilitation procedures to create new solutions for sensory-motor disorders.
Collapse
Affiliation(s)
- Rochelle Ackerley
- Department of Physiology, University of Gothenburg, Göteborg, Sweden
- Laboratoire Neurosciences Intégratives et Adaptatives (UMR 7260), CNRS — Aix-Marseille Université, Marseille, France
| | - Michael Borich
- Neural Plasticity Research Laboratory, Division of Physical Therapy, Dept of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
| | | | - Silvio Ionta
- The Laboratory for Investigative Neurophysiology, Dept of Radiology and Dept of Clinical Neurosciences, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
21
|
Philip BA, Buckon C, Sienko S, Aiona M, Ross S, Frey SH. Maturation and experience in action representation: Bilateral deficits in unilateral congenital amelia. Neuropsychologia 2015; 75:420-30. [PMID: 26092768 DOI: 10.1016/j.neuropsychologia.2015.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/17/2015] [Accepted: 05/20/2015] [Indexed: 01/12/2023]
Abstract
Congenital unilateral absence of the hand (amelia) completely deprives individuals of sensorimotor experiences with their absent effector. The consequences of such deprivation on motor planning abilities are poorly understood. Fourteen patients and matched controls performed two grip selection tasks: 1) overt grip selection (OGS), in which they used their intact hand to grasp a three-dimensional object that appeared in different orientations using the most natural (under-or over-hand) precision grip, and 2) prospective grip selection (PGS), in which they selected the most natural grip for either the intact or absent hand without moving. For the intact hand, we evaluated planning accuracy by comparing concordance between grip preferences expressed in PGS vs. OGS. For the absent hand, we compared PGS responses with OGS responses for the intact hand that had been phase shifted by 180°, thereby accounting for mirror symmetrical biomechanical constraints of the two limbs. Like controls, amelic individuals displayed a consistent preference for less awkward grips in both OGS and PGS. Unexpectedly, however, they were slower and less accurate for PGS based on either the intact or the absent hand. We conclude that direct sensorimotor experience with both hands may be important for the typical development or refinement of effector-specific internal representations of either limb.
Collapse
Affiliation(s)
- B A Philip
- Psychological Sciences, University of Missouri, Columbia, MO, United States
| | - C Buckon
- Shriners Hospital for Children Portland, Portland, OR, United States
| | - S Sienko
- Shriners Hospital for Children Portland, Portland, OR, United States
| | - M Aiona
- Shriners Hospital for Children Portland, Portland, OR, United States
| | - S Ross
- Exercise and Sport Science, Oregon State University, Corvallis, OR, United States
| | - S H Frey
- Psychological Sciences, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
22
|
Grabherr L, Jola C, Berra G, Theiler R, Mast FW. Motor imagery training improves precision of an upper limb movement in patients with hemiparesis. NeuroRehabilitation 2015; 36:157-66. [DOI: 10.3233/nre-151203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Luzia Grabherr
- Department of Psychology, University of Bern, Bern, Switzerland
- School of Health Sciences, University of South Australia, Adelaide, Australia
| | - Corinne Jola
- Division of Social and Health Sciences - Psychology, Abertay University, Dundee, UK
| | - Gilberto Berra
- Department of Rheumatology, Physical Medicine and Rehabilitation, Triemli City Hospital, Zurich, Switzerland
| | - Robert Theiler
- Department of Rheumatology, Physical Medicine and Rehabilitation, Triemli City Hospital, Zurich, Switzerland
