1
|
Toniolo S, Attaallah B, Maio MR, Tabi YA, Slavkova E, Klar VS, Saleh Y, Idris MI, Turner V, Preul C, Srowig A, Butler C, Thompson S, Manohar SG, Finke K, Husain M. Performance and validation of a digital memory test across the Alzheimer's disease continuum. Brain Commun 2025; 7:fcaf024. [PMID: 39886066 PMCID: PMC11780857 DOI: 10.1093/braincomms/fcaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/14/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
Digital cognitive testing using online platforms has emerged as a potentially transformative tool in clinical neuroscience. In theory, it could provide a powerful means of screening for and tracking cognitive performance in people at risk of developing conditions such as Alzheimer's disease. Here we investigate whether digital metrics derived from an in-person administered, tablet-based short-term memory task-the 'What was where?' Oxford Memory Task-were able to clinically stratify patients at different points within the Alzheimer's disease continuum and to track disease progression over time. Performance of these metrics compared to traditional neuropsychological pen-and-paper screening tests of cognition was also analysed. A total of 325 people participated in this study: 49 patients with subjective cognitive decline, 57 with mild cognitive impairment, 63 with Alzheimer's disease dementia and 156 elderly healthy controls. Most digital metrics were able to discriminate between healthy controls and patients with mild cognitive impairment and between mild cognitive impairment and Alzheimer's disease patients. Some, including Absolute Localization Error, also differed significantly between patients with subjective cognitive decline and mild cognitive impairment. Identification accuracy was the best predictor of hippocampal atrophy, performing as well as standard screening neuropsychological tests. A linear support vector model combining digital metrics achieved high accuracy and performed at par with standard testing in discriminating between elderly healthy controls and subjective cognitive decline (area under the curve 0.82) and between subjective cognitive decline and mild cognitive impairment (area under the curve 0.92), while performing worse in classifying between mild cognitive impairment and Alzheimer's disease patients (area under the curve 0.75). Memory imprecision was able to predict cognitive decline on standard cognitive tests over one year. Overall, these findings show how it might be possible to use a digital memory test in clinics and clinical trial contexts to stratify and track performance across the Alzheimer's disease continuum.
Collapse
Affiliation(s)
- Sofia Toniolo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Cognitive Disorders Clinic, JR Hospital, Oxford OX3 9DU, UK
| | - Bahaaeddin Attaallah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Centre for Preventive Neurology, Queen Mary University of London, London E1 4NS, UK
| | - Maria Raquel Maio
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Younes Adam Tabi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Elitsa Slavkova
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Verena Svenja Klar
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Youssuf Saleh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Cognitive Disorders Clinic, JR Hospital, Oxford OX3 9DU, UK
| | - Mohamad Imran Idris
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Vicky Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Christoph Preul
- Department of Neurology, Memory Center, Jena University Hospital, Jena 07747, Germany
| | - Annie Srowig
- Department of Neurology, Memory Center, Jena University Hospital, Jena 07747, Germany
| | - Christopher Butler
- Cognitive Disorders Clinic, JR Hospital, Oxford OX3 9DU, UK
- Department of Neurology, Imperial College London, London W12 0NN, UK
| | - Sian Thompson
- Cognitive Disorders Clinic, JR Hospital, Oxford OX3 9DU, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Cognitive Disorders Clinic, JR Hospital, Oxford OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Kathrin Finke
- Department of Neurology, Memory Center, Jena University Hospital, Jena 07747, Germany
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich 80802, Germany
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Cognitive Disorders Clinic, JR Hospital, Oxford OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
2
|
Sen A, Toniolo S, Tai XY, Akinola M, Symmonds M, Mura S, Galloway J, Hallam A, Chan JYC, Koychev I, Butler C, Geddes J, Jones GD, Tabi Y, Maio R, Frangou E, Love S, Thompson S, Van Der Putt R, Manohar SG, McShane R, Husain M. Safety, tolerability, and efficacy outcomes of the Investigation of Levetiracetam in Alzheimer's disease (ILiAD) study: a pilot, double-blind placebo-controlled crossover trial. Epilepsia Open 2024; 9:2353-2364. [PMID: 39400461 PMCID: PMC11633694 DOI: 10.1002/epi4.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVE To assess whether the antiseizure medication levetiracetam may improve cognition in individuals with Alzheimer's disease who have not previously experienced a seizure. METHODS We performed a randomized, double-blind, placebo-controlled crossover pilot study in individuals with mild-to-moderate Alzheimer's disease. Electroencephalography was performed at baseline and those with active epileptiform discharges were excluded. Eligible participants were randomized to placebo for 12 weeks or an active arm of oral levetiracetam (4 weeks up-titration to levetiracetam 500 mg twice daily, 4 weeks maintained on this dose followed by 4 weeks down-titration to nil). Participants then crossed over to the other arm. The primary outcome was change in cognitive function assessed by the Oxford Memory Task, a task sensitive to hippocampal memory binding. Secondary outcomes included tolerability, other neuropsychological scales, and general questionnaires. RESULTS Recruitment numbers were severely limited owing to restrictions from the COVID-19 pandemic at the time of the study. Eight participants completed both arms of the study (mean age 68.4 years [SD = 9.2]; 5 females [62.5%]). No participants withdrew from the study and there was no significant difference between reported side effects in the active levetiracetam or placebo arm. Measures of mood and quality of life were also not significantly different between the two arms based on participant or carer reports. In limited data analysis, there was no statistically significant difference between participants in the active levetiracetam and placebo arm on the memory task. SIGNIFICANCE This pilot study demonstrates that levetiracetam was well tolerated in individuals with Alzheimer's disease who do not have a history of seizures and has no detrimental effect on mood or quality of life. Larger studies are needed to assess whether levetiracetam may have a positive effect on cognitive function in subsets of individuals with Alzheimer's disease. PLAIN LANGUAGE SUMMARY Abnormal electrical activity within the brain, such as is seen in seizures, might contribute to memory problems in people with dementia. We completed a clinical trial to see if an antiseizure medication, levetiracetam, could help with memory difficulties in people with Alzheimer's disease (the most common cause of dementia). In this pilot study, we could not prove whether levetiracetam helped memory function. We did show that the drug is safe and well tolerated in people with dementia who have not had a seizure. This work, therefore, offers a platform for future research exploring antiseizure medications in people with dementia.
Collapse
Affiliation(s)
- Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalOxfordUK
- Department of NeurologyJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
| | - Sofia Toniolo
- Department of NeurologyJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
| | - Xin You Tai
- Oxford Epilepsy Research Group, Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalOxfordUK
- Department of NeurologyJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
| | - Mary Akinola
- Local Clinical Trials NetworkJohn Radcliffe HospitalOxfordUK
| | - Mkael Symmonds
- Oxford Epilepsy Research Group, Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
- Department of Clinical NeurophysiologyJohn Radcliffe HospitalOxfordUK
| | - Sergio Mura
- Clinical Trials PharmacyJohn Radcliffe Hospital, Oxford University Hospitals NHS Foundation TrustOxfordUK
| | | | - Angela Hallam
- St Mary's Pharmaceutical UnitCardiff UniversityCardiffUK
| | - Jane Y. C. Chan
- Freeline TherapeuticsKing's CourtStevenageUK
- Translational MedicineUCB PharmaSloughUK
| | - Ivan Koychev
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Chris Butler
- Faculty of Medicine, Department of Brain SciencesImperial College, Sir Alexander Fleming Building, South Kensington CampusLondonUK
| | - John Geddes
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Gabriel Davis Jones
- Oxford Epilepsy Research Group, Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Women's Health, Women's CentreJohn Radcliffe HospitalOxfordUK
| | - Younes Tabi
- Department of NeurologyUniversity Hospital of KielKielGermany
| | - Raquel Maio
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
| | - Eleni Frangou
- MRC Clinical Trials Unit at UCL, Faculty of Pop Health SciencesInstitute of Clinical Trials & Methodology, University College LondonLondonUK
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Sharon Love
- MRC Clinical Trials Unit at UCL, Faculty of Pop Health SciencesInstitute of Clinical Trials & Methodology, University College LondonLondonUK
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Sian Thompson
- Department of NeurologyJohn Radcliffe HospitalOxfordUK
| | | | - Sanjay G. Manohar
- Department of NeurologyJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
| | | | - Masud Husain
- Department of NeurologyJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
- Cognitive Neurology Research Group, Nuffield Department Clinical Neurosciences & Department of Experimental PsychologyUniversity of Oxford, West Wing, John Radcliffe HospitalOxfordUK
| |
Collapse
|
3
|
Leuzy A, Heeman F, Bosch I, Lenér F, Dottori M, Quitz K, Moscoso A, Kern S, Zetterberg H, Blennow K, Schöll M. REAL AD-Validation of a realistic screening approach for early Alzheimer's disease. Alzheimers Dement 2024; 20:8172-8182. [PMID: 39311530 PMCID: PMC11567841 DOI: 10.1002/alz.14219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 11/17/2024]
Abstract
Early diagnosis is crucial to treatment success. This is especially relevant for Alzheimer's disease (AD), with its protracted preclinical phase. Most health care systems do not have the resources to conduct large-scale AD screenings in middle-aged individuals in need of novel AD treatment options and early, accurate diagnosis. Recent developments in blood-based biomarkers and remote cognitive testing offer novel, cost-effective, and scalable methods to detect cognitive and biomarker changes that may indicate early AD. In research cohorts, promising results have been reported, but these modalities have not been validated in population-based settings. The validation of a realistic screening approach for early Alzheimer's disease (REAL AD) study aims to validate the diagnostic and prognostic performance of the combined use of blood-based biomarkers and remote cognitive testing as a screening approach for early AD employing an existing health care infrastructure (the Swedish Västra Götaland Region Primary Healthcare). REAL AD aims to provide a concrete, individualized diagnostic framework, which could significantly improve AD prognosis. HIGHLIGHTS: In Sweden, most Alzheimer's disease (AD) diagnoses are made in primary care, where access to AD biomarkers is almost non-existent. Most health care systems have limited resources for the screening of middle-aged adults for early evidence of AD pathology. Blood-based biomarkers and remote cognitive testing offer novel, cost-effective, and scalable methods for detecting cognitive and biomarker changes that may indicate early AD. The REAL AD study aims to validate the diagnostic and prognostic performance of blood-based biomarkers and remote cognitive testing as a screening approach for early AD in an existing primary health care infrastructure in the Västra Götaland Region in Sweden. Studies such as REAL AD will play a vital role in helping to move the field toward concrete implementation of biomarkers in AD diagnostic workup at all care levels, eventually providing more comprehensive treatments options for the large and growing AD population, and for those at risk.
