1
|
Costa C, Pezzetta R, Masina F, Lago S, Gastaldon S, Frangi C, Genon S, Arcara G, Scarpazza C. Comprehensive investigation of predictive processing: A cross- and within-cognitive domains fMRI meta-analytic approach. Hum Brain Mapp 2024; 45:e26817. [PMID: 39169641 PMCID: PMC11339134 DOI: 10.1002/hbm.26817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Predictive processing (PP) stands as a predominant theoretical framework in neuroscience. While some efforts have been made to frame PP within a cognitive domain-general network perspective, suggesting the existence of a "prediction network," these studies have primarily focused on specific cognitive domains or functions. The question of whether a domain-general predictive network that encompasses all well-established cognitive domains exists remains unanswered. The present meta-analysis aims to address this gap by testing the hypothesis that PP relies on a large-scale network spanning across cognitive domains, supporting PP as a unified account toward a more integrated approach to neuroscience. The Activation Likelihood Estimation meta-analytic approach was employed, along with Meta-Analytic Connectivity Mapping, conjunction analysis, and behavioral decoding techniques. The analyses focused on prediction incongruency and prediction congruency, two conditions likely reflective of core phenomena of PP. Additionally, the analysis focused on a prediction phenomena-independent dimension, regardless of prediction incongruency and congruency. These analyses were first applied to each cognitive domain considered (cognitive control, attention, motor, language, social cognition). Then, all cognitive domains were collapsed into a single, cross-domain dimension, encompassing a total of 252 experiments. Results pertaining to prediction incongruency rely on a defined network across cognitive domains, while prediction congruency results exhibited less overall activation and slightly more variability across cognitive domains. The converging patterns of activation across prediction phenomena and cognitive domains highlight the role of several brain hubs unfolding within an organized large-scale network (Dynamic Prediction Network), mainly encompassing bilateral insula, frontal gyri, claustrum, parietal lobules, and temporal gyri. Additionally, the crucial role played at a cross-domain, multimodal level by the anterior insula, as evidenced by the conjunction and Meta-Analytic Connectivity Mapping analyses, places it as the major hub of the Dynamic Prediction Network. Results support the hypothesis that PP relies on a domain-general, large-scale network within whose regions PP units are likely to operate, depending on the context and environmental demands. The wide array of regions within the Dynamic Prediction Network seamlessly integrate context- and stimulus-dependent predictive computations, thereby contributing to the adaptive updating of the brain's models of the inner and external world.
Collapse
Affiliation(s)
| | | | | | - Sara Lago
- Padova Neuroscience CenterPaduaItaly
- IRCCS Ospedale San CamilloVeniceItaly
| | - Simone Gastaldon
- Padova Neuroscience CenterPaduaItaly
- Dipartimento di Psicologia dello Sviluppo e della SocializzazioneUniversità degli Studi di PadovaPaduaItaly
| | - Camilla Frangi
- Dipartimento di Psicologia GeneraleUniversità degli Studi di PadovaPaduaItaly
| | - Sarah Genon
- Institute for Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM‐7)Research Centre JülichJülichGermany
| | | | - Cristina Scarpazza
- IRCCS Ospedale San CamilloVeniceItaly
- Dipartimento di Psicologia GeneraleUniversità degli Studi di PadovaPaduaItaly
| |
Collapse
|
2
|
Nishida T, Suzumura N, Nakanishi Y, Maki N, Komeda H, Kawasaki M, Funabiki Y. Measurements of the lateral cerebellar hemispheres using near-infrared spectroscopy through comparison between autism spectrum disorder and typical development. Neurosci Lett 2023; 812:137381. [PMID: 37419305 DOI: 10.1016/j.neulet.2023.137381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
The cerebellum plays a vital role in cognition, communication with the cerebral cortex, and fine motor coordination. Near-infrared spectroscopy (NIRS) is a portable, less restrictive, and noninvasive functional brain imaging method that can capture brain activity during movements by measuring the relative oxyhemoglobin (oxy-Hb) concentrations in the blood. However, the feasibility of using NIRS to measure cerebellar activity requires discussion. We compared NIRS responses between areas assumed to be the cerebellum and the occipital lobe during a fine motor task (tying a bow knot) and a visual task. Our results showed that the oxy-Hb concentration increased more in the occipital lobe than in the cerebellum during the visual task (p =.034). In contrast, during the fine motor task, the oxy-Hb concentration decreased in the occipital lobe but increased significantly in the cerebellum, indicating a notable difference (p =.015). These findings suggest that we successfully captured cerebellar activity associated with processing, particularly fine motor coordination. Moreover, the observed responses did not differ between individuals with autism spectrum disorder and those with typical development. Our study demonstrates the meaningful utility of NIRS as a method for measuring cerebellar activity during movements.