| | - Fred W. Mast
- Department of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
King R, Johnson MI, Ryan CG, Robinson V, Martin DJ, Punt TD. My Foot? Motor Imagery-Evoked Pain, Alternative Strategies and Implications for Laterality Recognition Tasks. PAIN MEDICINE 2015; 16:555-7. [DOI: 10.1111/pme.12646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Grafton ST, Viswanathan S. Rethinking the role of motor simulation in perceptual decisions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 826:69-90. [PMID: 25330886 DOI: 10.1007/978-1-4939-1338-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Scott T Grafton
- Department of Psychological Brain Sciences, University of California, 93106-9660, Santa Barbara, CA, USA,
| | | |
Collapse
|
25
|
Zapparoli L, Invernizzi P, Gandola M, Berlingeri M, De Santis A, Zerbi A, Banfi G, Paulesu E. Like the back of the (right) hand? A new fMRI look on the hand laterality task. Exp Brain Res 2014; 232:3873-95. [DOI: 10.1007/s00221-014-4065-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/03/2014] [Indexed: 12/13/2022]
|
26
|
Di Rienzo F, Collet C, Hoyek N, Guillot A. Impact of Neurologic Deficits on Motor Imagery: A Systematic Review of Clinical Evaluations. Neuropsychol Rev 2014; 24:116-47. [DOI: 10.1007/s11065-014-9257-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/02/2014] [Indexed: 12/16/2022]
|
27
|
Pezzulo G, Candidi M, Dindo H, Barca L. Action simulation in the human brain: Twelve questions. NEW IDEAS IN PSYCHOLOGY 2013. [DOI: 10.1016/j.newideapsych.2013.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
de Vries S, Tepper M, Feenstra W, Oosterveld H, Boonstra AM, Otten B. Motor imagery ability in stroke patients: the relationship between implicit and explicit motor imagery measures. Front Hum Neurosci 2013; 7:790. [PMID: 24312044 PMCID: PMC3832786 DOI: 10.3389/fnhum.2013.00790] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/30/2013] [Indexed: 11/23/2022] Open
Abstract
There is little consensus on how motor imagery ability should be measured in stroke patients. In particular it is unclear how two methods tapping different aspects of the motor imagery process relate to each other. The aim of this study was to investigate the relationship between implicit and explicit motor imagery ability by comparing performance of stroke patients and controls on a motor imagery questionnaire and a hand laterality judgment task (HLJT). Sixteen ischemic stroke patients (36 ± 13 weeks post-stroke) and 16 controls, matched by age (51 ± 10 years), gender (7 females) and handedness (3 left-handed), performed a HLJT and completed a motor imagery questionnaire. Our study shows that neither in the healthy controls nor in patients, a correlation is found between the HLJT and the motor imagery questionnaire. Although the patient group scored significantly lower than the control group on the visual motor imagery component (U = 60; p = 0.010) and the kinesthetic motor imagery component (U = 63.5; p = 0.015) of the questionnaire, there were no significant differences between patients and controls on accuracy scores of the HLJT. Analyses of the reaction time profiles of patients and controls showed that patient were still able to use an implicit motor imagery strategy in the HLJT task. Our results show that after stroke performance on tests that measure two different aspects of motor imagery ability, e.g., implicit and explicit motor imagery, can be differently affected. These results articulate the complex relation phenomenological experience and the different components of motor imagery have and caution the use of one tool as an instrument for use in screening, selecting and monitoring stroke patients in rehabilitation settings.