Collapse
Affiliation(s)
- Antoine Leuzy
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
- Department of NeuropsychiatryRegion Västra GötalandSahlgrenska University HospitalGötalandSweden
| | - Fiona Heeman
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
| | - Iris Bosch
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
- Department of NeuropsychiatryRegion Västra GötalandSahlgrenska University HospitalGötalandSweden
| | - Frida Lenér
- Centre for REDI FyrbodalPrimary Health Care, Region VästraGötalandSweden
- Department of Public Health and Community MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Maria Dottori
- Region Västra Götaland, Research, Education, Development & Innovation (REDI)Primary Health CareGothenburgSweden
| | - Kajsa Quitz
- Department of Public Health and Community MedicineUniversity of GothenburgGothenburgSweden
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
| | - Silke Kern
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
- Department of NeuropsychiatryRegion Västra GötalandSahlgrenska University HospitalGötalandSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
- Department of Public Health and Community MedicineUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGothenburgSweden
- UK Dementia Research Institute, UCL Institute of NeurologyUniversity College LondonLondonUK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGothenburgSweden
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
- Department of NeuropsychiatryRegion Västra GötalandSahlgrenska University HospitalGötalandSweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
4
|
Bian Z, Wang B, Wu X, Wang K, Jiang Y. Development and Validation of Paradigms Based on the Global-First Topological Approach for Alzheimer's Disease Severity Staging. Neuropsychiatr Dis Treat 2024; 20:1225-1234. [PMID: 38883415 PMCID: PMC11178089 DOI: 10.2147/ndt.s460421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Conventional methods like patient history, neuropsychological testing, cerebrospinal fluid examination, and magnetic resonance imaging are widely used to diagnose cases in the current clinical setting but are limited in classifying Alzheimer's disease (AD) stages. Patients with AD exhibit visual perception deficits, which may be a potential target to assess the severity of the disease according to visual paradigms. However, owing to the inconsistent forms of perceived objects, the defects of current visual processing paradigms often lead to inconsistent results and a lack of sensitivity and specificity. Methods We develop two paradigms based on global-first topological approach of visual perception, which avoids inconsistent results and lack of sensitivity and specificity owing to the inconsistent forms of perceived objects in traditional paradigms, delineate a unique detection strategy from perception organization (Experiment 1) and visual working memory (VWM) (Experiment 2). Results Except for the significant differences of the reaction times (RTs) between groups, significant differences were found when AD subjects recognize small figures due to the consistency of global and local figures in similarity test. The difference of RTs between recognizing global and local figures can be recognized in AD and mild cognitive impairment (MCI) group compared to healthy elderly (HE) in similarity test (Experiment 1). The memory capacity of AD patients was significantly lower than MCI group. Topological interference effect was observed in MCI and HE group, whereas MCI patients may have a greater difference trend in non-topological and topological changes than HE (Experiment 2). Conclusion Our paradigms provide a new strategy, which can assist clinical severity staging and linking topological approach of visual perception with pathophysiological processes in AD.
Collapse
Affiliation(s)
- Zhida Bian
- Anhui Medical University School of Basic Medicine, Hefei, 230032, People's Republic of China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, People's Republic of China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, People's Republic of China
| | - Bo Wang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, People's Republic of China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xingqi Wu
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, People's Republic of China
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, People's Republic of China
| | - Kai Wang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, People's Republic of China
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, People's Republic of China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yi Jiang
- Anhui Medical University School of Basic Medicine, Hefei, 230032, People's Republic of China
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
5
|
Bays PM, Schneegans S, Ma WJ, Brady TF. Representation and computation in visual working memory. Nat Hum Behav 2024; 8:1016-1034. [PMID: 38849647 DOI: 10.1038/s41562-024-01871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/22/2024] [Indexed: 06/09/2024]
Abstract
The ability to sustain internal representations of the sensory environment beyond immediate perception is a fundamental requirement of cognitive processing. In recent years, debates regarding the capacity and fidelity of the working memory (WM) system have advanced our understanding of the nature of these representations. In particular, there is growing recognition that WM representations are not merely imperfect copies of a perceived object or event. New experimental tools have revealed that observers possess richer information about the uncertainty in their memories and take advantage of environmental regularities to use limited memory resources optimally. Meanwhile, computational models of visuospatial WM formulated at different levels of implementation have converged on common principles relating capacity to variability and uncertainty. Here we review recent research on human WM from a computational perspective, including the neural mechanisms that support it.
Collapse
Affiliation(s)
- Paul M Bays
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | | - Wei Ji Ma
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| | - Timothy F Brady
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Toniolo S, Zhao S, Scholcz A, Amein B, Ganse‐Dumrath A, Heslegrave AJ, Thompson S, Manohar S, Zetterberg H, Husain M. Relationship of plasma biomarkers to digital cognitive tests in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12590. [PMID: 38623387 PMCID: PMC11016819 DOI: 10.1002/dad2.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION A major limitation in Alzheimer's disease (AD) research is the lack of the ability to measure cognitive performance at scale-robustly, remotely, and frequently. Currently, there are no established online digital platforms validated against plasma biomarkers of AD. METHODS We used a novel web-based platform that assessed different cognitive functions in AD patients (N = 46) and elderly controls (N = 53) who were also evaluated for plasma biomarkers (amyloid beta 42/40 ratio, phosphorylated tau ([p-tau]181, glial fibrillary acidic protein, neurofilament light chain). Their cognitive performance was compared to a second, larger group of elderly controls (N = 352). RESULTS Patients with AD were significantly impaired across all digital cognitive tests, with performance correlating with plasma biomarker levels, particularly p-tau181. The combination of p-tau181 and the single best-performing digital test achieved high accuracy in group classification. DISCUSSION These findings show how online testing can now be deployed in patients with AD to measure cognitive function effectively and related to blood biomarkers of the disease. Highlights This is the first study comparing online digital testing to plasma biomarkers.Alzheimer's disease patients and two independent cohorts of elderly controls were assessed.Cognitive performance correlated with plasma biomarkers, particularly phosphorylated tau (p-tau)181.Glial fibrillary acidic protein and neurofilament light chain, and less so the amyloid beta 42/40 ratio, were also associated with performance.The best cognitive metric performed at par to p-tau181 in group classification.
Collapse
Affiliation(s)
- Sofia Toniolo
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Cognitive Disorders ClinicJR HospitalOxfordUK
| | - Sijia Zhao
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Anna Scholcz
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Benazir Amein
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Akke Ganse‐Dumrath
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Amanda J. Heslegrave
- UK Dementia Research InstituteUCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | | | - Sanjay Manohar
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Cognitive Disorders ClinicJR HospitalOxfordUK
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Henrik Zetterberg
- UK Dementia Research InstituteUCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Institute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Masud Husain
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Cognitive Disorders ClinicJR HospitalOxfordUK
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Jia Y, Woltering S, Deutz NEP, Engelen MPKJ, Coyle KS, Maio MR, Husain M, Liu ZX. Working Memory Precision and Associative Binding in Mild Cognitive Impairment. Exp Aging Res 2024; 50:206-224. [PMID: 36755482 DOI: 10.1080/0361073x.2023.2172949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
To better understand working memory (WM) deficits in Mild Cognitive Impairment (MCI), we examined information precision and associative binding in WM in 21 participants with MCI, compared to 16 healthy controls, using an item-location delayed reproduction task. WM, along with other executive functions (i.e. Trail Making Task (TMT) and Stroop task), were measured before and after a 2-h nap. The napping manipulation was intended as an exploratory element to this study exploring potential impacts of napping on executive functions.Compared to healthy participants, participants with MCI exhibited inferior performance not only in identifying encoded WM items but also on item-location associative binding and location precision even when only one item was involved. We also found changes on TMT and Stroop tasks in MCI, reflecting inferior attention and inhibitory control. Post-napping performance improved in most of these WM and other executive measures, both in MCI and their healthy peers.Our study shows that associative binding and WM precision can reliably differentiate MCIs from their healthy peers. Additionally, most measures showed no differential effect of group pre- and post-napping. These findings may contribute to better understanding cognitive deficits in MCI therefore improving the diagnosis of MCI.
Collapse
Affiliation(s)
- Yajun Jia
- Department of Educational Psychology, Texas A&M University, College Station, Texas, USA
- School of Social Work, Columbia University, New York City, New York, USA
| | - Steven Woltering
- Department of Educational Psychology, Texas A&M University, College Station, Texas, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Kimberly S Coyle
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Maria R Maio
- Nuffield Dept of Clinical Neurosciences, Department of Experimental Psychology and Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Dept of Clinical Neurosciences, Department of Experimental Psychology and Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Zhong-Xu Liu
- Department of Behavioral Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| |
Collapse
|
8
|
Lambrecq V, Alonso I, Hasboun D, Dinkelacker V, Davachi L, Samson S, Dupont S. Memory functioning after hippocampal removal: Does side matter? J Neuropsychol 2024; 18:15-29. [PMID: 36861271 DOI: 10.1111/jnp.12309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
To address the memory functioning after medial temporal lobe (MTL) surgery for refractory epilepsy and relationships with the side of the hippocampal removal, 22 patients with pharmaco-resistant epilepsy who had undergone MTL resection (10 right/12 left) at the Salpêtrière Hospital were compared with 21 matched healthy controls. We designed a specific neuropsychological binding memory test that specifically addressed hippocampal cortex functioning, and left-right material-specific lateralization. Our results showed that both left and right mesial temporal lobe removal cause a severe memory impairment, for both verbal and visual material. The removal of left medial temporal lobe causes worse memory impairment than the right removal regardless of the stimuli type (verbal or visual) questioning the theory of the hippocampal material-specific lateralization. The present study provided new evidence for the role of both hippocampus and surrounding cortices in memory-binding whatever the material type and also suggested that a left MTL removal is more deleterious for both verbal and visual episodic memory in comparison with right MTL removal.
Collapse
Affiliation(s)
- Virginie Lambrecq
- Sorbonne University, Paris, France
- Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Paris, France
- AP-HP, Neurophysiology Department, APHP Sorbonne, Pitie-Salpetriere Hospital, Paris, France
- AP-HP, Epilepsy Unit, Neurology Department, APHP Sorbonne, Pitie-Salpetriere Hospital, Paris, France
| | - Irene Alonso
- Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Paris, France
- Servicio de Salud Mental, Hospital Universitario Central de Asturias, Servicio de Salud del Principado de Asturias, Oviedo, Spain
| | - Dominique Hasboun
- Sorbonne University, Paris, France
- Service d'Anatomie, Sorbonne University, Paris, France
| | - Vera Dinkelacker
- AP-HP, Neuroradiology Department, APHP Sorbonne, Pitie-Salpetriere Hospital, Paris, France
- Neurology Department, Hautepierre Hospital, University of Strasbourg, Strasbourg, France
| | - Lila Davachi
- Departmentof Psychology, Columbia University, New York City, New York, USA
- Department of Clinical Research, Nathan Kline Institute for Psychiatric Research, New York City, New York, USA
| | - Séverine Samson
- Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Paris, France
- AP-HP, Epilepsy Unit, Neurology Department, APHP Sorbonne, Pitie-Salpetriere Hospital, Paris, France
- ULR 4072 - PSITEC - Department of Psychology: Interactions, Temps, Emotions, Cognition, University of Lille, Lille, France
| | - Sophie Dupont
- Sorbonne University, Paris, France
- Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Paris, France
- AP-HP, Epilepsy Unit, Neurology Department, APHP Sorbonne, Pitie-Salpetriere Hospital, Paris, France
- Service d'Anatomie, Sorbonne University, Paris, France
- Rehabilitation Unit, APHP Sorbonne, Pitie-Salpetriere Hospital, Paris, France
| |
Collapse
|
9
|
Motahharynia A, Pourmohammadi A, Adibi A, Shaygannejad V, Ashtari F, Adibi I, Sanayei M. A mechanistic insight into sources of error of visual working memory in multiple sclerosis. eLife 2023; 12:RP87442. [PMID: 37937840 PMCID: PMC10631758 DOI: 10.7554/elife.87442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Working memory (WM) is one of the most affected cognitive domains in multiple sclerosis (MS), which is mainly studied by the previously established binary model for information storage (slot model). However, recent observations based on the continuous reproduction paradigms have shown that assuming dynamic allocation of WM resources (resource model) instead of the binary hypothesis will give more accurate predictions in WM assessment. Moreover, continuous reproduction paradigms allow for assessing the distribution of error in recalling information, providing new insights into the organization of the WM system. Hence, by utilizing two continuous reproduction paradigms, memory-guided localization (MGL) and analog recall task with sequential presentation, we investigated WM dysfunction in MS. Our results demonstrated an overall increase in recall error and decreased recall precision in MS. While sequential paradigms were better in distinguishing healthy control from relapsing-remitting MS, MGL were more accurate in discriminating MS subtypes (relapsing-remitting from secondary progressive), providing evidence about the underlying mechanisms of WM deficit in progressive states of the disease. Furthermore, computational modeling of the results from the sequential paradigm determined that imprecision in decoding information and swap error (mistakenly reporting the feature of other presented items) was responsible for WM dysfunction in MS. Overall, this study offered a sensitive measure for assessing WM deficit and provided new insight into the organization of the WM system in MS population.
