1
|
Peel HJ, Chouinard PA. A review of the impairments, preserved visual functions, and neuropathology in 21 patients with visual form agnosia - A unique defect with line drawings. Neuropsychologia 2023; 190:108666. [PMID: 37634886 DOI: 10.1016/j.neuropsychologia.2023.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
We present a comprehensive review of the rare syndrome visual form agnosia (VFA). We begin by documenting its history, including the origins of the term, and the first case study labelled as VFA. The defining characteristics of the syndrome, as others have previously defined it, are then described. The impairments, preserved aspects of visual perception, and areas of brain damage in 21 patients who meet these defining characteristics are described in detail, including which tests were used to verify the presence or absence of key symptoms. From this, we note important similarities along with notable areas of divergence between patients. Damage to the occipital lobe (20/21), an inability to recognise line drawings (19/21), preserved colour vision (14/21), and visual field defects (16/21) were areas of consistency across most cases. We found it useful to distinguish between shape and form as distinct constructs when examining perceptual abilities in VFA patients. Our observations suggest that these patients often exhibit difficulties in processing simplified versions of form. Deficits in processing orientation and size were uncommon. Motion perception and visual imagery were not widely tested for despite being typically cited as defining features of the syndrome - although in the sample described, motion perception was never found to be a deficit. Moreover, problems with vision (e.g., poor visual acuity and the presence of hemianopias/scotomas in the visual fields) are more common than we would have thought and may also contribute to perceptual impairments in patients with VFA. We conclude that VFA is a perceptual disorder where the visual system has a reduced ability to synthesise lines together for the purposes of making sense of what images represent holistically.
Collapse
Affiliation(s)
- Hayden J Peel
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Victoria, Australia
| | - Philippe A Chouinard
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Victoria, Australia.
| |
Collapse
|
2
|
Manouchehri V, Albonico A, Hemström J, Djouab S, Kim H, Barton JJS. The impact of simulated hemianopia on visual search for faces, words, and cars. Exp Brain Res 2022; 240:2835-2846. [PMID: 36069920 DOI: 10.1007/s00221-022-06457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Tests of visual search can index the effects of perceptual load and compare the processing efficiency for different object types, particularly when one examines the set-size effect, the increase in search time for each additional stimulus in an array. Previous studies have shown that the set-size effect is increased by manoeuvres that impede object processing, and in patients with object processing impairments. In this study, we examine how the low-level visual impairment of hemianopia affects visual search for complex objects, using a virtual paradigm. Forty-two healthy subjects performed visual search for faces, words, or cars with full-viewing as well as gaze-contingent simulations of complete left or right hemianopia. Simulated hemianopia lowered accuracy and discriminative power and increased response times and set-size effects, similarly for faces, words and cars. A comparison of set-size effects between target absent and target present trials did not show a difference between full-view and simulated hemianopic conditions, and a model of decision-making suggested that simulated hemianopia reduced the rate of accumulation of perceptual data, but did not change decision thresholds. We conclude that simulated hemianopia reduces the efficiency of visual search for complex objects, and that such impairment should be considered when interpreting results from high-level object processing deficits.
Collapse
Affiliation(s)
- Vahideh Manouchehri
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC, V5Z 3N9, Canada
- Department of Ophthalmology, Nikookari Eye Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Andrea Albonico
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC, V5Z 3N9, Canada
| | - Jennifer Hemström
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC, V5Z 3N9, Canada
- Faculty of Medicine, Linköping, Sweden
| | - Sarra Djouab
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC, V5Z 3N9, Canada
- Faculty of Medicine, University of Auvergne, Clermont-Ferrand, France
| | - Hyeongmin Kim
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC, V5Z 3N9, Canada
| | - Jason J S Barton
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC, V5Z 3N9, Canada.
