1
|
Ginzburg J, Moulin A, Fornoni L, Talamini F, Tillmann B, Caclin A. Development of auditory cognition in 5- to 10-year-old children: Focus on musical and verbal short-term memory. Dev Sci 2021; 25:e13188. [PMID: 34751481 DOI: 10.1111/desc.13188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
Developmental aspects of auditory cognition were investigated in 5-to-10-year-old children (n = 100). Musical and verbal short-term memory (STM) were assessed by means of delayed matching-to-sample tasks (DMST) (comparison of two four-item sequences separated by a silent retention delay), with two levels of difficulty. For musical and verbal materials, children's performance increased from 5 years to about 7 years of age, then remained stable up to 10 years of age, with performance remaining inferior to performance of young adults. Children and adults performed better with verbal material than with musical material. To investigate auditory cognition beyond STM, we assessed speech-in-noise perception with a four-alternative forced-choice task with two conditions of phonological difficulty and two levels of cocktail-party noise intensity. Partial correlations, factoring out the effect of age, showed a significant link between musical STM and speech-in-noise perception in the condition with increased noise intensity. Our findings reveal that auditory STM improves over development with a critical phase around 6-7 years of age, yet these abilities appear to be still immature at 10 years. Musical and verbal STM might in particular share procedural and serial order processes. Furthermore, musical STM and the ability to perceive relevant speech signals in cocktail-party noise might rely on shared cognitive resources, possibly related to pitch encoding. To the best of our knowledge, this is the first time that auditory STM is assessed with the same paradigm for musical and verbal material during childhood, providing perspectives regarding diagnosis and remediation in developmental learning disorders.
Collapse
Affiliation(s)
- Jérémie Ginzburg
- Lyon Neuroscience Research Center, UMR5292, INSERM, U1028, CNRS, Lyon, France.,University Lyon 1, Lyon, France
| | - Annie Moulin
- Lyon Neuroscience Research Center, UMR5292, INSERM, U1028, CNRS, Lyon, France.,University Lyon 1, Lyon, France
| | - Lesly Fornoni
- Lyon Neuroscience Research Center, UMR5292, INSERM, U1028, CNRS, Lyon, France.,University Lyon 1, Lyon, France
| | | | - Barbara Tillmann
- Lyon Neuroscience Research Center, UMR5292, INSERM, U1028, CNRS, Lyon, France.,University Lyon 1, Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center, UMR5292, INSERM, U1028, CNRS, Lyon, France.,University Lyon 1, Lyon, France
| |
Collapse
|
2
|
Thomas T, Khalaf S, Grigorenko EL. A systematic review and meta-analysis of imaging genetics studies of specific reading disorder. Cogn Neuropsychol 2021; 38:179-204. [PMID: 34529546 DOI: 10.1080/02643294.2021.1969900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The imaging genetics of specific reading disabilities (SRD) is an emerging field that aims to characterize the disabilities' neurobiological causes, including atypical brain structure and function and distinct genetic architecture. The present review aimed to summarize current imaging genetics studies of SRD, characterize the effect sizes of reported results by calculating Cohen's d, complete a Fisher's Combined Probability Test for genes featured in multiple studies, and determine areas for future research. Results demonstrate associations between SRD risk genes and reading network brain phenotypes. The Fisher's test revealed promising results for the genes DCDC2, KIAA0319, FOXP2, SLC2A3, and ROBO1. Future research should focus on exploratory approaches to identify previously undiscovered genes. Using comprehensive neuroimaging (e.g., functional and effective connectivity) and genetic (e.g., sequencing and epigenetic) techniques, and using larger samples, diverse stages of development, and longitudinal investigations, would help researchers understand the neurobiological correlates of SRD to improve early identification.