Collapse
Affiliation(s)
- Ali Motahharynia
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
| | - Ahmad Pourmohammadi
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM)TehranIslamic Republic of Iran
| | - Armin Adibi
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
| | - Vahid Shaygannejad
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
| | - Fereshteh Ashtari
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
| | - Iman Adibi
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
| | - Mehdi Sanayei
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM)TehranIslamic Republic of Iran
| |
Collapse
|
10
|
Castegnaro A, Ji Z, Rudzka K, Chan D, Burgess N. Overestimation in angular path integration precedes Alzheimer's dementia. Curr Biol 2023; 33:4650-4661.e7. [PMID: 37827151 PMCID: PMC10957396 DOI: 10.1016/j.cub.2023.09.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Path integration (PI) is impaired early in Alzheimer's disease (AD) but reflects multiple sub-processes that may be differentially sensitive to AD. To characterize these sub-processes, we developed a novel generative linear-angular model of PI (GLAMPI) to fit the inbound paths of healthy elderly participants performing triangle completion, a popular PI task, in immersive virtual reality with real movement. The model fits seven parameters reflecting the encoding, calculation, and production errors associated with inaccuracies in PI. We compared these parameters across younger and older participants and patients with mild cognitive impairment (MCI), including those with (MCI+) and without (MCI-) cerebrospinal fluid biomarkers of AD neuropathology. MCI patients showed overestimation of the angular turn in the outbound path and more variable inbound distances and directions compared with healthy elderly. MCI+ were best distinguished from MCI- patients by overestimation of outbound turns and more variable inbound directions. Our results suggest that overestimation of turning underlies the PI errors seen in patients with early AD, indicating specific neural pathways and diagnostic behaviors for further research.
Collapse
Affiliation(s)
- Andrea Castegnaro
- UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Zilong Ji
- UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District, Beijing 100871, China
| | - Katarzyna Rudzka
- UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Dennis Chan
- UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Neil Burgess
- UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
11
|
Fallon SJ, van Rhee C, Kienast A, Manohar SG, Husain M. Mechanisms underlying corruption of working memory in Parkinson's disease. J Neuropsychol 2023. [PMID: 36642965 DOI: 10.1111/jnp.12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 01/17/2023]
Abstract
Working memory (WM) impairments are reported to occur in patients with Parkinson's disease (PD). However, the mechanisms are unclear. Here, we investigate several putative factors that might drive poor performance, by examining the precision of recall, the order in which items are recalled and whether memories are corrupted by random guessing (attentional lapses). We used two separate tasks that examined the quality of WM recall under different loads and retention periods, as well as a traditional digit span test. Firstly, on a simple measure of WM recall, where patients were asked to reproduce the orientation of a centrally presented arrow, overall recall was not significantly impaired. However, there was some evidence for increased guessing (attentional lapses). On a new analogue version of the Corsi-span task, where participants had to reproduce on a touchscreen the exact spatial pattern of presented stimuli in the order and locations in which they appeared, there was a reduction in the precision of spatial WM at higher loads. This deficit was due to misremembering item order. At the highest load, there was reduced recall precision, whereas increased guessing was only observed at intermediate set sizes. Finally, PD patients had impaired backward, but not forward, digit spans. Overall, these results reveal the task- and load-dependent nature of WM deficits in PD. On simple low-load tasks, attentional lapses predominate, whereas at higher loads, in the spatial domain, the corruption of mnemonic information-both order item and precision-emerge as the main driver of impairment.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,School of Psychology, University of Plymouth, Plymouth, UK
| | - Chevonne van Rhee
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Annika Kienast
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
12
|
Zheng Y, Li T, Xie T, Zhang Y, Liu Y, Zeng X, Wang Z, Wang L, Li H, Xie Y, Lv X, Wang J, Yu X, Wang H. Characteristics and Potential Neural Substrates of Encoding and Retrieval During Memory Binding in Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2023; 94:1405-1415. [PMID: 37424465 DOI: 10.3233/jad-230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Whether encoding or retrieval failure contributes to memory binding deficit in amnestic mild cognitive impairment (aMCI) has not been elucidated. Also, the potential brain structural substrates of memory binding remained undiscovered. OBJECTIVE To investigate the characteristics and brain atrophy pattern of encoding and retrieval performance during memory binding in aMCI. METHODS Forty-three individuals with aMCI and 37 cognitively normal controls were recruited. The Memory Binding Test (MBT) was used to measure memory binding performance. The immediate and delayed memory binding indices were computed by using the free and cued paired recall scores. Partial correlation analysis was performed to map the relationship between regional gray matter volume and memory binding performance. RESULTS The memory binding performance in the learning and retrieval phases was worse in the aMCI group than in the control group (F = 22.33 to 52.16, all p < 0.001). The immediate and delayed memory binding index in the aMCI group was lower than that in the control group (p < 0.05). The gray matter volume of the left inferior temporal gyrus was positively correlated with memory binding test scores (r = 0.49 to 0.61, p < 0.05) as well as the immediate (r = 0.39, p < 0.05) and delayed memory binding index (r = 0.42, p < 0.05) in the aMCI group. CONCLUSION aMCI may be primarily characterized by a deficit in encoding phase during the controlled learning process. Volumetric losses in the left inferior temporal gyrus may contribute to encoding failure.
Collapse
Affiliation(s)
- Yaonan Zheng
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University), NHC Key Laboratory for Mental Health, Beijing, China
| | - Tao Li
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University), NHC Key Laboratory for Mental Health, Beijing, China
| | - Teng Xie
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University), NHC Key Laboratory for Mental Health, Beijing, China
| | - Ying Zhang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University), NHC Key Laboratory for Mental Health, Beijing, China
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Ying Liu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Xiangzhu Zeng
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Zhijiang Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University), NHC Key Laboratory for Mental Health, Beijing, China
| | - Luchun Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University), NHC Key Laboratory for Mental Health, Beijing, China
| | - Huizi Li
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University), NHC Key Laboratory for Mental Health, Beijing, China
| | - Yuhan Xie
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University), NHC Key Laboratory for Mental Health, Beijing, China
| | - Xiaozhen Lv
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University), NHC Key Laboratory for Mental Health, Beijing, China
| | - Jing Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University), NHC Key Laboratory for Mental Health, Beijing, China
| | - Xin Yu
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University), NHC Key Laboratory for Mental Health, Beijing, China
| | - Huali Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University), NHC Key Laboratory for Mental Health, Beijing, China
| |
Collapse
|
13
|
Pathological Slow-Wave Activity and Impaired Working Memory Binding in Post-Traumatic Amnesia. J Neurosci 2022; 42:9193-9210. [PMID: 36316155 PMCID: PMC9761692 DOI: 10.1523/jneurosci.0564-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Associative binding is key to normal memory function and is transiently disrupted during periods of post-traumatic amnesia (PTA) following traumatic brain injury (TBI). Electrophysiological abnormalities, including low-frequency activity, are common following TBI. Here, we investigate associative memory binding during PTA and test the hypothesis that misbinding is caused by pathological slowing of brain activity disrupting cortical communication. Thirty acute moderate to severe TBI patients (25 males; 5 females) and 26 healthy controls (20 males; 6 females) were tested with a precision working memory paradigm requiring the association of object and location information. Electrophysiological effects of TBI were assessed using resting-state EEG in a subsample of 17 patients and 21 controls. PTA patients showed abnormalities in working memory function and made significantly more misbinding errors than patients who were not in PTA and controls. The distribution of localization responses was abnormally biased by the locations of nontarget items for patients in PTA, suggesting a specific impairment of object and location binding. Slow-wave activity was increased following TBI. Increases in the δ-α ratio indicative of an increase in low-frequency power specifically correlated with binding impairment in working memory. Connectivity changes in TBI did not correlate with binding impairment. Working memory and electrophysiological abnormalities normalized at 6 month follow-up. These results show that patients in PTA show high rates of misbinding that are associated with a pathological shift toward lower-frequency oscillations.SIGNIFICANCE STATEMENT How do we remember what was where? The mechanism by which information (e.g., object and location) is integrated in working memory is a central question for cognitive neuroscience. Following significant head injury, many patients will experience a period of post-traumatic amnesia (PTA) during which this associative binding is disrupted. This may be because of electrophysiological changes in the brain. Using a precision working memory test and resting-state EEG, we show that PTA patients demonstrate impaired binding ability, and this is associated with a shift toward slower-frequency activity on EEG. Abnormal EEG connectivity was observed but was not specific to PTA or binding ability. These findings contribute to both our mechanistic understanding of working memory binding and PTA pathophysiology.
Collapse
|
14
|
Siquier A, Andrés P. Face name matching and memory complaints in Parkinson's disease. Front Psychol 2022; 13:1051488. [PMID: 36452376 PMCID: PMC9702071 DOI: 10.3389/fpsyg.2022.1051488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2024] Open
Abstract
Objective Memory impairment is a hallmark cognitive deficit in Parkinson's disease (PD). However, it remains unclear which processes underlie this deficit in PD. Also, little is known on these patients' subjective experiences of memory difficulties and their relationship with objective measures. We aim to portray memory deficits in PD by combining objective and subjective memory measures. Methods Fifteen PD patients and 15 controls were assessed with an extended version of the Face-Name Associative Memory Exam (FNAME) and the Memory Failures of Everyday Questionnaire (MFE-28). We also explored the relationship among clinical and cognitive variables. Results Participants with PD presented with more memory complaints. On the FNAME, these patients exhibited lower performance in free recall, as well as in name recognition and matching. Importantly, when controlling for initial learning, group effects disappeared, except for matching. Associative memory therefore was significantly compromised in PD and correlated with subjective memory complaints (SMC). Conclusion Our findings suggest that associative memory may constitute a sensitive measure to detect subtle memory deficits in PD. Moreover, the current study further clarifies the source of memory impairment in PD. Thus, our study highlights the clinical value of including associative memory tests such as the FNAME in PD neuropsychological assessment.