Collapse
Affiliation(s)
- Toshiki Nishida
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Nao Suzumura
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Yuto Nakanishi
- Department of Psychiatry, Kyoto University Hospital, 54, Shogoin-kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Nao Maki
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Hidetsugu Komeda
- Department of Education, College of Education, Psychology and Human Studies, Aoyama Gakuin University, 4 4 25, Shibuya, Shibuya-ku, Tokyo, Japan
| | - Masahiro Kawasaki
- Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, Tsukuba-shi, Ibaraki, Japan
| | - Yasuko Funabiki
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
3
|
Hong W, Du Y, Xu R, Zhang X, Liu Z, Li M, Yu Z, Wang Y, Wang M, Yang B, Sun F, Xu G. Altered cerebellar functional connectivity in chronic subcortical stroke patients. Front Hum Neurosci 2022; 16:1046378. [DOI: 10.3389/fnhum.2022.1046378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPrevious studies demonstrated that cerebellar subregions are involved in different functions. Especially the cerebellar anterior lobe (CAL) and cerebellar posterior lobe (CPL) have been postulated to primarily account for sensorimotor and cognitive function, respectively. However, the functional connectivity (FC) alterations of CAL and CPL, and their relationships with behavior performance in chronic stroke participants are unclear so far.Materials and methodsThe present study collected resting-state fMRI data from thirty-six subcortical chronic stroke participants and thirty-eight well-matched healthy controls (HCs). We performed the FC analysis with bilateral CAL and CPL as seeds for each participant. Then, we detected the FC difference between the two groups by using a two-sample t-test and evaluated the relationship between the FC and scores of motor and cognitive assessments across all post-stroke participants by using partial correlation analysis.ResultsThe CAL showed increased FCs in the prefrontal cortex, superior/inferior temporal gyrus, and lingual gyrus, while the CPL showed increased FCs in the inferior parietal lobule, precuneus, and cingulum gyrus in the stroke participants compared with HCs. Moreover, the FC alteration in the right CAL and the right CPL were negatively correlated with executive and memory functions across stroke participants, respectively.ConclusionThese findings shed light on the different increased FC alteration patterns of CAL and CPL that help understand the neuro-mechanisms underlying behavior performance in chronic stroke survivors.
Collapse
|
4
|
Aznárez-Sanado M, Eudave L, Martínez M, Luis EO, Villagra F, Loayza FR, Fernández-Seara MA, Pastor MA. Brain Activity and Functional Connectivity Patterns Associated With Fast and Slow Motor Sequence Learning in Late Middle Adulthood. Front Aging Neurosci 2022; 13:778201. [PMID: 35095468 PMCID: PMC8792532 DOI: 10.3389/fnagi.2021.778201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
The human brain undergoes structural and functional changes across the lifespan. The study of motor sequence learning in elderly subjects is of particularly interest since previous findings in young adults might not replicate during later stages of adulthood. The present functional magnetic resonance imaging (fMRI) study assessed the performance, brain activity and functional connectivity patterns associated with motor sequence learning in late middle adulthood. For this purpose, a total of 25 subjects were evaluated during early stages of learning [i.e., fast learning (FL)]. A subset of these subjects (n = 11) was evaluated after extensive practice of a motor sequence [i.e., slow learning (SL) phase]. As expected, late middle adults improved motor performance from FL to SL. Learning-related brain activity patterns replicated most of the findings reported previously in young subjects except for the lack of hippocampal activity during FL and the involvement of cerebellum during SL. Regarding functional connectivity, precuneus and sensorimotor lobule VI of the cerebellum showed a central role during improvement of novel motor performance. In the sample of subjects evaluated, connectivity between the posterior putamen and parietal and frontal regions was significantly decreased with aging during SL. This age-related connectivity pattern may reflect losses in network efficiency when approaching late adulthood. Altogether, these results may have important applications, for instance, in motor rehabilitation programs.