Collapse
Affiliation(s)
- Sjoerd de Vries
- Centre for Human Movement Sciences, University Medical Centre Groningen, University of Groningen Groningen, Netherlands ; Research Centre for Health, Social Work & Technology, School of Applied Psychology, Saxion University of Applied Sciences Deventer, Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Cocksworth RL, Punt TD. When the left hand does not know what the left hand is doing: response mode affects mental rotation of hands. Exp Brain Res 2013; 228:87-95. [DOI: 10.1007/s00221-013-3540-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
|
30
|
Kalicinski M, Lobinger BH. Benefits of Motor and Exercise Imagery for Older Adults. ACTA ACUST UNITED AC 2013. [DOI: 10.1515/jirspa-2012-0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Vannuscorps G, Pillon A, Andres M. Effect of biomechanical constraints in the hand laterality judgment task: where does it come from? Front Hum Neurosci 2012; 6:299. [PMID: 23125830 PMCID: PMC3485652 DOI: 10.3389/fnhum.2012.00299] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/14/2012] [Indexed: 11/25/2022] Open
Abstract
Several studies have reported that, when subjects have to judge the laterality of rotated hand drawings, their judgment is automatically influenced by the biomechanical constraints of the upper limbs. The prominent account for this effect is that, in order to perform the task, subjects mentally rotate their upper limbs toward the position of the displayed stimulus in a way that is consistent with the biomechanical constraints underlying the actual movement. However, the effect of such biomechanical constraints was also found in the responses of motor-impaired individuals performing the hand laterality judgment (HLJ) task, which seems at odds with the “motor imagery” account for this effect. In this study, we further explored the source of the biomechanical constraint effect by assessing the ability of an individual (DC) with a congenital absence of upper limbs to judge the laterality of rotated hand or foot drawings. We found that DC was as accurate and fast as control participants in judging the laterality of both hand and foot drawings, without any disadvantage for hands when compared to feet. Furthermore, DC's response latencies (RLs) for hand drawings were influenced by the biomechanical constraints of hand movements in the same way as control participants' RLs. These results suggest that the effect of biomechanical constraints in the HLJ task is not strictly dependent on “motor imagery” and can arise from the visual processing of body parts being sensitive to such constraints.
Collapse
Affiliation(s)
- Gilles Vannuscorps
- Institute of Psychological Sciences and Institute of Neuroscience, Université catholique de Louvain Louvain-la-Neuve, Belgium ; Fonds National de la Recherche Scientifique Brussels, Belgium
| | | | | |
Collapse
|
32
|
Randerath J, Martin KR, Frey SH. Are tool properties always processed automatically? The role of tool use context and task complexity. Cortex 2012; 49:1679-93. [PMID: 23026760 DOI: 10.1016/j.cortex.2012.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/04/2012] [Accepted: 08/21/2012] [Indexed: 11/19/2022]
Abstract
Previous work with healthy adults supports the idea that perception of the orientation of a tool's handle may automatically activate cognitive components for grasping and use. An important source of evidence for this automatic activation view comes from studies showing interference when automatically activated action representations are inconsistent with the behaviors demanded by a task (e.g., Tucker and Ellis, 1998). Here, we evaluated whether such effects occur in a grip selection task in which responses were chosen based on a learned rule (Rule task) versus anticipatory planning (Plan task). Participants were asked to pantomime grasping horizontally presented objects with handles. In the Rule task, a color cue indicated on which side of the tool's handle the thumb had to be placed. In the Plan task, participants had to choose the most comfortable way to grasp and rotate the object into a specific end-position. Across three experiments we found evidence of interference on grip selection exclusively during the Rule task, and only when it was preceded by a prime task that involved tool use. These findings suggest that prior activation of cognitive components through use of tools can be effective over time and interferes with grip selection based on use of a pre-learned rule. Absence of interference effects during the plan task, even when preceded by the Use task, suggest that engagement of similar mechanisms during active planning overwrites this automatic activation of previously effective components. Possible cognitive and neural mechanisms are discussed.
Collapse
Affiliation(s)
- Jennifer Randerath
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211-3470, USA.