Collapse
Affiliation(s)
- Antònia Siquier
- Neuropsychology and Cognition Research Group, Department of Psychology, Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Pilar Andrés
- Neuropsychology and Cognition Research Group, Department of Psychology, Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
15
|
Holcomb AN, Tagliabue CF, Mazza V. Aging and feature binding in visual working memory. Front Psychol 2022; 13:977565. [PMID: 36275238 PMCID: PMC9583905 DOI: 10.3389/fpsyg.2022.977565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Older adults have reduced performance in visual working memory tasks in comparison to young adults, but the precipitators of the age-related impairment are not fully understood. The most common interpretation of this difference is that older adults are incapable of maintaining the same amount of object representations as young adults over short intervals (in line with the fixed-slot model of working memory). However, it has remained largely unexplored whether the age-related decline is only due to the number of representations that older individuals can retain in visual working memory, or whether the content of the representation(s) may have an effect as well (in line with the flexible-resource model of working memory). Feature binding studies represent an interesting research line to examine the content of older adults' representations. In this mini-review, we present the main results across feature binding studies in aging, as well as highlight the importance of manipulating both the representation content and number to have a stress test of the various models of working memory and their contribution to aging. Overall, feature binding studies, together with the simultaneous manipulation of set size, will allow us to better understand the nature of the age-related decline of visual working memory.
Collapse
|
16
|
Castegnaro A, Howett D, Li A, Harding E, Chan D, Burgess N, King J. Assessing mild cognitive impairment using object-location memory in immersive virtual environments. Hippocampus 2022; 32:660-678. [PMID: 35916343 PMCID: PMC9543035 DOI: 10.1002/hipo.23458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 11/12/2022]
Abstract
Pathological changes in the medial temporal lobe (MTL) are found in the early stages of Alzheimer's disease (AD) and aging. The earliest pathological accumulation of tau colocalizes with the areas of the MTL involved in object processing as part of a wider anterolateral network. Here, we sought to assess the diagnostic potential of memory for object locations in iVR environments in individuals at high risk of AD dementia (amnestic mild cognitive impairment [aMCI] n = 23) as compared to age-related cognitive decline. Consistent with our primary hypothesis that early AD would be associated with impaired object location, aMCI patients exhibited impaired spatial feature binding. Compared to both older (n = 24) and younger (n = 53) controls, aMCI patients, recalled object locations with significantly less accuracy (p < .001), with a trend toward an impaired identification of the object's correct context (p = .05). Importantly, these findings were not explained by deficits in object recognition (p = .6). These deficits differentiated aMCI from controls with greater accuracy (AUC = 0.89) than the standard neuropsychological tests. Within the aMCI group, 16 had CSF biomarkers indicative of their likely AD status (MCI+ n = 9 vs. MCI- n = 7). MCI+ showed lower accuracy in the object-context association than MCI- (p = .03) suggesting a selective deficit in object-context binding postulated to be associated with anterior-temporal areas. MRI volumetric analysis across healthy older participants and aMCI revealed that test performance positively correlates with lateral entorhinal cortex volumes (p < .05) and hippocampus volumes (p < .01), consistent with their hypothesized role in binding contextual and spatial information with object identity. Our results indicate that tests relying on the anterolateral object processing stream, and in particular requiring successful binding of an object with spatial information, may aid detection of pre-dementia AD due to the underlying early spread of tau pathology.
Collapse
Affiliation(s)
- Andrea Castegnaro
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - David Howett
- School of Psychological ScienceUniversity of BristolBristolUK
| | - Adrienne Li
- Department of PsychologyYork UniversityTorontoOntarioCanada
| | - Elizabeth Harding
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Dennis Chan
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Neil Burgess
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - John King
- Department of Clinical, Educational and Health PsychologyUniversity College LondonLondonUK
| |
Collapse
|
17
|
Lazarou I, Georgiadis K, Nikolopoulos S, Oikonomou VP, Stavropoulos TG, Tsolaki A, Kompatsiaris I, Tsolaki M. Exploring Network Properties Across Preclinical Stages of Alzheimer’s Disease Using a Visual Short-Term Memory and Attention Task with High-Density Electroencephalography: A Brain-Connectome Neurophysiological Study. J Alzheimers Dis 2022; 87:643-664. [DOI: 10.3233/jad-215421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Visual short-term memory (VSTMT) and visual attention (VAT) exhibit decline in the Alzheimer’s disease (AD) continuum; however, network disruption in preclinical stages is scarcely explored. Objective: To advance our knowledge about brain networks in AD and discover connectivity alterations during VSTMT and VAT. Methods: Twelve participants with AD, 23 with mild cognitive impairment (MCI), 17 with subjective cognitive decline (SCD), and 21 healthy controls (HC) were examined using a neuropsychological battery at baseline and follow-up (three years). At baseline, the subjects were examined using high density electroencephalography while performing a VSTMT and VAT. For exploring network organization, we constructed weighted undirected networks and examined clustering coefficient, strength, and betweenness centrality from occipito-parietal regions. Results: One-way ANOVA and pair-wise t-test comparisons showed statistically significant differences in HC compared to SCD (t (36) = 2.43, p = 0.026), MCI (t (42) = 2.34, p = 0.024), and AD group (t (31) = 3.58, p = 0.001) in Clustering Coefficient. Also with regards to Strength, higher values for HC compared to SCD (t (36) = 2.45, p = 0.019), MCI (t (42) = 2.41, p = 0.020), and AD group (t (31) = 3.58, p = 0.001) were found. Follow-up neuropsychological assessment revealed converge of 65% of the SCD group to MCI. Moreover, SCD who were converted to MCI showed significant lower values in all network metrics compared to the SCD that remained stable. Conclusion: The present findings reveal that SCD exhibits network disorganization during visual encoding and retrieval with intermediate values between MCI and HC.
Collapse
Affiliation(s)
- Ioulietta Lazarou
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
- 1 Department of Neurology, G.H. “AHEPA”, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece
| | - Kostas Georgiadis
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
- Informatics Department, Aristotle University of Thessaloniki, Makedonia, Greece
| | - Spiros Nikolopoulos
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
| | - Vangelis P. Oikonomou
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
| | - Thanos G. Stavropoulos
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
| | - Anthoula Tsolaki
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
- Greek Association of Alzheimer’s Disease and Related Disorders, Thessaloniki, Makedonia, Greece
| | - Ioannis Kompatsiaris
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
| | - Magda Tsolaki
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), Thessaloniki, Makedonia, Greece
- 1 Department of Neurology, G.H. “AHEPA”, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece
- Greek Association of Alzheimer’s Disease and Related Disorders, Thessaloniki, Makedonia, Greece
| | | |
Collapse
|
18
|
Effects of item distinctiveness on the retrieval of objects and object-location bindings from visual working memory. Atten Percept Psychophys 2022; 84:2236-2254. [PMID: 35199322 DOI: 10.3758/s13414-022-02451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 11/08/2022]
Abstract
Visual working memory (VWM) is prone to interference from stored items competing for its limited capacity. Distinctiveness or similarity of the items is acknowledged to affect this competition, such that poor item distinctiveness causes a failure to discriminate between items sharing common features. In three experiments, we studied how the distinctiveness of studied real-world objects (i.e., whether the objects belong to the same or different basic categories) affects the retrieval of objects themselves (simple recognition) and object-location conjunctions (information about which object was where in a display, cued recall). In Experiments 1 and 2, we found that distinctiveness did not affect memories for objects or for locations, but low-distinctive objects were more frequently reported at "swapped" locations that originally contained other objects, showing object-location memory swaps. In Experiments 3 we found that observers swapped the location of a tested object with another object from the same category more frequently than with any of the objects from another category. This suggests that more similar studied objects cause more retrieval competition in object-location judgments than in simple recognition. Additionally, we discuss a possible role of categorical labeling of locations that can support object-location retrieval when the studied objects are highly distinct.
Collapse
|
19
|
El Hajj A, Herzine A, Calcagno G, Désor F, Djelti F, Bombail V, Denis I, Oster T, Malaplate C, Vigier M, Kaminski S, Pauron L, Corbier C, Yen FT, Lanhers MC, Claudepierre T. Targeted Suppression of Lipoprotein Receptor LSR in Astrocytes Leads to Olfactory and Memory Deficits in Mice. Int J Mol Sci 2022; 23:ijms23042049. [PMID: 35216163 PMCID: PMC8878779 DOI: 10.3390/ijms23042049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 12/25/2022] Open
Abstract
Perturbations of cholesterol metabolism have been linked to neurodegenerative diseases. Glia–neuron crosstalk is essential to achieve a tight regulation of brain cholesterol trafficking. Adequate cholesterol supply from glia via apolipoprotein E-containing lipoproteins ensures neuronal development and function. The lipolysis-stimulated lipoprotein receptor (LSR), plays an important role in brain cholesterol homeostasis. Aged heterozygote Lsr+/− mice show altered brain cholesterol distribution and increased susceptibility to amyloid stress. Since LSR expression is higher in astroglia as compared to neurons, we sought to determine if astroglial LSR deficiency could lead to cognitive defects similar to those of Alzheimer’s disease (AD). Cre recombinase was activated in adult Glast-CreERT/lsrfl/fl mice by tamoxifen to induce astroglial Lsr deletion. Behavioral phenotyping of young and old astroglial Lsr KO animals revealed hyperactivity during the nocturnal period, deficits in olfactory function affecting social memory and causing possible apathy, as well as visual memory and short-term working memory problems, and deficits similar to those reported in neurodegenerative diseases, such as AD. Furthermore, GFAP staining revealed astroglial activation in the olfactory bulb. Therefore, astroglial LSR is important for working, spatial, and social memory related to sensory input, and represents a novel pathway for the study of brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Aseel El Hajj
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
- Correspondence: (A.E.H.); (T.C.); Tel.: +33-(0)4-8110-6500 (A.E.H.); +33-(0)3-7274-4152 (T.C.)
| | - Ameziane Herzine
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Gaetano Calcagno
- UR 7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (G.C.); (S.K.)
| | - Frédéric Désor
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Fathia Djelti
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Vincent Bombail
- UMR 914, Physiology of Nutrition and Feeding Behaviour, INRAE-Agroparistech-Université Paris-Saclay, 78352 Jouy-en-Josas, France; (V.B.); (I.D.)
| | - Isabelle Denis
- UMR 914, Physiology of Nutrition and Feeding Behaviour, INRAE-Agroparistech-Université Paris-Saclay, 78352 Jouy-en-Josas, France; (V.B.); (I.D.)
| | - Thierry Oster
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Catherine Malaplate
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Maxime Vigier
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Sandra Kaminski
- UR 7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (G.C.); (S.K.)
| | - Lynn Pauron
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Catherine Corbier
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Frances T. Yen
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Marie-Claire Lanhers
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
| | - Thomas Claudepierre
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (A.H.); (F.D.); (F.D.); (T.O.); (C.M.); (M.V.); (L.P.); (C.C.); (F.T.Y.); (M.-C.L.)
- Correspondence: (A.E.H.); (T.C.); Tel.: +33-(0)4-8110-6500 (A.E.H.); +33-(0)3-7274-4152 (T.C.)
| |
Collapse
|
20
|
Cohen-Dallal H, Rahamim Elyakim N, Soroker N, Pertzov Y. Verbal tagging can impair memory of object location: Evidence from aphasia. Neuropsychologia 2022; 167:108162. [DOI: 10.1016/j.neuropsychologia.2022.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/31/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022]
|
21
|
Pollmann S, Schneider WX. Working memory and active sampling of the environment: Medial temporal contributions. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:339-357. [PMID: 35964982 DOI: 10.1016/b978-0-12-823493-8.00029-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Working memory (WM) refers to the ability to maintain and actively process information-either derived from perception or long-term memory (LTM)-for intelligent thought and action. This chapter focuses on the contributions of the temporal lobe, particularly medial temporal lobe (MTL) to WM. First, neuropsychological evidence for the involvement of MTL in WM maintenance is reviewed, arguing for a crucial role in the case of retaining complex relational bindings between memorized features. Next, MTL contributions at the level of neural mechanisms are covered-with a focus on WM encoding and maintenance, including interactions with ventral temporal cortex. Among WM use processes, we focus on active sampling of environmental information, a key input source to capacity-limited WM. MTL contributions to the bidirectional relationship between active sampling and memory are highlighted-WM control of active sampling and sampling as a way of selecting input to WM. Memory-based sampling studies relying on scene and object inspection, visual-based exploration behavior (e.g., vicarious behavior), and memory-guided visual search are reviewed. The conclusion is that MTL serves an important function in the selection of information from perception and transfer from LTM to capacity-limited WM.