Collapse
Affiliation(s)
- Tina Thomas
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA
| | - Shiva Khalaf
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA
| | - Elena L Grigorenko
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA.,Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Zhang S, Fan H, Zhang Y. The 100 Top-Cited Studies on Dyslexia Research: A Bibliometric Analysis. Front Psychiatry 2021; 12:714627. [PMID: 34366943 PMCID: PMC8339432 DOI: 10.3389/fpsyt.2021.714627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Citation analysis is a type of quantitative and bibliometric analytic method designed to rank papers based on their citation counts. Over the last few decades, the research on dyslexia has made some progress which helps us to assess this disease, but a citation analysis on dyslexia that reflects these advances is lacking. Methods: A retrospective bibliometric analysis was performed using the Web of Science Core Collection database. The 100 top-cited studies on dyslexia were retrieved after reviewing abstracts or full-texts to May 20th, 2021. Data from the 100 top-cited studies were subsequently extracted and analyzed. Results: The 100 top-cited studies on dyslexia were cited between 245 to 1,456 times, with a median citation count of 345. These studies were published in 50 different journals, with the "Proceedings of the National Academy of Sciences of the United States of America" having published the most (n = 10). The studies were published between 1973 and 2012 and the most prolific year in terms of number of publications was 2000. Eleven countries contributed to the 100 top-cited studies, and nearly 75% articles were either from the USA (n = 53) or United Kingdom (n = 21). Eighteen researchers published at least two different studies of the 100 top-cited list as the first author. Furthermore, 71 studies were published as an original research article, 28 studies were review articles, and one study was published as an editorial material. Finally, "Psychology" was the most frequent study category. Conclusions: This analysis provides a better understanding on dyslexia and may help doctors, researchers, and stakeholders to achieve a more comprehensive understanding of classic studies, new discoveries, and trends regarding this research field, thus promoting ideas for future investigation.
Collapse
Affiliation(s)
- Shijie Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Grant JG, Siegel LS, D'Angiulli A. From Schools to Scans: A Neuroeducational Approach to Comorbid Math and Reading Disabilities. Front Public Health 2020; 8:469. [PMID: 33194932 PMCID: PMC7642246 DOI: 10.3389/fpubh.2020.00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
We bridge two analogous concepts of comorbidity, dyslexia-dyscalculia and reading-mathematical disabilities, in neuroscience and education, respectively. We assessed the cognitive profiles of 360 individuals (mean age 25.79 ± 13.65) with disability in reading alone (RD group), mathematics alone (MD group) and both (comorbidity: MDRD group), with tests widely used in both psychoeducational and neuropsychological batteries. As expected, the MDRD group exhibited reading deficits like those shown by the RD group. The former group also exhibited deficits in quantitative reasoning like those shown by the MD group. However, other deficits related to verbal working memory and semantic memory were exclusive to the MDRD group. These findings were independent of gender, age, or socioeconomic and demographic factors. Through a systematic exhaustive review of clinical neuroimaging literature, we mapped the resulting cognitive profiles to correspondingly plausible neuroanatomical substrates of dyslexia and dyscalculia. In our resulting "probing" model, the complex set of domain-specific and domain-general impairments shown in the comorbidity of reading and mathematical disabilities are hypothesized as being related to atypical development of the left angular gyrus. The present neuroeducational approach bridges a long-standing transdisciplinary divide and contributes a step further toward improved early prediction, teaching and interventions for children and adults with combined reading and math disabilities.
Collapse
Affiliation(s)
- Jeremy G Grant
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Linda S Siegel
- Department of Educational and Counselling Psychology, and Special Education, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
5
|
Benson PJ, Wallace L, Beedie SA. Sensory auditory interval perception errors in developmental dyslexia. Neuropsychologia 2020; 147:107587. [DOI: 10.1016/j.neuropsychologia.2020.107587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022]
|
6
|
Laasonen M, Lahti-Nuuttila P, Leppämäki S, Tani P, Wikgren J, Harno H, Oksanen-Hennah H, Pothos E, Cleeremans A, Dye MWG, Cousineau D, Hokkanen L. Project DyAdd: Non-linguistic Theories of Dyslexia Predict Intelligence. Front Hum Neurosci 2020; 14:316. [PMID: 32922276 PMCID: PMC7456923 DOI: 10.3389/fnhum.2020.00316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Two themes have puzzled the research on developmental and learning disorders for decades. First, some of the risk and protective factors behind developmental challenges are suggested to be shared and some are suggested to be specific for a given condition. Second, language-based learning difficulties like dyslexia are suggested to result from or correlate with non-linguistic aspects of information processing as well. In the current study, we investigated how adults with developmental dyslexia or ADHD as well as healthy controls cluster across various dimensions designed to tap the prominent non-linguistic theories of dyslexia. Participants were 18–55-year-old adults with dyslexia (n = 36), ADHD (n = 22), and controls (n = 35). Non-linguistic theories investigated with experimental designs included temporal processing impairment, abnormal cerebellar functioning, procedural learning difficulties, as well as visual processing and attention deficits. Latent profile analysis (LPA) was used to investigate the emerging groups and patterns of results across these experimental designs. LPA suggested three groups: (1) a large group with average performance in the experimental designs, (2) participants predominantly from the clinical groups but with enhanced conditioning learning, and (3) participants predominantly from the dyslexia group with temporal processing as well as visual processing and attention deficits. Despite the presence of these distinct patterns, participants did not cluster very well based on their original status, nor did the LPA groups differ in their dyslexia or ADHD-related neuropsychological profiles. Remarkably, the LPA groups did differ in their intelligence. These results highlight the continuous and overlapping nature of the observed difficulties and support the multiple deficit model of developmental disorders, which suggests shared risk factors for developmental challenges. It also appears that some of the risk factors suggested by the prominent non-linguistic theories of dyslexia relate to the general level of functioning in tests of intelligence.