| | | | | |
Collapse
|
33
|
Guillot A, Di Rienzo F, Macintyre T, Moran A, Collet C. Imagining is Not Doing but Involves Specific Motor Commands: A Review of Experimental Data Related to Motor Inhibition. Front Hum Neurosci 2012; 6:247. [PMID: 22973214 PMCID: PMC3433680 DOI: 10.3389/fnhum.2012.00247] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/10/2012] [Indexed: 12/12/2022] Open
Abstract
There is now compelling evidence that motor imagery (MI) and actual movement share common neural substrate. However, the question of how MI inhibits the transmission of motor commands into the efferent pathways in order to prevent any movement is largely unresolved. Similarly, little is known about the nature of the electromyographic activity that is apparent during MI. In addressing these gaps in the literature, the present paper argues that MI includes motor execution commands for muscle contractions which are blocked at some level of the motor system by inhibitory mechanisms. We first assemble data from neuroimaging studies that demonstrate that the neural networks mediating MI and motor performance are not totally overlapping, thereby highlighting potential differences between MI and actual motor execution. We then review MI data indicating the presence of subliminal muscular activity reflecting the intrinsic characteristics of the motor command as well as increased corticomotor excitability. The third section not only considers the inhibitory mechanisms involved during MI but also examines how the brain resolves the problem of issuing the motor command for action while supervising motor inhibition when people engage in voluntary movement during MI. The last part of the paper draws on imagery research in clinical contexts to suggest that some patients move while imagining an action, although they are not aware of such movements. In particular, experimental data from amputees as well as from patients with Parkinson’s disease are discussed. We also review recent studies based on comparing brain activity in tetraplegic patients with that from healthy matched controls that provide insights into inhibitory processes during MI. We conclude by arguing that based on available evidence, a multifactorial explanation of motor inhibition during MI is warranted.
Collapse
Affiliation(s)
- Aymeric Guillot
- Centre de Recherche et d'Innovation sur le Sport (EA 647), équipe Performance Motrice, Mentale et du Matériel, Université de Lyon, Université Claude Bernard Lyon 1 Villeurbanne, France
| | | | | | | | | |
Collapse
|
34
|
Does a paper's country of origin affect the length of the review process? Cortex 2012; 48:945-51. [DOI: 10.1016/j.cortex.2012.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 11/20/2022]
|
35
|
Ritterband-Rosenbaum A, Christensen MS, Nielsen JB. Twenty weeks of computer-training improves sense of agency in children with spastic cerebral palsy. RESEARCH IN DEVELOPMENTAL DISABILITIES 2012; 33:1227-1234. [PMID: 22502849 DOI: 10.1016/j.ridd.2012.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
Children with cerebral palsy (CP) show alteration of perceptual and cognitive abilities in addition to motor and sensory deficits, which may include altered sense of agency. The aim of this study was to evaluate whether 20 weeks of internet-based motor, perceptual and cognitive training enhances the ability of CP children to determine whether they or a computer are responsible for the movement of a visually observed object. 40 CP children (8-16 years) were divided into a training (n:20) and control group (n:20). The training group trained 30 min each day for 20 weeks. The ability of the children to judge whether they themselves or a computer were responsible for moving an object on a computer screen was tested before and after the 20-week period. Furthermore, we included a healthy age-matched group to determine a normal functional level of performance. Our results showed a significantly larger increase in the number of correct subjective reporting for the training group (p<0.001). In accordance with this, the training group was also less fooled by computer-induced movements given by a decreased curvature which indicated a compensatory motor strategy when drawing the line to hit the target following the training than the control group (p=0.018). These findings suggest that sense of agency may be altered, and that training of sense of agency may help to increase the outcome of training programmes in children with CP.