Collapse
Affiliation(s)
- Stefan Pollmann
- Department of Psychology and Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany.
| | - Werner X Schneider
- Department of Psychology and Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
22
|
Tabi YA, Maio MR, Attaallah B, Dickson S, Drew D, Idris MI, Kienast A, Klar V, Nobis L, Plant O, Saleh Y, Sandhu TR, Slavkova E, Toniolo S, Zokaei N, Manohar SG, Husain M. Vividness of visual imagery questionnaire scores and their relationship to visual short-term memory performance. Cortex 2022; 146:186-199. [PMID: 34894605 PMCID: PMC8776564 DOI: 10.1016/j.cortex.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/26/2022]
Abstract
Mechanisms underlying visual imagery, the ability to create vivid mental representations of a scene in the absence of sensory input, remain to be fully understood. Some previous studies have proposed that visual imagery might be related to visual short-term memory (STM), with a common mechanism involving retention of visual information over short periods of time. Other observations have shown a strong relationship between visual imagery and functional activity in the hippocampus and primary visual cortex, both regions also associated with visual STM. Here we examined the relationship of visual imagery to STM and hippocampal and primary visual cortex volumes, first in a large sample of healthy people across a large age range (N = 229 behavioural data; N = 56 MRI data in older participants) and then in patients with Alzheimer's disease and Parkinson's disease (N = 19 in each group compared to 19 age-matched healthy controls). We used a variant of the "What was where?" visual object-location binding task to assess the quality of remembered information over short delays. In healthy people, no evidence of a relationship between the vividness of visual imagery and any visual STM performance parameter was found. However, there was a significant positive correlation between visual imagery and the volumes of the hippocampus and primary visual cortex. Although visual STM performance was significantly impaired in patients with Alzheimer's disease, their vividness of visual imagery scores were comparable to those of age-matched elderly controls and patients with Parkinson's disease. Despite hippocampal volumes also being reduced in Alzheimer's patients, there appeared to be no impact on their self-reported visual imagery. In conclusion, visual imagery was not significantly related to visual STM performance, either in healthy controls or Alzheimer's or Parkinson's disease but it was related to hippocampal and visual cortex volume in healthy people.
Collapse
Affiliation(s)
- Younes Adam Tabi
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.
| | - Maria Raquel Maio
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Bahaaeddin Attaallah
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Shannon Dickson
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Daniel Drew
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Mohamad Imran Idris
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Annika Kienast
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Verena Klar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lisa Nobis
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Olivia Plant
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Youssuf Saleh
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Timothy Ravinder Sandhu
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Ellie Slavkova
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sofia Toniolo
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Nahid Zokaei
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, Oxford, UK
| |
Collapse
|
23
|
Cid REC, Loewenstein DA. Salient Cognitive Paradigms to Assess Preclinical Alzheimer's Disease. Neurotherapeutics 2022; 19:89-98. [PMID: 35246818 PMCID: PMC9130422 DOI: 10.1007/s13311-022-01192-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the growing emphasis to identify early biological markers that can detect the progressive accumulation of brain pathology in the complex pathophysiologic cascade that occurs in Alzheimer's disease (AD), we continue to employ the same neuropsychological paradigms that were developed to detect dementia or frank cognitive impairment. It has become increasingly clear that we cannot expect to measure clinically meaningful change in relationship to these emerging preclinical biomarkers using these traditional cognitive assessment paradigms, nor will we advance the efforts to identify the earliest cognitive changes that emerge in AD. Over the last decade, a few novel promising cognitive assessment paradigms have emerged that have shown promise in identifying subtle cognitive deficits in AD which aids in early detection and monitoring of meaningful cognitive change over time. Some of these cognitive assessment paradigms are reviewed here, including semantic interference, semantic intrusion errors, memory binding, and binding of face and name associations. These paradigms may be useful for AD clinical trials focused on secondary prevention if there is sufficient rigor to suggest that they correlate with AD biomarkers, having robust sensitivity, specificity, and predictive utility among culturally and linguistically diverse populations at-risk for AD.
Collapse
Affiliation(s)
- Rosie E Curiel Cid
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1695 NW 9th Avenue, Florida, Miami, 33136, USA.
| | - David A Loewenstein
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1695 NW 9th Avenue, Florida, Miami, 33136, USA
| |
Collapse
|
24
|
Pavisic IM, Nicholas JM, Pertzov Y, O'Connor A, Liang Y, Collins JD, Lu K, Weston PSJ, Ryan NS, Husain M, Fox NC, Crutch SJ. Visual short-term memory impairments in presymptomatic familial Alzheimer's disease: A longitudinal observational study. Neuropsychologia 2021; 162:108028. [PMID: 34560142 PMCID: PMC8589962 DOI: 10.1016/j.neuropsychologia.2021.108028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/25/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022]
Abstract
Visual short-term memory (VSTM) deficits including VSTM binding have been associated with Alzheimer's disease (AD) from preclinical to dementia stages, cross-sectionally. Yet, longitudinal investigations are lacking. The objective of this study was to evaluate VSTM function longitudinally and in relation to expected symptom onset in a cohort of familial Alzheimer's disease. Ninety-nine individuals (23 presymptomatic; 9 symptomatic and 67 controls) were included in an extension cross-sectional study and a sub-sample of 48 (23 presymptomatic carriers, 6 symptomatic and 19 controls), attending two to five visits with a median interval of 1.3 years, included in the longitudinal study. Participants completed the “What was where?” relational binding task (which measures memory for object identification, localisation and object-location binding under different conditions of memory load and delay), neuropsychology assessments and genetic testing. Compared to controls, presymptomatic carriers within 8.5 years of estimated symptom onset showed a faster rate of decline in localisation performance in long-delay conditions (4s) and in traditional neuropsychology measures of verbal episodic memory. This study represents the first longitudinal VSTM investigation and shows that changes in memory resolution may be sensitive to tracking cognitive decline in preclinical AD at least as early as changes in the more traditional verbal episodic memory tasks. VSTM function was investigated in presymptomatic and symptomatic FAD carriers. PMCs showed faster decline in VSTM function (target localisation) than controls. Target localisation accuracy decreased with proximity to expected symptom onset. “What was where?” may be sensitive to tracking preclinical cognitive decline.
Collapse
Affiliation(s)
- Ivanna M Pavisic
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at University College London, London, UK.
| | - Jennifer M Nicholas
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Yoni Pertzov
- Department of Psychology, The Hebrew University of Jerusalem, Israel
| | - Antoinette O'Connor
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at University College London, London, UK
| | - Yuying Liang
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Jessica D Collins
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Kirsty Lu
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Philip S J Weston
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at University College London, London, UK
| | - Masud Husain
- Nuffield Department of Clinical Neuroscience, University of Oxford, UK; Department of Experimental Psychology, University of Oxford, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at University College London, London, UK
| | - Sebastian J Crutch
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at University College London, London, UK.
| |
Collapse
|
25
|
Lu K, Nicholas JM, Pertzov Y, Grogan J, Husain M, Pavisic IM, James SN, Parker TD, Lane CA, Keshavan A, Keuss SE, Buchanan SM, Murray-Smith H, Cash DM, Malone IB, Sudre CH, Coath W, Wong A, Henley SM, Fox NC, Richards M, Schott JM, Crutch SJ. Dissociable effects of APOE-ε4 and β-amyloid pathology on visual working memory. NATURE AGING 2021; 1:1002-1009. [PMID: 34806027 PMCID: PMC7612005 DOI: 10.1038/s43587-021-00117-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/17/2021] [Indexed: 01/21/2023]
Abstract
Although APOE-ε4 carriers are at significantly higher risk of developing Alzheimer's disease than non-carriers1, controversial evidence suggests that APOE-ε4 might confer some advantages, explaining the survival of this gene (antagonistic pleiotropy)2,3. In a population-based cohort born in one week in 1946 (assessed aged 69-71), we assessed differential effects of APOE-ε4 and β-amyloid pathology (quantified using 18F-Florbetapir-PET) on visual working memory (object-location binding). In 398 cognitively normal participants, APOE-ε4 and β-amyloid had opposing effects on object identification, predicting better and poorer recall respectively. ε4-carriers also recalled locations more precisely, with a greater advantage at higher β-amyloid burden. These results provide evidence of superior visual working memory in ε4-carriers, showing that some benefits of this genotype are demonstrable in older age, even in the preclinical stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Kirsty Lu
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jennifer M. Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Yoni Pertzov
- Department of Psychology, The Hebrew University of Jerusalem, Israel
| | - John Grogan
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
- Department of Experimental Psychology, University of Oxford, UK
| | - Ivanna M. Pavisic
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Thomas D. Parker
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christopher A. Lane
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ashvini Keshavan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah E. Keuss
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah M. Buchanan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Heidi Murray-Smith
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David M. Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Ian B. Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Carole H. Sudre
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - William Coath
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Susie M.D. Henley
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nick C. Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Jonathan M. Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sebastian J. Crutch
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
26
|
Twick M, Levy DA. Fractionating the episodic buffer. Brain Cogn 2021; 154:105800. [PMID: 34563762 DOI: 10.1016/j.bandc.2021.105800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The episodic buffer is a putative component of working memory proposed to account for several short-term memory functions, including unexpectedly preserved immediate prose recall by amnesic patients. Over the course of time, this component has increasingly become associated with binding functions. Considering recent findings regarding the performance of both memory-impaired and healthy individuals on the range of tasks purported to require the contribution of the episodic buffer, we suggest that it should be fractionated into two functional systems. One is a schematic store instantiated in brain areas responsible for conceptual and schema representations, which is likely to be hippocampus-independent, and preserved in the face of amnesia. In contrast, short-term maintenance of novel associative binding is likely to require the contribution of the hippocampus and may therefore not be functionally dissociable from long-term memory.
Collapse
Affiliation(s)
- Moran Twick
- Ashkelon Academic College, Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Israel
| | - Daniel A Levy
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Israel.
| |
Collapse
|
27
|
Rivera DS, Lindsay CB, Oliva CA, Bozinovic F, Inestrosa NC. A Multivariate Assessment of Age-Related Cognitive Impairment in Octodon degus. Front Integr Neurosci 2021; 15:719076. [PMID: 34526882 PMCID: PMC8437396 DOI: 10.3389/fnint.2021.719076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 01/27/2023] Open
Abstract
Aging is a progressive functional decline characterized by a gradual deterioration in physiological function and behavior. The most important age-related change in cognitive function is decline in cognitive performance (i.e., the processing or transformation of information to make decisions that includes speed of processing, working memory, and learning). The purpose of this study is to outline the changes in age-related cognitive performance (i.e., short-term recognition memory and long-term learning and memory) in long-lived Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects makes it a unique animal model for exploring the mechanisms underlying the behavioral and cognitive deficits related to natural aging. In this study, we examined young adult female degus (12- and 24-months-old) and aged female degus (38-, 56-, and 75-months-old) that were exposed to a battery of cognitive-behavioral tests. Multivariate analyses of data from the Social Interaction test or Novel Object/Local Recognition (to measure short-term recognition memory), and the Barnes maze test (to measure long-term learning and memory) revealed a consistent pattern. Young animals formed a separate group of aged degus for both short- and long-term memories. The association between the first component of the principal component analysis (PCA) from short-term memory with the first component of the PCA from long-term memory showed a significant negative correlation. This suggests age-dependent differences in both memories, with the aged degus having higher values of long-term memory ability but poor short-term recognition memory, whereas in the young degus an opposite pattern was found. Approximately 5% of the young and 80% of the aged degus showed an impaired short-term recognition memory; whereas for long-term memory about 32% of the young degus and 57% of the aged degus showed decreased performance on the Barnes maze test. Throughout this study, we outlined age-dependent cognitive performance decline during natural aging in degus. Moreover, we also demonstrated that the use of a multivariate approach let us explore and visualize complex behavioral variables, and identified specific behavioral patterns that allowed us to make powerful conclusions that will facilitate further the study on the biology of aging. In addition, this study could help predict the onset of the aging process based on behavioral performance.