| |
Collapse
|
3
|
Gerlach C, Robotham RJ. Object recognition and visual object agnosia. HANDBOOK OF CLINICAL NEUROLOGY 2021; 178:155-173. [PMID: 33832675 DOI: 10.1016/b978-0-12-821377-3.00008-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The term visual agnosia is used to refer to recognition disorders that are confined to the visual modality, that are not due to an impairment in sensory functions, and that cannot be explained by other cognitive deficits or by general reduction in intellectual ability. Here, we describe the different types of visual agnosia that have been reported (form agnosia, integrative agnosia, associative agnosia, transformational and orientation agnosia as well as category-specific impairments such as pure alexia and prosopagnosia) and how they relate to the current understanding of visual object recognition. Together with related disorders such as simultanagnosia, texture agnosia, aphantasia, and optic aphasia, these visual perceptual impairments can have severe consequences for those affected. We suggest how in-depth assessment can be carried out to determine the type and the extent of these impairments. In the context of clinical assessment, a step-by-step approach reflecting a posterior to anterior gradient in visual object recognition, from more perceptual to more memory-related processes, is suggested. Individually tailored interventions targeting the identified impairments can be initiated based on the results of the assessment.
Collapse
Affiliation(s)
- Christian Gerlach
- Department of Psychology, University of Southern Denmark, Odense, Denmark.
| | - Ro Julia Robotham
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Grasso PA, Gallina J, Bertini C. Shaping the visual system: cortical and subcortical plasticity in the intact and the lesioned brain. Neuropsychologia 2020; 142:107464. [PMID: 32289349 DOI: 10.1016/j.neuropsychologia.2020.107464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Visual system is endowed with an incredibly complex organization composed of multiple visual pathway affording both hierarchical and parallel processing. Even if most of the visual information is conveyed by the retina to the lateral geniculate nucleus of the thalamus and then to primary visual cortex, a wealth of alternative subcortical pathways is present. This complex organization is experience dependent and retains plastic properties throughout the lifespan enabling the system with a continuous update of its functions in response to variable external needs. Changes can be induced by several factors including learning and experience but can also be promoted by the use non-invasive brain stimulation techniques. Furthermore, besides the astonishing ability of our visual system to spontaneously reorganize after injuries, we now know that the exposure to specific rehabilitative training can produce not only important functional modifications but also long-lasting changes within cortical and subcortical structures. The present review aims to update and address the current state of the art on these topics gathering studies that reported relevant modifications of visual functioning together with plastic changes within cortical and subcortical structures both in the healthy and in the lesioned visual system.
Collapse
Affiliation(s)
- Paolo A Grasso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, 50135, Italy.
| | - Jessica Gallina
- Department of Psychology, University of Bologna, Bologna, 40127, Italy; CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, 47521, Italy
| | - Caterina Bertini
- Department of Psychology, University of Bologna, Bologna, 40127, Italy; CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, 47521, Italy
| |
Collapse
|
5
|
Zihl J, Heywood CA. The contribution of single case studies to the neuroscience of vision. Psych J 2017; 5:5-17. [PMID: 27061638 DOI: 10.1002/pchj.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 11/07/2022]
Abstract
Visual neuroscience is concerned with the neurobiological foundations of visual perception, that is, the morphological, physiological, and functional organization of the visual brain and its co-operative partners. One important approach for understanding the functional organization of the visual brain is the study of visual perception from the pathological perspective. The study of patients with focal injury to the visual brain allows conclusions about the representation of visual perceptual functions in the framework of association and dissociation of functions. Selective disorders have been reported for more "elementary" visual capabilities, for example, color and movement vision, but also for visuo-cognitive capacities, such as visual agnosia or the visual field of attention. Because these visual disorders occur rather seldom as selective and specific dysfunctions, single cases have always played, and still play, a significant role in gaining insights into the functional organization of the visual brain.