Collapse
Affiliation(s)
- Marja Laasonen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pekka Lahti-Nuuttila
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sami Leppämäki
- Department of Psychiatry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pekka Tani
- Department of Psychiatry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jan Wikgren
- Department of Psychology, Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Hanna Harno
- Clinical Neurosciences, Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Henna Oksanen-Hennah
- Pediatric Neuropsychiatric Unit, Department of Child Psychiatry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Emmanuel Pothos
- Department of Psychology, City University of London, London, United Kingdom
| | - Axel Cleeremans
- Center for Research in Cognition & Neurosciences, Université libre de Bruxelles, Brussels, Belgium
| | - Matthew W G Dye
- National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY, United States
| | - Denis Cousineau
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Laura Hokkanen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Ma S, Zhang X, Hatfield H, Wei WH. Pinyin Is an Effective Proxy for Early Screening for Mandarin-Speaking Children at Risk of Reading Disorders. Front Psychol 2020; 11:327. [PMID: 32174873 PMCID: PMC7055296 DOI: 10.3389/fpsyg.2020.00327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/11/2020] [Indexed: 12/29/2022] Open
Abstract
Reading disorders (RD) are common and complex neuropsychological conditions associated with decoding printed words and/or reading comprehension. Early identification of children at risk of RD is critical to allow timely interventions before mental suffering and reading impairment take place. Chinese is a unique medium for studying RD because of extra efforts required in reading acquisition of characters based on meaning rather than phonology. Pinyin, an alphabetic coding system mapping Mandarin sounds to characters, is important to develop oral language skills and a promising candidate for early screening for RD. In this pilot study, we used a cohort of 100 students (50 each in Grades 1 and 2) to derive novel profiles of applying Pinyin to identify early schoolers at risk of RD. Each student had comprehensive reading related measures in two consecutive years, including Pinyin reading and reading comprehension tested in the first and second year, respectively. We showed that Pinyin reading was mainly determined by phonological awareness, was well developed in Grade 1 and the top predictor of reading comprehension (explaining ∼30% of variance, p < 1.0e-05). Further, students who performed poorly in Pinyin reading [e.g. 1 standard deviation (SD) below the average, counting 14% in Grade 1 and 10% in Grade 2], tended to perform poorly in future reading comprehension tests, including all four individuals in Grade 1 (two out of three in Grade 2) who scored 1.5 SDs below the average. Pinyin is therefore an effective proxy for early screening for Mandarin-speaking children at risk of RD.
Collapse
Affiliation(s)
- Shaowei Ma
- School of Foreign Languages, Langfang Teachers University, Langfang, China
- Department of English and Linguistics, University of Otago, Dunedin, New Zealand
- School of Teacher Education, College of Education, University of Canterbury, Christchurch, New Zealand
| | - Xiumei Zhang
- School of Foreign Languages, Langfang Teachers University, Langfang, China
| | - Hunter Hatfield
- Department of English and Linguistics, University of Otago, Dunedin, New Zealand
| | - Wen-Hua Wei
- Department of Women’s and Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Schaadt G, Männel C. Phonemes, words, and phrases: Tracking phonological processing in pre-schoolers developing dyslexia. Clin Neurophysiol 2019; 130:1329-1341. [PMID: 31200240 DOI: 10.1016/j.clinph.2019.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/18/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Individuals with dyslexia often suffer from deficient segmental phonology, but the status of suprasegmental phonology (prosody) is still discussed. METHODS In three passive-listening event-related brain potential (ERP) studies, we examined prosodic processing in literacy-impaired children for various prosodic units by contrasting the processing of word-level and phrase-level prosody, alongside segmental phonology. We retrospectively analysed school children's ERPs at preschool age for discrimination of vowel length (phoneme processing), discrimination of stress pattern (word-level prosody), and processing of prosodic boundaries (phrase-level prosody). RESULTS We found differences between pre-schoolers with and without later literacy difficulties for phoneme and stress pattern discrimination, but not for prosodic boundary perception. CONCLUSION Our findings complement the picture of phonological processing in dyslexia by confirming difficulties in segmental phonology and showing that prosodic processing is affected for the smaller word level, but not the larger phrase level. SIGNIFICANCE These findings might have implications for early interventions, considering both phonemic awareness and stress pattern training.