Collapse
Affiliation(s)
- A Ritterband-Rosenbaum
- Department of Exercise and Sport Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| | | | | |
Collapse
|
36
|
Foley JA, Valkonen L. Are higher cited papers accepted faster for publication? Cortex 2012; 48:647-53. [DOI: 10.1016/j.cortex.2012.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
37
|
Ritterband-Rosenbaum A, Christensen MS, Kliim-Due M, Petersen LZ, Rasmussen B, Nielsen JB. Altered sense of Agency in children with spastic cerebral palsy. BMC Neurol 2011; 11:150. [PMID: 22129483 PMCID: PMC3274446 DOI: 10.1186/1471-2377-11-150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/30/2011] [Indexed: 11/23/2022] Open
Abstract
Background Children diagnosed with spastic Cerebral Palsy (CP) often show perceptual and cognitive problems, which may contribute to their functional deficit. Here we investigated if altered ability to determine whether an observed movement is performed by themselves (sense of agency) contributes to the motor deficit in children with CP. Methods Three groups; 1) CP children, 2) healthy peers, and 3) healthy adults produced straight drawing movements on a pen-tablet which was not visible for the subjects. The produced movement was presented as a virtual moving object on a computer screen. Subjects had to evaluate after each trial whether the movement of the object on the computer screen was generated by themselves or by a computer program which randomly manipulated the visual feedback by angling the trajectories 0, 5, 10, 15, 20 degrees away from target. Results Healthy adults executed the movements in 310 seconds, whereas healthy children and especially CP children were significantly slower (p < 0.002) (on average 456 seconds and 543 seconds respectively). There was also a statistical difference between the healthy and age matched CP children (p = 0.037). When the trajectory of the object generated by the computer corresponded to the subject's own movements all three groups reported that they were responsible for the movement of the object. When the trajectory of the object deviated by more than 10 degrees from target, healthy adults and children more frequently than CP children reported that the computer was responsible for the movement of the object. CP children consequently also attempted to compensate more frequently from the perturbation generated by the computer. Conclusions We conclude that CP children have a reduced ability to determine whether movement of a virtual moving object is caused by themselves or an external source. We suggest that this may be related to a poor integration of their intention of movement with visual and proprioceptive information about the performed movement and that altered sense of agency may be an important functional problem in children with CP.
Collapse
Affiliation(s)
- Anina Ritterband-Rosenbaum
- Department of Exercise and Sport Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
38
|
Moran A, Guillot A, Macintyre T, Collet C. Re-imagining motor imagery: building bridges between cognitive neuroscience and sport psychology. Br J Psychol 2011; 103:224-47. [PMID: 22506748 DOI: 10.1111/j.2044-8295.2011.02068.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the most remarkable capacities of the mind is its ability to simulate sensations, actions, and other types of experience. A mental simulation process that has attracted recent attention from cognitive neuroscientists and sport psychologists is motor imagery or the mental rehearsal of actions without engaging in the actual physical movements involved. Research on motor imagery is important in psychology because it provides an empirical window on consciousness and movement planning, rectifies a relative neglect of non-visual types of mental imagery, and has practical implications for skill learning and skilled performance in special populations (e.g., athletes, surgeons). Unfortunately, contemporary research on motor imagery is hampered by a variety of semantic, conceptual, and methodological issues that prevent cross-fertilization of ideas between cognitive neuroscience and sport psychology. In this paper, we review these issues, suggest how they can be resolved, and sketch some potentially fruitful new directions for inter-disciplinary research in motor imagery.
Collapse
|
39
|
McIntosh RD, Brooks JL. Current tests and trends in single-case neuropsychology. Cortex 2011; 47:1151-9. [PMID: 21930266 DOI: 10.1016/j.cortex.2011.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 07/29/2011] [Accepted: 08/08/2011] [Indexed: 01/27/2023]
Abstract
In this issue of Cortex, Crawford, Garthwaite and Ryan publish bayesian statistical tests that will enable researchers to take account of covariates when comparing single patients to control samples. In this article, we provide some context for this development, from an audit of the Cortex archives. We suggest that single-case research is alive and well, and more rigorous than ever, and that current practice has been shaped considerably by Crawford and colleagues' statistical refinements over the past 12 years. However, there is scope for further tightening and standardisation of statistical methods and reporting standards. The advantages offered by the new bayesian tests should promote the even wider use of appropriate statistical methods, with benefits for the validity of individual studies, and for cross-comparability in the single-case literature.