Collapse
Affiliation(s)
- Daniela S Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Carolina B Lindsay
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
28
|
Sen A, Akinola M, Tai XY, Symmonds M, Davis Jones G, Mura S, Galloway J, Hallam A, Chan JYC, Koychev I, Butler C, Geddes J, Van Der Putt R, Thompson S, Manohar SG, Frangou E, Love S, McShane R, Husain M. An Investigation of Levetiracetam in Alzheimer's Disease (ILiAD): a double-blind, placebo-controlled, randomised crossover proof of concept study. Trials 2021; 22:508. [PMID: 34332638 PMCID: PMC8325256 DOI: 10.1186/s13063-021-05404-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/27/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Although Alzheimer's disease affects around 800,000 people in the UK and costs almost £23 billion per year, currently licenced treatments only offer modest benefit at best. Seizures, which are more common in patients with Alzheimer's disease than age matched controls, may contribute to the loss of nerve cells and abnormal brain discharges can disrupt cognition. This aberrant electrical activity may therefore present potentially important drug targets. The anti-seizure medication levetiracetam can reduce abnormal cortical discharges and reverse memory deficits in a mouse model of Alzheimer's disease. Levetiracetam has also been shown to improve memory difficulties in patients with mild cognitive impairment, a precursor to Alzheimer's disease. Clinical use of levetiracetam is well-established in treatment of epilepsy and extensive safety data are available. Levetiracetam thus has the potential to provide safe and efficacious treatment to help with memory difficulties in Alzheimer's disease. METHODS The proposed project is a proof of concept study to test whether levetiracetam can help cognitive function in people with dementia. We plan to recruit thirty patients with mild to moderate Alzheimer's disease with no history of previous seizures or other significant co-morbidity. Participants will be allocated to a double-blind placebo-controlled crossover trial that tests levetiracetam against placebo. Standardised scales to assess cognition and a computer-based touchscreen test that we have developed to better detect subtle improvements in hippocampal function will be used to measure changes in memory. All participants will have an electroencephalogram (EEG) at baseline. The primary outcome measure is a change in the computer-based touchscreen cognitive task while secondary outcomes include the effect of levetiracetam on mood, quality of life and modelling of the EEG, including time series measures and feature-based analysis to see whether the effect of levetiracetam can be predicted. The effect of levetiracetam and placebo will be compared within a given patient using the paired t-test and the analysis of covariance adjusting for baseline values. DISCUSSION This is the first study to evaluate if an anti-seizure medication can offer meaningful benefit to patients with Alzheimer's disease. If this study demonstrates at least stabilisation of memory function and/or good tolerability, the next step will be to rapidly progress to a larger study to establish whether levetiracetam may be a useful and cost-effective treatment for patients with Alzheimer's disease. TRIAL REGISTRATION ClinicalTrials.gov NCT03489044 . Registered on April 5, 2018.
Collapse
Affiliation(s)
- Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.
- Department of Neurology, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX3 9DU, UK.
| | - Mary Akinola
- Local Clinical Trials Network, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Xin You Tai
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Mkael Symmonds
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Department of Clinical Neurophysiology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Gabriel Davis Jones
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX3 9DU, UK
| | - Sergio Mura
- Clinical Trials Pharmacy, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | | | - Angela Hallam
- St Mary's Pharmaceutical Unit, Cardiff University, Cardiff, 20 Fieldway, Cardiff, CF14 4HY, UK
| | - Jane Y C Chan
- Freeline Therapeutics, King's Court, London Road, Stevenage, SG1 2NG, UK
- Translational Medicine, UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Chris Butler
- Faculty of Medicine, Department of Brain Sciences, Imperial College, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2BU, UK
| | - John Geddes
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Rohan Van Der Putt
- Memory and Cognition Research Delivery Team, Warneford Hospital, Warneford Lane, Headington, Oxford, OX3 7JX, UK
| | - Sian Thompson
- Department of Neurology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Sanjay G Manohar
- Department of Neurology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX3 9DU, UK
| | - Eleni Frangou
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, Faculty of Pop Health Sciences, University College London, London, UK
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Sharon Love
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, Faculty of Pop Health Sciences, University College London, London, UK
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Rupert McShane
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Masud Husain
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Cognitive Neurology Research Group, Nuffield Dept Clinical Neurosciences & Department of Experimental Psychology, University of Oxford, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
29
|
Cecchini MA, Yassuda MS, Squarzoni P, Coutinho AM, de Paula Faria D, Duran FLDS, Costa NAD, Porto FHDG, Nitrini R, Forlenza OV, Brucki SMD, Buchpiguel CA, Parra MA, Busatto GF. Deficits in short-term memory binding are detectable in individuals with brain amyloid deposition in the absence of overt neurodegeneration in the Alzheimer's disease continuum. Brain Cogn 2021; 152:105749. [PMID: 34022637 DOI: 10.1016/j.bandc.2021.105749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
The short-term memory binding (STMB) test involves the ability to hold in memory the integration between surface features, such as shapes and colours. The STMB test has been used to detect Alzheimer's disease (AD) at different stages, from preclinical to dementia, showing promising results. The objective of the present study was to verify whether the STMB test could differentiate patients with distinct biomarker profiles in the AD continuum. The sample comprised 18 cognitively unimpaired (CU) participants, 30 mild cognitive impairment (MCI) and 23 AD patients. All participants underwent positron emission tomography (PET) with Pittsburgh compound-B labelled with carbon-11 ([11C]PIB) assessing amyloid beta (Aβ) aggregation (A) and 18fluorine-fluorodeoxyglucose ([18F]FDG)-PET assessing neurodegeneration (N) (A-N- [n = 35]); A+N- [n = 11]; A+ N+ [n = 19]). Participants who were negative and positive for amyloid deposition were compared in the absence (A-N- vs. A+N-) of neurodegeneration. When compared with the RAVLT and SKT memory tests, the STMB was the only cognitive task that differentiated these groups, predicting the group outcome in logistic regression analyses. The STMB test showed to be sensitive to the signs of AD pathology and may represent a cognitive marker within the AD continuum.
Collapse
Affiliation(s)
- Mario Amore Cecchini
- Human Cognitive Neuroscience, Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Mônica Sanches Yassuda
- Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil; Gerontology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.
| | - Paula Squarzoni
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Artur Martins Coutinho
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil; Laboratory of Nuclear Medicine (LIM43), Centro de Medicina Nuclear, Department of Radiology and Oncology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Daniele de Paula Faria
- Laboratory of Neuroscience (LIM 27), Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil; Núcleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Fábio Luiz de Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Naomi Antunes da Costa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Fábio Henrique de Gobbi Porto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo Nitrini
- Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience (LIM 27), Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM43), Centro de Medicina Nuclear, Department of Radiology and Oncology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mario A Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil; Núcleo de Apoio a Pesquisa em Neurociência Aplicada (NAPNA), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Gellersen HM, Coughlan G, Hornberger M, Simons JS. Memory precision of object-location binding is unimpaired in APOE ε4-carriers with spatial navigation deficits. Brain Commun 2021; 3:fcab087. [PMID: 33987536 PMCID: PMC8108563 DOI: 10.1093/braincomms/fcab087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Research suggests that tests of memory fidelity, feature binding and spatial navigation are promising for early detection of subtle behavioural changes related to Alzheimer's disease. In the absence of longitudinal data, one way of testing the early detection potential of cognitive tasks is through the comparison of individuals at different genetic risk for Alzheimer's dementia. Most studies have done so using samples aged 70 years or older. Here, we tested whether memory fidelity of long-term object-location binding may be a sensitive marker even among cognitively healthy individuals in their mid-60s by comparing participants at low and higher risk based on presence of the ε4-allele of the apolipoprotein gene (n = 26 ε3ε3, n = 20 ε3ε4 carriers). We used a continuous report paradigm in a visual memory task that required participants to recreate the spatial position of objects in a scene. We employed mixture modelling to estimate the two distinct memory processes that underpin the trial-by-trial variation in localization errors: retrieval success which indexes the proportion of trials where participants recalled any information about an object's position and the precision with which participants retrieved this information. Prior work has shown that these memory paradigms that separate retrieval success from precision are capable of detecting subtle differences in mnemonic fidelity even when retrieval success could not. Nonetheless, Bayesian analyses found good evidence that ε3ε4 carriers did not remember fewer object locations [F(1, 42) = 0.450, P = 0.506, BF01 = 3.02], nor was their precision for the spatial position of objects reduced compared to ε3ε3 carriers [F(1, 42) = 0.12, P = 0.726, BF01 = 3.19]. Because the participants in the sample presented here were a subset of a study on apolipoprotein ε4-carrier status and spatial navigation in the Sea Hero Quest game [Coughlan et al., 2019. PNAS, 116(9)], we obtained these data to contrast genetic effects on the two tasks within the same sample (n = 33). Despite the smaller sample size, wayfinding deficits among ε3ε4 carriers could be replicated [F(1, 33) = 5.60, P = 0.024, BF10 = 3.44]. Object-location memory metrics and spatial navigation scores were not correlated (all r < 0.25, P > 0.1, 0 < BF10 < 3). These findings show spared object-location binding in the presence of a detrimental apolipoprotein ε4 effect on spatial navigation. This suggests that the sensitivity of memory fidelity and binding tasks may not extend to individuals with one ε4-allele in their early to mid-60s. The results provide further support to prior proposals that spatial navigation may be a sensitive marker for the earliest cognitive changes in Alzheimer's disease, even before episodic memory.
Collapse
Affiliation(s)
- Helena M Gellersen
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Gillian Coughlan
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 1W1, Canada
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
31
|
Pavisic IM, Pertzov Y, Nicholas JM, O'Connor A, Lu K, Yong KXX, Husain M, Fox NC, Crutch SJ. Eye-tracking indices of impaired encoding of visual short-term memory in familial Alzheimer's disease. Sci Rep 2021; 11:8696. [PMID: 33888739 PMCID: PMC8062689 DOI: 10.1038/s41598-021-88001-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
The basis of visual short-term memory (VSTM) impairments in preclinical Alzheimer's disease (AD) remains unclear. Research suggests that eye movements may serve as indirect surrogates to investigate VSTM. Yet, investigations in preclinical populations are lacking. Fifty-two individuals from a familial Alzheimer's disease (FAD) cohort (9 symptomatic carriers, 17 presymptomatic carriers and 26 controls) completed the "Object-localisation" VSTM task while an eye-tracker recorded eye movements during the stimulus presentation. VSTM function and oculomotor performance were compared between groups and their association during encoding investigated. Compared to controls, symptomatic FAD carriers showed eye movement patterns suggestive of an ineffective encoding and presymptomatic FAD carriers within 6 years of their expected age at symptom onset, were more reliant on the stimuli fixation time to achieve accuracy in the localisation of the target. Consequently, for shorter fixation times on the stimuli, presymptomatic carriers were less accurate at localising the target than controls. By contrast, the only deficits detected on behavioural VSTM function was in symptomatic individuals. Our findings provide novel evidence that encoding processes may be vulnerable and weakened in presymptomatic FAD carriers, most prominently for spatial memory, suggesting a possible explanation for the subtle VSTM impairments observed in the preclinical stages of AD.