Collapse
Affiliation(s)
- Gesa Schaadt
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Clinic of Cognitive Neurology, Medical Faculty, University Leipzig, Liebigstr. 16, 04103 Leipzig, Germany.
| | - Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Clinic of Cognitive Neurology, Medical Faculty, University Leipzig, Liebigstr. 16, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Schaadt G, van der Meer E, Pannekamp A, Oberecker R, Männel C. Children with dyslexia show a reduced processing benefit from bimodal speech information compared to their typically developing peers. Neuropsychologia 2019; 126:147-158. [DOI: 10.1016/j.neuropsychologia.2018.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 11/24/2017] [Accepted: 01/12/2018] [Indexed: 01/20/2023]
|
10
|
Le Guen Y, Amalric M, Pinel P, Pallier C, Frouin V. Shared genetic aetiology between cognitive performance and brain activations in language and math tasks. Sci Rep 2018; 8:17624. [PMID: 30514932 PMCID: PMC6279777 DOI: 10.1038/s41598-018-35665-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 11/10/2018] [Indexed: 01/14/2023] Open
Abstract
Cognitive performance is highly heritable. However, little is known about common genetic influences on cognitive ability and brain activation when engaged in a cognitive task. The Human Connectome Project (HCP) offers a unique opportunity to study this shared genetic etiology with an extended pedigree of 785 individuals. To investigate this common genetic origin, we took advantage of the HCP dataset, which includes both language and mathematics activation tasks. Using the HCP multimodal parcellation, we identified areals in which inter-individual functional MRI (fMRI) activation variance was significantly explained by genetics. Then, we performed bivariate genetic analyses between the neural activations and behavioral scores, corresponding to the fMRI task accuracies, fluid intelligence, working memory and language performance. We observed that several parts of the language network along the superior temporal sulcus, as well as the angular gyrus belonging to the math processing network, are significantly genetically correlated with these indicators of cognitive performance. This shared genetic etiology provides insights into the brain areas where the human-specific genetic repertoire is expressed. Studying the association of polygenic risk scores, using variants associated with human cognitive ability and brain activation, would provide an opportunity to better understand where these variants are influential.
Collapse
Affiliation(s)
- Yann Le Guen
- Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
| | - Marie Amalric
- Cognitive Neuroimaging Unit, U992, INSERM, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Pinel
- Cognitive Neuroimaging Unit, U992, INSERM, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christophe Pallier
- Cognitive Neuroimaging Unit, U992, INSERM, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Vincent Frouin
- Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
11
|
van Oers CAMM, Goldberg N, Fiorin G, van den Heuvel MP, Kappelle LJ, Wijnen FNK. No evidence for cerebellar abnormality in adults with developmental dyslexia. Exp Brain Res 2018; 236:2991-3001. [PMID: 30116863 PMCID: PMC6223834 DOI: 10.1007/s00221-018-5351-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/02/2018] [Indexed: 01/18/2023]
Abstract
Developmental dyslexia is commonly believed to result from a deficiency in the recognition and processing of speech sounds. According to the cerebellar deficit hypothesis, this phonological deficit is caused by deficient cerebellar function. In the current study, 26 adults with developmental dyslexia and 25 non-dyslexic participants underwent testing of reading-related skills, cerebellar functions, and MRI scanning of the brain. Anatomical assessment of the cerebellum was conducted with voxel-based morphometry. Behavioural evidence, that was indicative of impaired cerebellar function, was found to co-occur with reading impairments in the dyslexic subjects, but a causal relation between the two was not observed. No differences in local grey matter volume, nor in structure-function relationships within the cerebellum were found between the two groups. Possibly, the observed behavioural pattern is due to aberrant white matter connectivity. In conclusion, no support for the cerebellar deficit hypothesis or the presence of anatomical differences of the cerebellum in adults with developmental dyslexia was found.