Collapse
Affiliation(s)
- Maite Aznárez-Sanado
- School of Education and Psychology, University of Navarra, Pamplona, Spain
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Luis Eudave
- School of Education and Psychology, University of Navarra, Pamplona, Spain
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Martín Martínez
- School of Education and Psychology, University of Navarra, Pamplona, Spain
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Elkin O. Luis
- School of Education and Psychology, University of Navarra, Pamplona, Spain
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Federico Villagra
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Francis R. Loayza
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), Escuela Superior Politecnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - María A. Fernández-Seara
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - María A. Pastor
- Neuroimaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
5
|
Chao OY, Zhang H, Pathak SS, Huston JP, Yang YM. Functional Convergence of Motor and Social Processes in Lobule IV/V of the Mouse Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2021; 20:836-852. [PMID: 33661502 PMCID: PMC8417139 DOI: 10.1007/s12311-021-01246-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 12/31/2022]
Abstract
Topographic organization of the cerebellum is largely segregated into the anterior and posterior lobes that represent its "motor" and "non-motor" functions, respectively. Although patients with damage to the anterior cerebellum often exhibit motor deficits, it remains unclear whether and how such an injury affects cognitive and social behaviors. To address this, we perturbed the activity of major anterior lobule IV/V in mice by either neurotoxic lesion or chemogenetic excitation of Purkinje cells in the cerebellar cortex. We found that both of the manipulations impaired motor coordination, but not general locomotion or anxiety-related behavior. The lesioned animals showed memory deficits in object recognition and social-associative recognition tests, which were confounded by a lack of exploration. Chemogenetic excitation of Purkinje cells disrupted the animals' social approach in a less-preferred context and social memory, without affecting their overall exploration and object-based memory. In a free social interaction test, the two groups exhibited less interaction with a stranger conspecific. Subsequent c-Fos imaging indicated that decreased neuronal activities in the medial prefrontal cortex, hippocampal dentate gyrus, parahippocampal cortices, and basolateral amygdala, as well as disorganized modular structures of the brain networks might underlie the reduced social interaction. These findings suggest that the anterior cerebellum plays an intricate role in processing motor, cognitive, and social functions.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Hao Zhang
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Ficco L, Mancuso L, Manuello J, Teneggi A, Liloia D, Duca S, Costa T, Kovacs GZ, Cauda F. Disentangling predictive processing in the brain: a meta-analytic study in favour of a predictive network. Sci Rep 2021; 11:16258. [PMID: 34376727 PMCID: PMC8355157 DOI: 10.1038/s41598-021-95603-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
According to the predictive coding (PC) theory, the brain is constantly engaged in predicting its upcoming states and refining these predictions through error signals. Despite extensive research investigating the neural bases of this theory, to date no previous study has systematically attempted to define the neural mechanisms of predictive coding across studies and sensory channels, focussing on functional connectivity. In this study, we employ a coordinate-based meta-analytical approach to address this issue. We first use the Activation Likelihood Estimation (ALE) algorithm to detect spatial convergence across studies, related to prediction error and encoding. Overall, our ALE results suggest the ultimate role of the left inferior frontal gyrus and left insula in both processes. Moreover, we employ a meta-analytic connectivity method (Seed-Voxel Correlations Consensus). This technique reveals a large, bilateral predictive network, which resembles large-scale networks involved in task-driven attention and execution. In sum, we find that: (i) predictive processing seems to occur more in certain brain regions than others, when considering different sensory modalities at a time; (ii) there is no evidence, at the network level, for a distinction between error and prediction processing.
Collapse
Affiliation(s)
- Linda Ficco
- Focuslab, Department of Psychology, University of Turin, Turin, Italy.
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
- Department for General Psychology and Cognitive Neuroscience, Friedrich Schiller University Jena, Am Steiger 3/Haus 1, 07743, Jena, Germany.
| | - Lorenzo Mancuso
- Focuslab, Department of Psychology, University of Turin, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- Focuslab, Department of Psychology, University of Turin, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Alessia Teneggi
- Focuslab, Department of Psychology, University of Turin, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- Focuslab, Department of Psychology, University of Turin, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- Focuslab, Department of Psychology, University of Turin, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Gyula Zoltán Kovacs
- Department of Biological Psychology and Cognitive Neuroscience, Institute for Psychology, Friedrich-Schiller University of Jena, Jena, Germany
| | - Franco Cauda
- Focuslab, Department of Psychology, University of Turin, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Lengali L, Hippe J, Hatlestad-Hall C, Rygvold TW, Sneve MH, Andersson S. Sensory-Induced Human LTP-Like Synaptic Plasticity - Using Visual Evoked Potentials to Explore the Relation Between LTP-Like Synaptic Plasticity and Visual Perceptual Learning. Front Hum Neurosci 2021; 15:684573. [PMID: 34248528 PMCID: PMC8267789 DOI: 10.3389/fnhum.2021.684573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Stimulus-selective response modulation (SRM) of sensory evoked potentials represents a well-established non-invasive index of long-term potentiation-like (LTP-like) synaptic plasticity in the human sensory cortices. Although our understanding of the mechanisms underlying stimulus-SRM has increased over the past two decades, it remains unclear how this form of LTP-like synaptic plasticity is related to other basic learning mechanisms, such as perceptual learning. The aim of the current study was twofold; firstly, we aimed to corroborate former stimulus-SRM studies, demonstrating modulation of visual evoked potential (VEP) components following high-frequency visual stimulation. Secondly, we aimed to investigate the association between the magnitudes of LTP-like plasticity and visual perceptual learning (VPL). Methods 42 healthy adults participated in the study. EEG data was recorded during a standard high-frequency stimulus-SRM paradigm. Amplitude values were measured from the peaks of visual components C1, P1, and N1. Embedded in the same experimental session, the VPL task required the participants to discriminate between a masked checkerboard pattern and a visual “noise” stimulus before, during and after the stimulus-SRM probes. Results We demonstrated significant amplitude modulations of VEPs components C1 and N1 from baseline to both post-stimulation probes. In the VPL task, we observed a significant change in the average threshold levels from the first to the second round. No significant association between the magnitudes of LTP-like plasticity and performance on the VPL task was evident. Conclusion To the extent of our knowledge, this study is the first to examine the relationship between the visual stimulus-RM phenomenon and VPL in humans. In accordance with previous studies, we demonstrated robust amplitude modulations of the C1 and N1 components of the VEP waveform. However, we did not observe any significant correlations between modulation magnitude of VEP components and VPL task performance, suggesting that these phenomena rely on separate learning mechanisms implemented by different neural mechanisms.