Collapse
Affiliation(s)
- Robert D McIntosh
- Human Cognitive Neuroscience, Psychology, University of Edinburgh, UK.
| | | |
Collapse
|
40
|
Philip BA, Frey SH. Preserved grip selection planning in chronic unilateral upper extremity amputees. Exp Brain Res 2011; 214:437-52. [PMID: 21863261 DOI: 10.1007/s00221-011-2842-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
Upper limb amputees receive no proprioceptive or visual sensory feedback about their absent hand. In this study, we asked whether chronic amputees nevertheless retain the ability to accurately plan gripping movements. Fourteen patients and matched controls performed two grip selection tasks: overt grip selection (OGS), in which they used their intact hand to grasp an object that appeared in different orientations using the most natural (under- or overhand) precision grip, and prospective grip selection (PGS), in which they selected the most natural grip for either hand without moving. We evaluated planning accuracy by comparing concordance between grip preferences expressed in PGS vs. OGS for the intact hand and PGS vs. the inverse of OGS responses for the affected hand. Overall, amputees showed no deficits in the accuracy of grip selection planning based on either hand and a consistent preference for less awkward hand postures. We found no evidence for a speed-accuracy tradeoff. Furthermore, selection accuracy did not depend on phantom mobility, phantom limb pain, time since amputation, or the residual limb's shoulder posture. Our findings demonstrate that unilateral upper limb amputees retain the ability to plan movements based on the biomechanics of their affected hand even many years after limb loss. This unimpaired representation may stem from persistent higher-level activity-independent internal representations or may be sustained by sensory feedback from the intact hand.
Collapse
|
41
|
|
42
|
Foley JA, Della Sala S. Do shorter Cortex papers have greater impact? Cortex 2011; 47:635-42. [PMID: 21463860 DOI: 10.1016/j.cortex.2011.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 01/02/2023]
|
43
|
Recovery of motor imagery ability in stroke patients. Rehabil Res Pract 2011; 2011:283840. [PMID: 22110971 PMCID: PMC3195293 DOI: 10.1155/2011/283840] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/26/2011] [Accepted: 02/08/2011] [Indexed: 11/17/2022] Open
Abstract
Objective. To investigate whether motor imagery ability recovers in stroke patients and to see what the relationship is between different types of imagery and motor functioning after stroke.
Methods. 12 unilateral stroke patients were measured at 3 and 6 weeks poststroke on 3 mental imagery tasks. Arm-hand function was evaluated using the Utrecht Arm-Hand task and the Brunnström Fugl-Meyer Scale. Age-matched healthy individuals (N = 10) were included as controls.
Results. Implicit motor imagery ability and visual motor imagery ability improved significantly at 6 weeks compared to 3 weeks poststroke.
Conclusion. Our study shows that motor imagery can recover in the first weeks after stroke. This indicates that a group of patients who might not be initially selected for mental practice can, still later in the rehabilitation process, participate in mental practice programs. Moreover, our study shows that mental imagery modalities can be differently affected in individual patients and over time.
Collapse
|
44
|
Janssen L, Meulenbroek RGJ, Steenbergen B. Behavioral evidence for left-hemisphere specialization of motor planning. Exp Brain Res 2010; 209:65-72. [PMID: 21184219 PMCID: PMC3035772 DOI: 10.1007/s00221-010-2519-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 12/03/2010] [Indexed: 11/25/2022]
Abstract
Recent studies suggest that the left hemisphere is dominant for the planning of motor actions. This left-hemisphere specialization hypothesis was proposed in various lines of research, including patient studies, motor imagery studies, and studies involving neurophysiological techniques. However, most of these studies are primarily based on experiments involving right-hand-dominant participants. Here, we present the results of a behavioral study with left-hand-dominant participants, which follows up previous work in right-hand-dominant participants. In our experiment, participants grasped CD casings and replaced them in a different, pre-cued orientation. Task performance was measured by the end-state comfort effect, i.e., the anticipated degree of physical comfort associated with the posture that is planned to be adopted at movement completion. Both left- and right-handed participants showed stronger end-state comfort effects for their right hand compared to their left hand. These results lend behavioral support to the left-hemisphere-dominance motion-planning hypothesis.
Collapse
Affiliation(s)
- Loes Janssen
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University Nijmegen, P.O. Box 9104, 6500 HE, Nijmegen, The Netherlands.
| | | | | |
Collapse
|