Collapse
Affiliation(s)
- Casper A M M van Oers
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
- Department of Neurology, Amphia Hospital, Breda, The Netherlands.
| | - Nadya Goldberg
- Utrecht institute of Linguistics OTS, Utrecht, The Netherlands
| | - Gaetano Fiorin
- Utrecht institute of Linguistics OTS, Utrecht, The Netherlands
| | - Martijn P van den Heuvel
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L Jaap Kappelle
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
12
|
Caclin A, Tillmann B. Musical and verbal short-term memory: insights from neurodevelopmental and neurological disorders. Ann N Y Acad Sci 2018; 1423:155-165. [PMID: 29744897 DOI: 10.1111/nyas.13733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 12/28/2022]
Abstract
Auditory short-term memory (STM) is a fundamental ability to make sense of auditory information as it unfolds over time. Whether separate STM systems exist for different types of auditory information (music and speech, in particular) is a matter of debate. The present paper reviews studies that have investigated both musical and verbal STM in healthy individuals and in participants with neurodevelopmental and neurological disorders. Overall, the results are in favor of only partly shared networks for musical and verbal STM. Evidence for a distinction in STM for the two materials stems from (1) behavioral studies in healthy participants, in particular from the comparison between nonmusicians and musicians; (2) behavioral studies in congenital amusia, where a selective pitch STM deficit is observed; and (3) studies in brain-damaged patients with cases of double dissociation. In this review we highlight the need for future studies comparing STM for the same perceptual dimension (e.g., pitch) in different materials (e.g., music and speech), as well as for studies aiming at a more insightful characterization of shared and distinct mechanisms for speech and music in the different components of STM, namely encoding, retention, and retrieval.
Collapse
Affiliation(s)
- Anne Caclin
- Lyon Neuroscience Research Center (CRNL), Brain Dynamics and Cognition Team (DYCOG) and Auditory Cognition and Psychoacoustics Team, INSERM, U1028, CNRS, UMR5292, Lyon, France
- Université Lyon 1, Lyon, France
| | - Barbara Tillmann
- Lyon Neuroscience Research Center (CRNL), Brain Dynamics and Cognition Team (DYCOG) and Auditory Cognition and Psychoacoustics Team, INSERM, U1028, CNRS, UMR5292, Lyon, France
- Université Lyon 1, Lyon, France
| |
Collapse
|
13
|
Meyer L. The neural oscillations of speech processing and language comprehension: state of the art and emerging mechanisms. Eur J Neurosci 2017; 48:2609-2621. [PMID: 29055058 DOI: 10.1111/ejn.13748] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022]
Abstract
Neural oscillations subserve a broad range of functions in speech processing and language comprehension. On the one hand, speech contains-somewhat-repetitive trains of air pressure bursts that occur at three dominant amplitude modulation frequencies, physically marking the linguistically meaningful progressions of phonemes, syllables and intonational phrase boundaries. To these acoustic events, neural oscillations of isomorphous operating frequencies are thought to synchronise, presumably resulting in an implicit temporal alignment of periods of neural excitability to linguistically meaningful spectral information on the three low-level linguistic description levels. On the other hand, speech is a carrier signal that codes for high-level linguistic meaning, such as syntactic structure and semantic information-which cannot be read from stimulus acoustics, but must be acquired during language acquisition and decoded for language comprehension. Neural oscillations subserve the processing of both syntactic structure and semantic information. Here, I synthesise a mapping from each linguistic processing domain to a unique set of subserving oscillatory mechanisms-the mapping is plausible given the role ascribed to different oscillatory mechanisms in different subfunctions of cortical information processing and faithful to the underlying electrophysiology. In sum, the present article provides an accessible and extensive review of the functional mechanisms that neural oscillations subserve in speech processing and language comprehension.