Collapse
Affiliation(s)
- Lilly Lengali
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Johannes Hippe
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
8
|
Phillips NS, Kesler SR, Scoggins MA, Glass JO, Cheung YT, Liu W, Banerjee P, Ogg RJ, Srivastava D, Pui CH, Robison LL, Reddick WE, Hudson MM, Krull KR. Connectivity of the Cerebello-Thalamo-Cortical Pathway in Survivors of Childhood Leukemia Treated With Chemotherapy Only. JAMA Netw Open 2020; 3:e2025839. [PMID: 33216140 PMCID: PMC7679952 DOI: 10.1001/jamanetworkopen.2020.25839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPORTANCE Treatment with contemporary chemotherapy-only protocols is associated with risk for neurocognitive impairment among survivors of childhood acute lymphoblastic leukemia (ALL). OBJECTIVE To determine whether concurrent use of methotrexate and glucocorticoids is associated with interference with the antioxidant system of the brain and damage and disruption of glucocorticoid-sensitive regions of the cerebello-thalamo-cortical network. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study was conducted from December 2016 to July 2019 in a single pediatric cancer tertiary care center. Participants included survivors of childhood ALL who were more than 5 years from cancer diagnosis, age 8 years or older, and treated on an institutional chemotherapy-only protocol. Age-matched community members were recruited as a control group. Data were analyzed from August 2017 to August 2020. EXPOSURE ALL treatment using chemotherapy-only protocols. MAIN OUTCOMES AND MEASURES This study compared brain volumes between survivors and individuals in a community control group and examined associations among survivors of methotrexate and dexamethasone exposure with neurocognitive outcomes. Functional and effective connectivity measures were compared between survivors with and without cognitive impairment. The Rey-Osterrieth complex figure test, a neurocognitive evaluation in which individuals are asked to copy a figure and then draw the figure from memory, was scored according to published guidelines and transformed into age-adjusted z scores based on nationally representative reference data and used to measure organization and planning deficits. β values for neurocognitive tests represented the amount of change in cerebellar volume or chemotherapy exposure associated with 1 SD change in neurocognitive outcome by z score (mm3/1 SD in z score for cerebellum, mm3/[g×hr/L] for dexamethasone and methotrexate AUC, and mm3/intrathecal count for total intrathecal count). RESULTS Among 302 eligible individuals, 218 (72%) participated in the study and 176 (58%) had usable magnetic resonance imaging (MRI) results. Among these, 89 (51%) were female participants and the mean (range) age was 6.8 (1-18) years at diagnosis and 14.5 (8-27) years at evaluation. Of 100 community individuals recruited as the control group, 82 had usable MRI results; among these, 35 (43%) were female individuals and the mean (range) age was 13.8 (8-26) years at evaluation. There was no significant difference in total brain volume between survivors and individuals in the control group. Survivors of both sexes showed decreased mean (SD) cerebellar volumes compared with the control population (female: 70 568 [6465] mm3 vs 75 134 [6780] mm3; P < .001; male: 77 335 [6210] mm3 vs 79 020 [7420] mm3; P < .001). In female survivors, decreased cerebellar volume was associated with worse performance in Rey-Osterrieth complex figure test (left cerebellum: β = 55.54; SE = 25.55; P = .03; right cerebellum: β = 52.57; SE = 25.50; P = .04) and poorer dominant-hand motor processing speed (ie, grooved pegboard performance) (left cerebellum: β = 82.71; SE = 31.04; P = .009; right cerebellum: β = 91.06; SE = 30.72; P = .004). In female survivors, increased number of intrathecal treatments (ie, number of separate injections) was also associated with Worse Rey-Osterrieth test performance (β = -0.154; SE = 0.063; P = .02), as was increased dexamethasone exposure (β = -0.0014; SE = 0.0005; P = .01). Executive dysfunction was correlated with increased global efficiency between smaller brain regions (Pearson r = -0.24; P = .01) compared with individuals without dysfunction. Anatomical connectivity showed differences between impaired and nonimpaired survivors. Analysis of variance of effective-connectivity weights identified a significant interaction association (F = 3.99; P = .02) among the direction and strength of connectivity between the cerebellum and DLPFC, female sex, and executive dysfunction. Finally, no effective connectivity was found between the precuneus and DLPFC in female survivors with executive dysfunction. CONCLUSIONS AND RELEVANCE These findings suggest that dexamethasone exposure was associated with smaller cerebello-thalamo-cortical regions in survivors of ALL and that disruption of effective connectivity was associated with impairment of executive function in female survivors.