Collapse
Affiliation(s)
- Josef Zihl
- Department of Psychology, LMU, Munich, Germany
| | - Charles A Heywood
- Department of Psychology, Science Laboratories, Durham University, Durham, UK
| |
Collapse
|
6
|
Bertini C, Grasso PA, Làdavas E. The role of the retino-colliculo-extrastriate pathway in visual awareness and visual field recovery. Neuropsychologia 2016; 90:72-9. [DOI: 10.1016/j.neuropsychologia.2016.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 01/10/2023]
|
7
|
Grasso PA, Benassi M, Làdavas E, Bertini C. Audio-visual multisensory training enhances visual processing of motion stimuli in healthy participants: an electrophysiological study. Eur J Neurosci 2016; 44:2748-2758. [PMID: 26921844 DOI: 10.1111/ejn.13221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/29/2016] [Accepted: 02/19/2016] [Indexed: 11/29/2022]
Abstract
Evidence from electrophysiological and imaging studies suggests that audio-visual (AV) stimuli presented in spatial coincidence enhance activity in the subcortical colliculo-dorsal extrastriate pathway. To test whether repetitive AV stimulation might specifically activate this neural circuit underlying multisensory integrative processes, electroencephalographic data were recorded before and after 2 h of AV training, during the execution of two lateralized visual tasks: a motion discrimination task, relying on activity in the colliculo-dorsal MT pathway, and an orientation discrimination task, relying on activity in the striate and early ventral extrastriate cortices. During training, participants were asked to detect and perform a saccade towards AV stimuli that were disproportionally allocated to one hemifield (the trained hemifield). Half of the participants underwent a training in which AV stimuli were presented in spatial coincidence, while the remaining half underwent a training in which AV stimuli were presented in spatial disparity (32°). Participants who received AV training with stimuli in spatial coincidence had a post-training enhancement of the anterior N1 component in the motion discrimination task, but only in response to stimuli presented in the trained hemifield. However, no effect was found in the orientation discrimination task. In contrast, participants who received AV training with stimuli in spatial disparity showed no effects on either task. The observed N1 enhancement might reflect enhanced discrimination for motion stimuli, probably due to increased activity in the colliculo-dorsal MT pathway induced by multisensory training.
Collapse
Affiliation(s)
- Paolo A Grasso
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna, 40127, Italy.,CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Europa 980, Cesena 47521, Italy
| | - Mariagrazia Benassi
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna, 40127, Italy
| | - Elisabetta Làdavas
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna, 40127, Italy.,CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Europa 980, Cesena 47521, Italy
| | - Caterina Bertini
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna, 40127, Italy.,CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Europa 980, Cesena 47521, Italy
| |
Collapse
|
8
|
Abstract
The two visual systems hypothesis suggests processing of visual information into two distinct routes in the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects. Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent, but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral streams are important for controlling complex object-oriented hand movements, especially skilled grasp. Anatomical studies have reported the existence of direct connections between dorsal and ventral stream areas. These physiological interconnections appear to be gradually more active as the precision demands of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed information about object identity, stored in ventral stream areas, when the object properties require complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related information from dorsal stream areas to refine the object internal representation. Future research will provide direct evidence for which specific areas of the two streams interact, the timing of their interactions and in which behavioural context they occur.
Collapse
Affiliation(s)
- Vonne van Polanen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Marco Davare
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG London, United Kingdom.
| |
Collapse
|
9
|
Impaired functional differentiation for categories of objects in the ventral visual stream: A case of developmental visual impairment. Neuropsychologia 2015; 77:52-61. [DOI: 10.1016/j.neuropsychologia.2015.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/17/2015] [Accepted: 08/09/2015] [Indexed: 11/22/2022]
|
10
|
Dundon NM, Bertini C, Làdavas E, Sabel BA, Gall C. Visual rehabilitation: visual scanning, multisensory stimulation and vision restoration trainings. Front Behav Neurosci 2015; 9:192. [PMID: 26283935 PMCID: PMC4515568 DOI: 10.3389/fnbeh.2015.00192] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/09/2015] [Indexed: 12/16/2022] Open
Abstract
Neuropsychological training methods of visual rehabilitation for homonymous vision loss caused by postchiasmatic damage fall into two fundamental paradigms: “compensation” and “restoration”. Existing methods can be classified into three groups: Visual Scanning Training (VST), Audio-Visual Scanning Training (AViST) and Vision Restoration Training (VRT). VST and AViST aim at compensating vision loss by training eye scanning movements, whereas VRT aims at improving lost vision by activating residual visual functions by training light detection and discrimination of visual stimuli. This review discusses the rationale underlying these paradigms and summarizes the available evidence with respect to treatment efficacy. The issues raised in our review should help guide clinical care and stimulate new ideas for future research uncovering the underlying neural correlates of the different treatment paradigms. We propose that both local “within-system” interactions (i.e., relying on plasticity within peri-lesional spared tissue) and changes in more global “between-system” networks (i.e., recruiting alternative visual pathways) contribute to both vision restoration and compensatory rehabilitation, which ultimately have implications for the rehabilitation of cognitive functions.
