Learmonth G, Papadatou-Pastou M. A Meta-Analysis of Line Bisection and Landmark Task Performance in Older Adults.
Neuropsychol Rev 2021;
32:438-457. [PMID:
33890188 PMCID:
PMC9090707 DOI:
10.1007/s11065-021-09505-4]
[Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
Young adults exhibit a small asymmetry of visuospatial attention that favours the left side of space relative to the right (pseudoneglect). However, it remains unclear whether this leftward bias is maintained, eliminated or shifted rightward in older age. Here we present two meta-analyses that aimed to identify whether adults aged ≥50 years old display a group-level spatial attention bias, as indexed by the line bisection and the landmark tasks. A total of 69 datasets from 65 studies, involving 1654 participants, were analysed. In the meta-analysis of the line bisection task (n = 63), no bias was identified for studies where the mean age was ≥50, but there was a clear leftward bias in a subset where all individual participants were aged ≥50. There was no moderating effect of the participant’s age or sex, line length, line position, nor the presence of left or right cues. There was a small publication bias in favour of reporting rightward biases. Of note, biases were slightly more leftward in studies where participants had been recruited as part of a stand-alone older group, compared to studies where participants were recruited as controls for a clinical study. Similarly, no spatial bias was observed in the meta-analysis of the landmark task, although the number of studies included was small (n = 6). Overall, these results indicate that over 50s maintain a group-level leftward bias on the line bisection task, but more studies are needed to determine whether this bias can be modulated by stimulus- or state-dependent factors.
Collapse