Collapse
Affiliation(s)
- Nicholas S. Phillips
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Shelli R. Kesler
- Now with School of Nursing, University of Texas at Austin
- Department of Neuro-oncology, University of Texas MD Anderson Cancer Center, Houston
| | - Matthew A. Scoggins
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - John O. Glass
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yin Ting Cheung
- School of Pharmacy, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Wei Liu
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Pia Banerjee
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Robert J. Ogg
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Deokumar Srivastava
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ching-Hon Pui
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Wilburn E. Reddick
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kevin R. Krull
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Psychology, St Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
9
|
Silva PHRD, Secchinato KF, Rondinoni C, Leoni RF. Brain Structural–Functional Connectivity Relationship Underlying the Information Processing Speed. Brain Connect 2020; 10:143-154. [DOI: 10.1089/brain.2019.0726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
| | | | - Carlo Rondinoni
- InBrain, Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil
| | - Renata Ferranti Leoni
- InBrain, Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
Ang C, Zhang J, Chu M, Li H, Tian M, Feng X, Zhang M, Liu L, Meng X, Ding G. Intrinsic Cerebro-Cerebellar Functional Connectivity Reveals the Function of Cerebellum VI in Reading-Related Skills. Front Psychol 2020; 11:420. [PMID: 32265778 PMCID: PMC7099000 DOI: 10.3389/fpsyg.2020.00420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 12/30/2022] Open
Abstract
The engagement of the cerebellum VI in reading was reported in both typically developing and dyslexic readers. However, it is still not clear how the cerebellum VI contributes to reading. Here we have examined the correlation of intrinsic cerebro-cerebellar functional connectivity with two critical reading-related skills—phonological awareness (PA) and rapid automatized naming (RAN)—with fMRI technology. Specifically, we tested the hypothesis that the cerebellum may contribute to reading either by phonological skills or by automatizing skills. We chose the left and right cerebellum VI as ROIs, and we calculated the intrinsic cerebro-cerebellar functional connectivity during a resting state. We further explored whether and how cerebro-cerebellar resting state functional connectivity (RSFC) is associated with individuals’ reading-related skills including PA and RAN. The results showed that the functional connectivity between the left supramarginal gyrus and bilateral cerebellum VI was related to RAN, and the connectivity between the left insula and right cerebellum VI was related to PA. However, the effect of PA did not survive after the RAN was regressed out. Control analyses further confirmed that it was the intrinsic cerebro-cerebellar functional connectivity rather than the local cerebellar functionality that associated with phonological awareness ability and rapid automatized naming ability. For the first time, the relationship between cerebro-cerebellar resting state functional connectivity and specific reading-related skills has been explored, and this has deepened our understanding of the way the cerebellum VI is involved in reading.
Collapse
Affiliation(s)
- Chen Ang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mingyuan Chu
- School of Psychology, University of Aberdeen, Aberdeen, United Kingdom
| | - Hehui Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mengyu Tian
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaoxia Feng
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Manli Zhang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiangzhi Meng
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,PekingU-PolyU Center for Child Development and Learning, Peking University, Beijing, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Sathyanesan A, Zhou J, Scafidi J, Heck DH, Sillitoe RV, Gallo V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat Rev Neurosci 2019; 20:298-313. [PMID: 30923348 DOI: 10.1038/s41583-019-0152-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cerebellum has a protracted developmental timeline compared with the neocortex, expanding the window of vulnerability to neurological disorders. As the cerebellum is critical for motor behaviour, it is not surprising that most neurodevelopmental disorders share motor deficits as a common sequela. However, evidence gathered since the late 1980s suggests that the cerebellum is involved in motor and non-motor function, including cognition and emotion. More recently, evidence indicates that major neurodevelopmental disorders such as intellectual disability, autism spectrum disorder, attention-deficit hyperactivity disorder and Down syndrome have potential links to abnormal cerebellar development. Out of recent findings from clinical and preclinical studies, the concept of the 'cerebellar connectome' has emerged that can be used as a framework to link the role of cerebellar development to human behaviour, disease states and the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Aaron Sathyanesan
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA.
| | - Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Scafidi
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA.,George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA. .,George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
12
|
Cerebellum and cognition in Friedreich ataxia: a voxel-based morphometry and volumetric MRI study. J Neurol 2019; 267:350-358. [PMID: 31641877 DOI: 10.1007/s00415-019-09582-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recent studies have suggested the presence of a significant atrophy affecting the cerebellar cortex in Friedreich ataxia (FRDA) patients, an area of the brain long considered to be relatively spared by neurodegenerative phenomena. Cognitive deficits, which occur in FRDA patients, have been associated with cerebellar volume loss in other conditions. The aim of this study was to investigate the correlation between cerebellar volume and cognition in FRDA. METHODS Nineteen FRDA patients and 20 healthy controls (HC) were included in this study and evaluated via a neuropsychological examination. Cerebellar global and lobular volumes were computed using the Spatially Unbiased Infratentorial Toolbox (SUIT). Furthermore, a cerebellar voxel-based morphometry (VBM) analysis was also carried out. Correlations between MRI metrics and clinical data were tested via partial correlation analysis. RESULTS FRDA patients showed a significant reduction of the total cerebellar volume (p = 0.004), significantly affecting the Lobule IX (p = 0.001). At the VBM analysis, we found a cluster of significant reduced GM density encompassing the entire lobule IX (p = 0.003). When correlations were probed, we found a direct correlation between Lobule IX volume and impaired visuo-spatial functions (r = 0.58, p = 0.02), with a similar correlation that was found between the same altered function and results obtained at the VBM (r = 0.52; p = 0.03). CONCLUSIONS With two different image analysis techniques, we confirmed the presence of cerebellar volume loss in FRDA, mainly affecting the posterior lobe. In particular, Lobule IX atrophy correlated with worse visuo-spatial abilities, further expanding our knowledge about the physiopathology of cognitive impairment in FRDA.
Collapse
|
13
|
Larcombe SJ, Kulyomina Y, Antonova N, Ajina S, Stagg CJ, Clatworthy PL, Bridge H. Visual training in hemianopia alters neural activity in the absence of behavioural improvement: a pilot study. Ophthalmic Physiol Opt 2019; 38:538-549. [PMID: 30357899 PMCID: PMC6282990 DOI: 10.1111/opo.12584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/08/2018] [Indexed: 01/01/2023]
Abstract
Background Damage to the primary visual cortex (V1) due to stroke often results in permanent loss of sight affecting one side of the visual field (homonymous hemianopia). Some rehabilitation approaches have shown improvement in visual performance in the blind region, but require a significant time investment. Methods Seven patients with cortical damage performed 400 trials of a motion direction discrimination task daily for 5 days. Three patients received anodal transcranial direct current stimulation (tDCS) during training, three received sham stimulation and one had no stimulation. Each patient had an assessment of visual performance and a functional magnetic resonance imaging (fMRI) scan before and after training to measure changes in visual performance and cortical activity. Results No patients showed improvement in visual function due to the training protocol, and application of tDCS had no effect on visual performance. However, following training, the neural response in motion area hMT+ to a moving stimulus was altered. When the stimulus was presented to the sighted hemifield, activity decreased in hMT+ of the damaged hemisphere. There was no change in hMT+ response when the stimulus was presented to the impaired hemifield. There was a decrease in activity in the inferior precuneus after training when the stimulus was presented to either the impaired or sighted hemifield. Preliminary analysis of tDCS data suggested that anodal tDCS interacted with the delivered training, modulating the neural response in hMT+ in the healthy side of the brain. Conclusion Training can affect the neural responses in hMT+ even in the absence of change in visual performance.