Collapse
Affiliation(s)
- Neil M Dundon
- Department of Psychology, University of Bologna Bologna, Italy ; Centre for Studies and Research in Cognitive Neuroscience, University of Bologna Cesena, Italy
| | - Caterina Bertini
- Department of Psychology, University of Bologna Bologna, Italy ; Centre for Studies and Research in Cognitive Neuroscience, University of Bologna Cesena, Italy
| | - Elisabetta Làdavas
- Department of Psychology, University of Bologna Bologna, Italy ; Centre for Studies and Research in Cognitive Neuroscience, University of Bologna Cesena, Italy
| | - Bernhard A Sabel
- Medical Faculty, Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg Magdeburg, Germany
| | - Carolin Gall
- Medical Faculty, Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg Magdeburg, Germany
| |
Collapse
|
11
|
van Polanen V, Davare M. Interactions between dorsal and ventral streams for controlling skilled grasp. Neuropsychologia 2015; 79:186-91. [PMID: 26169317 PMCID: PMC4678292 DOI: 10.1016/j.neuropsychologia.2015.07.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/12/2015] [Accepted: 07/09/2015] [Indexed: 11/12/2022]
Abstract
The two visual systems hypothesis suggests processing of visual information into two distinct routes in the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects. Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent, but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral streams are important for controlling complex object-oriented hand movements, especially skilled grasp. Anatomical studies have reported the existence of direct connections between dorsal and ventral stream areas. These physiological interconnections appear to be gradually more active as the precision demands of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed information about object identity, stored in ventral stream areas, when the object properties require complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related information from dorsal stream areas to refine the object internal representation. Future research will provide direct evidence for which specific areas of the two streams interact, the timing of their interactions and in which behavioural context they occur. The dorsal and ventral streams are both involved in skilled grasping movements. Ventral areas feed dorsal areas with information about object identity. Grasps of increased complexity require gradually higher recruitment of ventral areas. Dorsal stream inputs could fine tune object representations stored in ventral areas.
Collapse
Affiliation(s)
- Vonne van Polanen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Marco Davare
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG London, United Kingdom.
| |
Collapse
|
12
|
Trojano L, Siciliano M, Pedone R, Cristinzio C, Grossi D. Italian normative data for the Battery for Visuospatial Abilities (TERADIC). Neurol Sci 2015; 36:1353-61. [PMID: 25693870 DOI: 10.1007/s10072-015-2114-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/09/2015] [Indexed: 11/24/2022]
Abstract
Battery for Visuospatial Abilities (BVA, known in Italy as TeRaDiC) has been developed to analyse putative basic skills involved in drawing and to plan and monitor outcomes after rehabilitation of visuoconstructional disorders. It encompasses eight tasks assessing both simple "perceptual" abilities, such as line length and line orientation judgments and complex "representational" abilities, such as mental rotation. The aim of present study was to provide normative values for BVA collected in a wide sample of healthy Italian subjects. Three hundred seventeen healthy Italian subjects (173 women and 144 men) of different age classes (age range, 40-95 years) and education level (from primary to university), with a normal score on Mini Mental State Examination, completed BVA/TeRaDiC. Multiple linear regression analysis revealed that age and education significantly influenced performance on most tests of the BVA/TeRaDiC; only line length judgment was not affected by educational level. Gender significantly affected line orientation judgment and mental rotation, with an advantage for males in both tests. From the derived linear equations, a correction grid for adjusting BVA/TeRaDiC raw scores was built. Using a non-parametric technique, inferential cut-off scores were determined and equivalent scores computed. The present study provided Italian normative data for the BVA/TeRaDiC useful for both clinical and research purposes.
Collapse
Affiliation(s)
- Luigi Trojano
- Department of Psychology, Neuropsychology Lab, Second University of Naples, Viale Ellittico 31, 81100, Caserta, Italy,
| | | | | | | | | |
Collapse
|
13
|
Crossmodal enhancement of visual orientation discrimination by looming sounds requires functional activation of primary visual areas: A case study. Neuropsychologia 2014; 56:350-8. [DOI: 10.1016/j.neuropsychologia.2014.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 11/17/2022]
|