Collapse
Affiliation(s)
- Ivanna M Pavisic
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK. .,UK Dementia Research Institute at University College London, London, UK.
| | - Yoni Pertzov
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jennifer M Nicholas
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.,Department of Medial Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Antoinette O'Connor
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Kirsty Lu
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Keir X X Yong
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Masud Husain
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Nick C Fox
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Sebastian J Crutch
- Department of Neurodegenerative Diseases, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.,UK Dementia Research Institute at University College London, London, UK
| |
Collapse
|
32
|
Abstract
The aim of the current study was to develop a novel task that allows for the quick assessment of spatial memory precision with minimal technical and training requirements. In this task, participants memorized the position of an object in a virtual room and then judged from a different perspective, whether the object has moved to the left or to the right. Results revealed that participants exhibited a systematic bias in their responses that we termed the reversed congruency effect. Specifically, they performed worse when the camera and the object moved in the same direction than when they moved in opposite directions. Notably, participants responded correctly in almost 100% of the incongruent trials, regardless of the distance by which the object was displaced. In Experiment 2, we showed that this effect cannot be explained by the movement of the object on the screen, but that it relates to the perspective shift and the movement of the object in the virtual world. We also showed that the presence of additional objects in the environment reduces the reversed congruency effect such that it no longer predicts performance. In Experiment 3, we showed that the reversed congruency effect is greater in older adults, suggesting that the quality of spatial memory and perspective-taking abilities are critical. Overall, our results suggest that this effect is driven by difficulties in the precise encoding of object locations in the environment and in understanding how perspective shifts affect the projected positions of the objects in the two-dimensional image.
Collapse
|
33
|
Consequence of stroke for feature recall and binding in visual working memory. Neurobiol Learn Mem 2021; 179:107387. [PMID: 33460791 DOI: 10.1016/j.nlm.2021.107387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/20/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022]
Abstract
Visual memory for objects involves the integration, or binding, of individual features into a coherent representation. We used a novel approach to assess feature binding, using a delayed-reproduction task in combination with computational modeling and lesion analysis. We assessed stroke patients and neurotypical controls on a visual working memory task in which spatial arrays of colored disks were presented. After a brief delay, participants either had to report the color of one disk cued by its location or the location of one disk cued by its color. Our results demonstrate that, in the controls, report imprecision and swap errors (non-target reports) can be explained by a single source of variability. Stroke patients showed an overall decrease in memory precision for both color and location, with only limited evidence for deviations from the predicted relationship between report precision and swap errors. These deviations were primarily deficits in reporting items rather than selecting items based on the cue. Atlas-based lesion-symptom mapping showed that selection and reporting deficits, precision in reporting color, and precision in reporting location were associated with different lesion profiles. Deficits in binding are associated with lesions in the left somatosensory cortex, deficits in the precision of reporting color with bilateral fronto-parietal regions, and no anatomical substrates were identified for precision in reporting location. Our results converge with previous reports that working memory representations are widely distributed in the brain and can be found across sensory, parietal, temporal, and prefrontal cortices. Stroke patients demonstrate mostly subtle impairments in visual working memory, perhaps because representations from different areas in the brain can partly compensate for impaired encoding in lesioned areas. These findings contribute to understanding of the relation between memorizing features and their bound representations.
Collapse
|
34
|
Veldsman M, Nobis L, Alfaro-Almagro F, Manohar S, Husain M. The human hippocampus and its subfield volumes across age, sex and APOE e4 status. Brain Commun 2020; 3:fcaa219. [PMID: 33615215 PMCID: PMC7884607 DOI: 10.1093/braincomms/fcaa219] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023] Open
Abstract
Female sex, age and carriage of the apolipoprotein E e4 allele are the greatest risk factors for sporadic Alzheimer's disease. The hippocampus has a selective vulnerability to atrophy in ageing that may be accelerated in Alzheimer's disease, including in those with increased genetic risk of the disease, years before onset. Within the hippocampal complex, subfields represent cytoarchitectonic and connectivity based divisions. Variation in global hippocampal and subfield volume associated with sex, age and apolipoprotein E e4 status has the potential to provide a sensitive biomarker of future vulnerability to Alzheimer's disease. Here, we examined non-linear age, sex and apolipoprotein E effects, and their interactions, on hippocampal and subfield volumes across several decades spanning mid-life to old age in 36 653 healthy ageing individuals. FMRIB Software Library derived estimates of total hippocampal volume and Freesurfer derived estimates hippocampal subfield volume were estimated. A model-free, sliding-window approach was implemented that does not assume a linear relationship between age and subfield volume. The annualized percentage of subfield volume change was calculated to investigate associations with age, sex and apolipoprotein E e4 homozygosity. Hippocampal volume showed a marked reduction in apolipoprotein E e4/e4 female carriers after age 65. Volume was lower in homozygous e4 individuals in specific subfields including the presubiculum, subiculum head, cornu ammonis 1 body, cornu ammonis 3 head and cornu ammonis 4. Nearby brain structures in medial temporal and subcortical regions did not show the same age, sex and apolipoprotein E interactions, suggesting selective vulnerability of the hippocampus and its subfields. The findings demonstrate that in healthy ageing, two factors-female sex and apolipoprotein E e4 status-confer selective vulnerability of specific hippocampal subfields to volume loss.
Collapse
Affiliation(s)
- Michele Veldsman
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lisa Nobis
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Sanjay Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK
| |
Collapse
|
35
|
Grogan JP, Fallon SJ, Zokaei N, Husain M, Coulthard EJ, Manohar SG. A new toolbox to distinguish the sources of spatial memory error. J Vis 2020; 20:6. [PMID: 33289797 PMCID: PMC7726590 DOI: 10.1167/jov.20.13.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
Studying the sources of errors in memory recall has proven invaluable for understanding the mechanisms of working memory (WM). While one-dimensional memory features (e.g., color, orientation) can be analyzed using existing mixture modeling toolboxes to separate the influence of imprecision, guessing, and misbinding (the tendency to confuse features that belong to different memoranda), such toolboxes are not currently available for two-dimensional spatial WM tasks. Here we present a method to isolate sources of spatial error in tasks where participants have to report the spatial location of an item in memory, using two-dimensional mixture models. The method recovers simulated parameters well and is robust to the influence of response distributions and biases, as well as number of nontargets and trials. To demonstrate the model, we fit data from a complex spatial WM task and show the recovered parameters correspond well with previous spatial WM findings and with recovered parameters on a one-dimensional analogue of this task, suggesting convergent validity for this two-dimensional modeling approach. Because the extra dimension allows greater separation of memoranda and responses, spatial tasks turn out to be much better for separating misbinding from imprecision and guessing than one-dimensional tasks. Code for these models is freely available in the MemToolbox2D package and is integrated to work with the commonly used MATLAB package MemToolbox.
Collapse
Affiliation(s)
- John P Grogan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sean J Fallon
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Nahid Zokaei
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Elizabeth J Coulthard
- Translational Health Sciences, University of Bristol, Bristol, UK
- North Bristol NHS Trust, Bristol, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Zokaei N, Sillence A, Kienast A, Drew D, Plant O, Slavkova E, Manohar SG, Husain M. Different patterns of short-term memory deficit in Alzheimer's disease, Parkinson's disease and subjective cognitive impairment. Cortex 2020; 132:41-50. [PMID: 32919108 PMCID: PMC7651994 DOI: 10.1016/j.cortex.2020.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
It has recently been proposed that short-term memory (STM) binding deficits might be an important feature of Alzheimer's disease (AD), providing a potential avenue for earlier detection of this disorder. By contrast, work in Parkinson's disease (PD), using different tasks, has suggested that the STM impairment in this condition is characterised by increased random guessing, possibly due to fluctuating attention. In the present study, to establish whether a misbinding impairment is present in sporadic late-onset AD (LOAD) and increased guessing is a feature of PD, we compared the performance of these patient groups to two control populations: healthy age-matched controls and individuals with subjective cognitive impairment (SCI) with comparable recruitment history as patients. All participants performed a sensitive task of STM that required high resolution retention of object-location bindings. This paradigm also enabled us to explore the underlying sources of error contributing to impaired STM in patients with LOAD and PD using computational modelling of response error. Patients with LOAD performed significantly worse than other groups on this task. Importantly their impaired memory was associated with increased misbinding errors. This was in contrast to patients with PD who made significantly more guessing responses. These findings therefore provide additional support for the presence of two doubly dissociable signatures of STM deficit in AD and PD, with binding impairment in AD and increased random guessing characterising the STM deficit in PD. The task used to measure memory precision here provides an easy-to-administer assessment of STM that is sensitive to the different types of deficit in AD and PD and hence has the potential to inform clinical practice.
Collapse
Affiliation(s)
- Nahid Zokaei
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK; Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK.
| | - Annie Sillence
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Annika Kienast
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Daniel Drew
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK; Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, Oxford, UK
| | - Olivia Plant
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Ellie Slavkova
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Sanjay G Manohar
- Oxford NIHR Biomedical Research Centre, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK; Oxford NIHR Biomedical Research Centre, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
37
|
Cecchini MA, Foss MP, Tumas V, Patrocinio FAP, Chiari-Correia RD, Novaretti N, Brozinga TR, Bahia VS, de Souza LC, Cerqueira Guimarães H, Caramelli P, Lima-Silva TB, Cassimiro L, Brucki SMD, Nitrini R, Della Sala S, Parra MA, Yassuda MS. Profiles of cognitive impairment in the continuum from normal cognition to Alzheimer's clinical syndrome: Contributions of the short-term memory binding tests. Int J Geriatr Psychiatry 2020; 35:1331-1340. [PMID: 32584463 DOI: 10.1002/gps.5370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/21/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND Short-term memory binding (STMB) tests assess conjunctive binding, in which participants should remember the integration of features, such as shapes (or objects) and colors, forming a unique representation in memory. In this study, we investigated two STMB paradigms: change detection (CD) and free recall (FR). OBJECTIVE To investigate the cognitive profile in the CD and FR tasks of three diagnostic groups: cognitively unimpaired (CU), mild cognitive impairment (MCI), and Alzheimer's clinical syndrome (ACS). In addition, we aimed to calculate and compare the accuracy of the CD and FR tasks to identify MCI and ACS. METHODS Participants were 24 CU, 24 MCI, and 37 ACS. The cognitive scores of the clinical groups were compared using analysis of variance (ANOVA) and receiver-operating characteristic (ROC) analyses were carried out to verify the accuracy of the STMB tasks. RESULTS In the CD task, CU was different from MCI and ACS (CU > MCI = ACS), while in the FR task all groups were different (CU > MCI > ACS). The ROC analyses showed an area under the curve (AUC) of 0.855 comparing CU with MCI for the CD task and 0.975 for the FR. The AUC comparing CU and ACS was 0.924 for the CD and 0.973 for the FR task. The FR task showed better accuracy to identify MCI patients, and the same accuracy to detect ACS. CONCLUSION The present findings indicate that impairments in CD and FR of bound representations are features of the cognitive profiles of MCI and ACS patients.