Collapse
Affiliation(s)
- Stephanie J Larcombe
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences (NDCN), University of Oxford, Oxford, UK
| | - Yuliya Kulyomina
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences (NDCN), University of Oxford, Oxford, UK
| | - Nikoleta Antonova
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Sara Ajina
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences (NDCN), University of Oxford, Oxford, UK
| | - Charlotte J Stagg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences (NDCN), University of Oxford, Oxford, UK.,Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Philip L Clatworthy
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Holly Bridge
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences (NDCN), University of Oxford, Oxford, UK
| |
Collapse
|
14
|
|
15
|
Ludolph N, Plöger J, Giese MA, Ilg W. Motor expertise facilitates the accuracy of state extrapolation in perception. PLoS One 2017; 12:e0187666. [PMID: 29107970 PMCID: PMC5673241 DOI: 10.1371/journal.pone.0187666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022] Open
Abstract
Predicting the behavior of objects in the environment is an important requirement to overcome latencies in the sensorimotor system and realize precise actions in rapid situations. Internal forward models that were acquired during motor training might not only be used for efficiently controlling fast motor behavior but also to facilitate extrapolation performance in purely perceptual tasks. In this study, we investigated whether preceding virtual cart-pole balancing training facilitates the ability to extrapolate the virtual pole motion. Specifically, subjects had to report the expected pole orientation after an occlusion of the pole of 900ms duration. We compared a group of 10 subjects, proficient in performing the virtual cart-pole balancing task, to 10 naïve subjects without motor experience in cart-pole balancing task. Our results demonstrate that preceding motor training increases the accuracy of pole movement extrapolation, although extrapolation is not trained explicitly. Additionally, we modelled subjects' behaviors and show that the difference in extrapolation performance can be explained by individual differences in the accuracy of internal forward models. When subjects are provided with feedback about the true orientation of the pole after the occlusion in a second phase of the experiment, both groups improve rapidly. The results indicate that the perceptual capability to extrapolate the state of the cart-pole system accurately is implicitly trained during motor learning. We discuss these results in the context of shared representations and action-perception transfer.
Collapse
Affiliation(s)
- Nicolas Ludolph
- Department of Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Wuerttemberg, Germany
- International Max-Planck Research School for Cognitive and Systems Neuroscience, Tübingen, Baden-Wuerttemberg, Germany
- * E-mail:
| | - Jannis Plöger
- Department of Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Wuerttemberg, Germany
| | - Martin A. Giese
- Department of Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Wuerttemberg, Germany
| | - Winfried Ilg
- Department of Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Wuerttemberg, Germany
| |
Collapse
|
16
|
Feng X, Li L, Zhang M, Yang X, Tian M, Xie W, Lu Y, Liu L, Bélanger NN, Meng X, Ding G. Dyslexic Children Show Atypical Cerebellar Activation and Cerebro-Cerebellar Functional Connectivity in Orthographic and Phonological Processing. THE CEREBELLUM 2016; 16:496-507. [DOI: 10.1007/s12311-016-0829-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Sundberg M, Sahin M. Cerebellar Development and Autism Spectrum Disorder in Tuberous Sclerosis Complex. J Child Neurol 2015; 30:1954-62. [PMID: 26303409 PMCID: PMC4644486 DOI: 10.1177/0883073815600870] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 01/08/2023]
Abstract
Approximately 50% of patients with the genetic disease tuberous sclerosis complex present with autism spectrum disorder. Although a number of studies have investigated the link between autism and tuberous sclerosis complex, the etiology of autism spectrum disorder in these patients remains unclear. Abnormal cerebellar function during critical phases of development could disrupt functional processes in the brain, leading to development of autistic features. Accordingly, the authors review the potential role of cerebellar dysfunction in the pathogenesis of autism spectrum disorder in tuberous sclerosis complex. The authors also introduce conditional knockout mouse models of Tsc1 and Tsc2 that link cerebellar circuitry to the development of autistic-like features. Taken together, these preclinical and clinical investigations indicate the cerebellum has a profound regulatory role during development of social communication and repetitive behaviors.
Collapse
Affiliation(s)
- Maria Sundberg
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Curtice KJ, Leavitt LS, Chase K, Raghuraman S, Horvath MP, Olivera BM, Teichert RW. Classifying neuronal subclasses of the cerebellum through constellation pharmacology. J Neurophysiol 2015; 115:1031-42. [PMID: 26581874 DOI: 10.1152/jn.00894.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/12/2015] [Indexed: 11/22/2022] Open
Abstract
A pressing need in neurobiology is the comprehensive identification and characterization of neuronal subclasses within the mammalian nervous system. To this end, we used constellation pharmacology as a method to interrogate the neuronal and glial subclasses of the mouse cerebellum individually and simultaneously. We then evaluated the data obtained from constellation-pharmacology experiments by cluster analysis to classify cells into neuronal and glial subclasses, based on their functional expression of glutamate, acetylcholine, and GABA receptors, among other ion channels. Conantokin peptides were used to identify N-methyl-d-aspartate (NMDA) receptor subtypes, which revealed that neurons of the young mouse cerebellum expressed NR2A and NR2B NMDA receptor subunits. Additional pharmacological tools disclosed differential expression of α-amino-3-hydroxy-5-methyl-4-isoxazloepropionic, nicotinic acetylcholine, and muscarinic acetylcholine receptors in different neuronal and glial subclasses. Certain cell subclasses correlated with known attributes of granule cells, and we combined constellation pharmacology with genetically labeled neurons to identify and characterize Purkinje cells. This study illustrates the utility of applying constellation pharmacology to classify neuronal and glial subclasses in specific anatomical regions of the brain.