Collapse
Affiliation(s)
- Lars Meyer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany
| |
Collapse
|
14
|
Männel C, Schaadt G, Illner FK, van der Meer E, Friederici AD. Phonological abilities in literacy-impaired children: Brain potentials reveal deficient phoneme discrimination, but intact prosodic processing. Dev Cogn Neurosci 2016; 23:14-25. [PMID: 28011436 PMCID: PMC6987698 DOI: 10.1016/j.dcn.2016.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 01/26/2023] Open
Abstract
Intact phonological processing is crucial for successful literacy acquisition. While individuals with difficulties in reading and spelling (i.e., developmental dyslexia) are known to experience deficient phoneme discrimination (i.e., segmental phonology), findings concerning their prosodic processing (i.e., suprasegmental phonology) are controversial. Because there are no behavior-independent studies on the underlying neural correlates of prosodic processing in dyslexia, these controversial findings might be explained by different task demands. To provide an objective behavior-independent picture of segmental and suprasegmental phonological processing in impaired literacy acquisition, we investigated event-related brain potentials during passive listening in typically and poor-spelling German school children. For segmental phonology, we analyzed the Mismatch Negativity (MMN) during vowel length discrimination, capturing automatic auditory deviancy detection in repetitive contexts. For suprasegmental phonology, we analyzed the Closure Positive Shift (CPS) that automatically occurs in response to prosodic boundaries. Our results revealed spelling group differences for the MMN, but not for the CPS, indicating deficient segmental, but intact suprasegmental phonological processing in poor spellers. The present findings point towards a differential role of segmental and suprasegmental phonology in literacy disorders and call for interventions that invigorate impaired literacy by utilizing intact prosody in addition to training deficient phonemic awareness.
Collapse
Affiliation(s)
- Claudia Männel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Gesa Schaadt
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | | | - Elke van der Meer
- Department of Psychology, Humboldt-Universität zu Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
15
|
Gray Matter Features of Reading Disability: A Combined Meta-Analytic and Direct Analysis Approach(1,2,3,4). eNeuro 2016; 3:eN-CFN-0103-15. [PMID: 26835509 PMCID: PMC4724065 DOI: 10.1523/eneuro.0103-15.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/21/2015] [Accepted: 12/25/2015] [Indexed: 01/18/2023] Open
Abstract
Meta-analysis of voxel-based morphometry dyslexia studies and direct analysis of 293 reading disability and control cases from six different research sites were performed to characterize defining gray matter features of reading disability. These analyses demonstrated consistently lower gray matter volume in left posterior superior temporal sulcus/middle temporal gyrus regions and left orbitofrontal gyrus/pars orbitalis regions. Gray matter volume within both of these regions significantly predicted individual variation in reading comprehension after correcting for multiple comparisons. These regional gray matter differences were observed across published studies and in the multisite dataset after controlling for potential age and gender effects, and despite increased anatomical variance in the reading disability group, but were not significant after controlling for total gray matter volume. Thus, the orbitofrontal and posterior superior temporal sulcus gray matter findings are relatively reliable effects that appear to be dependent on cases with low total gray matter volume. The results are considered in the context of genetics studies linking orbitofrontal and superior temporal sulcus regions to alleles that confer risk for reading disability.
Collapse
|
16
|
Schaadt G, Männel C, van der Meer E, Pannekamp A, Oberecker R, Friederici AD. Present and past: Can writing abilities in school children be associated with their auditory discrimination capacities in infancy? RESEARCH IN DEVELOPMENTAL DISABILITIES 2015; 47:318-333. [PMID: 26479824 DOI: 10.1016/j.ridd.2015.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/24/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
Literacy acquisition is highly associated with auditory processing abilities, such as auditory discrimination. The event-related potential Mismatch Response (MMR) is an indicator for cortical auditory discrimination abilities and it has been found to be reduced in individuals with reading and writing impairments and also in infants at risk for these impairments. The goal of the present study was to analyze the relationship between auditory speech discrimination in infancy and writing abilities at school age within subjects, and to determine when auditory speech discrimination differences, relevant for later writing abilities, start to develop. We analyzed the MMR registered in response to natural syllables in German children with and without writing problems at two points during development, that is, at school age and at infancy, namely at age 1 month and 5 months. We observed MMR related auditory discrimination differences between infants with and without later writing problems, starting to develop at age 5 months-an age when infants begin to establish language-specific phoneme representations. At school age, these children with and without writing problems also showed auditory discrimination differences, reflected in the MMR, confirming a relationship between writing and auditory speech processing skills. Thus, writing problems at school age are, at least, partly grounded in auditory discrimination problems developing already during the first months of life.
Collapse
Affiliation(s)
- Gesa Schaadt
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany.
| | - Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| | - Elke van der Meer
- Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany; Graduate School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, 10117 Berlin, Germany
| | - Ann Pannekamp
- Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
| | - Regine Oberecker
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| |
Collapse
|