Collapse
Affiliation(s)
- Kigen J Curtice
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Lee S Leavitt
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Kevin Chase
- Department of Biology, University of Utah, Salt Lake City, Utah
| | | | | | | | | |
Collapse
|
19
|
Sagari A, Iso N, Moriuchi T, Ogahara K, Kitajima E, Tanaka K, Tabira T, Higashi T. Changes in Cerebral Hemodynamics during Complex Motor Learning by Character Entry into Touch-Screen Terminals. PLoS One 2015; 10:e0140552. [PMID: 26485534 PMCID: PMC4618511 DOI: 10.1371/journal.pone.0140552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
Introduction Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed. Methods We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touch-screen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touch-screen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman’s rank correlations. Results Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations. Conclusions We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress.
Collapse
Affiliation(s)
- Akira Sagari
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Japanese Red Cross Society Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Naoki Iso
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical Corporation Tojinkai Miharadai Hospital, Nagasaki, Japan
| | - Takefumi Moriuchi
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical Corporation Tojinkai Miharadai Hospital, Nagasaki, Japan
| | - Kakuya Ogahara
- Faculty of Health and Social Work, School of Rehabilitation, Kanagawa University of Human Services, Kanagawa, Japan
| | - Eiji Kitajima
- Center for Industry, University and Government Cooperation, Nagasaki University, Nagasaki, Japan
| | - Koji Tanaka
- Unit of Physical and Occupational Therapy, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takayuki Tabira
- Faculty of Rehabilitation Sciences, Nishikyushu University, Saga, Japan
| | - Toshio Higashi
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
20
|
Henrique de Gobbi Porto F, Martins Novaes Coutinho A, Lucia de Sá Pinto A, Gualano B, Luís de Souza Duran F, Prando S, Rachel Ono C, Spíndola L, Okada de Oliveira M, Helena Figuerêdo do Vale P, Nitrini R, Alberto Buchpiguel C, Maria Dozzi Brucki S. Effects of Aerobic Training on Cognition and Brain Glucose Metabolism in Subjects with Mild Cognitive Impairment. J Alzheimers Dis 2015; 46:747-60. [DOI: 10.3233/jad-150033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Fábio Henrique de Gobbi Porto
- Department of Neurology and Cognitive Disorders Reference Center (CEREDIC), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Artur Martins Novaes Coutinho
- Department of Radiology, Nuclear Medicine Center (LIM43), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana Lucia de Sá Pinto
- Laboratory of Assessment and Conditioning in Rheumatology (LACRE), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruno Gualano
- Laboratory of Assessment and Conditioning in Rheumatology (LACRE), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fabio Luís de Souza Duran
- Department of Psychiatry and LIM21, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Silvana Prando
- Department of Psychiatry and LIM21, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carla Rachel Ono
- Department of Radiology, Nuclear Medicine Center (LIM43), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lívia Spíndola
- Department of Neurology and Cognitive Disorders Reference Center (CEREDIC), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maira Okada de Oliveira
- Department of Neurology and Cognitive Disorders Reference Center (CEREDIC), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patrícia Helena Figuerêdo do Vale
- Department of Neurology and Cognitive Disorders Reference Center (CEREDIC), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ricardo Nitrini
- Department of Neurology and Cognitive Disorders Reference Center (CEREDIC), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carlos Alberto Buchpiguel
- Department of Radiology, Nuclear Medicine Center (LIM43), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Radiology, Nuclear Medicine Center (LIM43), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
21
|
Cerebellar damage impairs internal predictions for sensory and motor function. Curr Opin Neurobiol 2015; 33:127-33. [PMID: 25863011 DOI: 10.1016/j.conb.2015.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/11/2015] [Accepted: 03/19/2015] [Indexed: 11/20/2022]
Abstract
The cerebellum is connected to cerebral areas that subserve a range of sensory and motor functions. In this review, we summarize new literature demonstrating deficits in visual perception, proprioception, motor control, and motor learning performance following cerebellar damage. In particular, we highlight novel results that together suggest a general role of the cerebellum in estimating and predicting movement dynamics of the body and environmental stimuli. These findings agree with the hypothesized role of the cerebellum in the generation and calibration of predictive models for a variety of functions.
Collapse
|