Collapse
Affiliation(s)
- Mario Amore Cecchini
- Neurology, School of Medicine, University of São Paulo, Sao Paulo, Brazil.,Human Cognitive Neuroscience, Psychology, University of Edinburgh, Edinburgh, UK
| | - Maria Paula Foss
- Neurology, School of Medicine, University of São Paulo Ribeirão Preto, Sao Paulo, Brazil
| | - Vitor Tumas
- Neurology, School of Medicine, University of São Paulo Ribeirão Preto, Sao Paulo, Brazil
| | - Flávia A P Patrocinio
- Neurology, School of Medicine, University of São Paulo Ribeirão Preto, Sao Paulo, Brazil
| | - Rodolfo D Chiari-Correia
- Center of Image Sciences and Medical Physics, University of Sao Paulo Ribeirão Preto, Sao Paulo, Brazil
| | - Nathalia Novaretti
- Neurology, School of Medicine, University of São Paulo Ribeirão Preto, Sao Paulo, Brazil
| | - Tamara R Brozinga
- Neurology, School of Medicine, University of São Paulo Ribeirão Preto, Sao Paulo, Brazil
| | | | - Leonardo Cruz de Souza
- Grupo de Pesquisa em Neurologia Cognitiva e do Comportamento, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Henrique Cerqueira Guimarães
- Grupo de Pesquisa em Neurologia Cognitiva e do Comportamento, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paulo Caramelli
- Grupo de Pesquisa em Neurologia Cognitiva e do Comportamento, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Luciana Cassimiro
- Neurology, School of Medicine, University of São Paulo, Sao Paulo, Brazil
| | | | - Ricardo Nitrini
- Neurology, School of Medicine, University of São Paulo, Sao Paulo, Brazil
| | - Sergio Della Sala
- Human Cognitive Neuroscience, Psychology, University of Edinburgh, Edinburgh, UK
| | - Mario A Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK.,Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia
| | - Mônica Sanches Yassuda
- Neurology, School of Medicine, University of São Paulo, Sao Paulo, Brazil.,Gerontology, School of Arts, Sciences and Humanities, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
38
|
Cohen-Dallal H, Soroker N, Pertzov Y. Working Memory in Unilateral Spatial Neglect: Evidence for Impaired Binding of Object Identity and Object Location. J Cogn Neurosci 2020; 33:46-62. [PMID: 32985947 DOI: 10.1162/jocn_a_01631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Working memory (WM) is known to be impaired in patients with stroke experiencing unilateral spatial neglect (USN). Here, we examined in a systematic manner three WM components: memory of object identity, memory of object location, and binding between object identity and location. Moreover, we used two different retention intervals to isolate maintenance from other mnemonic and perceptual processes. Fourteen USN first-event stroke patients with right-hemisphere damage were tested in two different WM experiments using long and short retention intervals and an analog response scale. Patients exhibited more identification errors for items displayed on the contralesional side. Localization errors were also more prominent in the contralesional side, especially after a long retention interval. These localization errors were often a result of swap errors, that is, erroneous localizations of correctly identified contralesional objects in correctly memorized locations of ipsilesional objects. We conclude that a key WM deficit in USN is a lateralized impairment in binding between the identity of an object and its spatial tag.
Collapse
Affiliation(s)
| | - Nachum Soroker
- Loewenstein Hospital, Raanana, Israel.,Tel-Aviv University
| | | |
Collapse
|
39
|
Superior short-term memory in APOE ε2 carriers across the age range. Behav Brain Res 2020; 397:112918. [PMID: 32961217 PMCID: PMC7732594 DOI: 10.1016/j.bbr.2020.112918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 11/20/2022]
Abstract
The Apolipoprotein-E (APOE) ε2 allele is known to be protective against Alzheimer’s disease. We tested the effect of this allele on cognitive performance, as measured by a sensitive short-term memory task. A large cohort of genotyped participants performed this task remotely. ε2 carriers demonstrated superior memory performance in young, middle-aged, and older participants.
The Apolipoprotein-E (APOE) gene is now known to be associated with individual differences in cognitive health in ageing. However, while the APOE ε4 allele confers significantly increased risk of developing Alzheimer’s disease (AD), the APOE ε2 allele is hypothesized to be protective against the development of AD. This is in line with neuroimaging and pathological findings associated with ε2 APOE allele, which go in the opposite direction to those observed in AD-related pathology. However, the precise impact of this allele on cognition remains inconclusive, with some small-cohort studies raising the possibility of an advantageous memory performance in these individuals. Here, we tested short-term memory (STM) performance in a large cohort of individuals, 300 of which were ε2/ε3 carriers. Their performance was compared to 554 ε3/ε3 carriers. We included participants from a wide age range spanning young, middle-aged and elderly adults. All of them performed a STM task that has previously been shown to be sensitive to subtle changes in memory in various patient and at-risk cohorts. Individuals carrying the APOE-ε2 allele exhibited a significant memory advantage, regardless of STM task difficulty and across all ages. The observed memory advantage was present across the age range, suggestive of a phenotypical effect of this allele on cognition, possibly independent of any effects of this genetic allele that occur later life in these individuals.
Collapse
|
40
|
Norton DJ, Parra MA, Sperling RA, Baena A, Guzman-Velez E, Jin DS, Andrea N, Khang J, Schultz A, Rentz DM, Pardilla-Delgado E, Fuller J, Johnson K, Reiman EM, Lopera F, Quiroz YT. Visual short-term memory relates to tau and amyloid burdens in preclinical autosomal dominant Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:99. [PMID: 32825838 PMCID: PMC7442980 DOI: 10.1186/s13195-020-00660-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022]
Abstract
Background Over the past decade, visual short-term memory (VSTM) binding tests have been shown to be one of the most sensitive behavioral indicators of Alzheimer’s disease (AD), especially when they require the binding of multiple features (e.g., color and shape). Recently, it has become possible to directly measure amyloid and tau levels in vivo via positron emission tomography (PET). To this point, these behavioral and neurochemical markers have not been compared in humans with AD or at risk for it. Methods In a cross-sectional study, we compared VSTM performance to tau and amyloid concentrations, measured by PET, in individuals certain to develop AD by virtue of their inheritance of the presenilin-1 E280A mutation. These included 21 clinically unimpaired subjects and 7 subjects with early mild cognitive impairment (MCI), as well as 30 family members who were not carriers of the mutation. Results We found that VSTM performance correlated strongly with tau in entorhinal cortex and inferior temporal lobe, and also with amyloid when examining asymptomatic carriers only. The condition requiring binding was not preferentially linked to tau—in fact, the non-binding “shape only” condition showed a stronger relationship. Conclusions The results confirm VSTM’s status as an early marker of AD pathology and raise interesting questions as to the course of binding-specific versus non-binding aspects of VSTM in early AD.
Collapse
Affiliation(s)
- Daniel J Norton
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Rm 10.014, Boston, MA, 02129, USA.,Gordon College, Wenham, MA, USA
| | - Mario A Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK.,Autonomous University of the Caribbean, Barranquilla, Colombia
| | - Reisa A Sperling
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Rm 10.014, Boston, MA, 02129, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Baena
- Grupo de Neurociencias, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Edmarie Guzman-Velez
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Rm 10.014, Boston, MA, 02129, USA
| | - David S Jin
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Rm 10.014, Boston, MA, 02129, USA
| | - Nicholas Andrea
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Rm 10.014, Boston, MA, 02129, USA
| | | | - Aaron Schultz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Rm 10.014, Boston, MA, 02129, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Dorene M Rentz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Rm 10.014, Boston, MA, 02129, USA
| | - Enmanuelle Pardilla-Delgado
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Rm 10.014, Boston, MA, 02129, USA
| | - Joshua Fuller
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Rm 10.014, Boston, MA, 02129, USA
| | - Keith Johnson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Rm 10.014, Boston, MA, 02129, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | | | - Francisco Lopera
- Grupo de Neurociencias, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Yakeel T Quiroz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Rm 10.014, Boston, MA, 02129, USA. .,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA. .,Grupo de Neurociencias, Universidad de Antioquia, Medellin, Antioquia, Colombia. .,Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Rm 10.014, Boston, MA, 02129, USA.
| |
Collapse
|
41
|
Zokaei N, Grogan J, Fallon SJ, Slavkova E, Hadida J, Manohar S, Nobre AC, Husain M. Short-term memory advantage for brief durations in human APOE ε4 carriers. Sci Rep 2020; 10:9503. [PMID: 32528115 PMCID: PMC7289888 DOI: 10.1038/s41598-020-66114-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
The Apolipoprotein-E (APOE) ε4 gene allele, the highest known genetic risk factor for Alzheimer's disease, has paradoxically been well preserved in the human population. One possible explanation offered by evolutionary biology for survival of deleterious genes is antagonistic pleiotropy. This theory proposes that such genetic variants might confer an advantage, even earlier in life when humans are also reproductively fit. The results of some small-cohort studies have raised the possibility of such a pleiotropic effect for the ε4 allele in short-term memory (STM) but the findings have been inconsistent. Here, we tested STM performance in a large cohort of individuals (N = 1277); nine hundred and fifty-nine of which included carrier and non-carriers of the APOE ε4 gene, those at highest risk of developing Alzheimer's disease. We first confirm that this task is sensitive to subtle deterioration in memory performance across ageing. Importantly, individuals carrying the APOE ε4 gene actually exhibited a significant memory advantage across all ages, specifically for brief retention periods but crucially not for longer durations. Together, these findings present the strongest evidence to date for a gene having an antagonistic pleiotropy effect on human cognitive function across a wide age range, and hence provide an explanation for the survival of the APOE ε4 allele in the gene pool.
Collapse
Affiliation(s)
- Nahid Zokaei
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK.
| | - John Grogan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Sean James Fallon
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS foundation Trust and University of Bristol, Oxford, UK
| | - Ellie Slavkova
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Jonathan Hadida
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Sanjay Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Anna Christina Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| |
Collapse
|
42
|
Pavisic IM, Suarez-Gonzalez A, Pertzov Y. Translating Visual Short-Term Memory Binding Tasks to Clinical Practice: From Theory to Practice. Front Neurol 2020; 11:458. [PMID: 32587567 PMCID: PMC7297911 DOI: 10.3389/fneur.2020.00458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/29/2020] [Indexed: 01/16/2023] Open
Affiliation(s)
- Ivanna M Pavisic
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, UCL, London, United Kingdom.,UK Dementia Research Institute at University College London, UCL, London, United Kingdom
| | - Aida Suarez-Gonzalez
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Yoni Pertzov
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
43
|
Jendryczko D, Berkemeyer L, Holling H. Introducing a Computerized Figural Memory Test Based on Automatic Item Generation: An Analysis With the Rasch Poisson Counts Model. Front Psychol 2020; 11:945. [PMID: 32587542 PMCID: PMC7298330 DOI: 10.3389/fpsyg.2020.00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
An automatic item generator for figural memory test items called figumem was developed. It is available in R. A cognitive model allowed the generation of hypothetically parallel items within three difficulty levels determined by visual information load. In a pilot study, participants solved three items for each level of visual load. Within an item response theory approach, the Rasch Poisson counts model and modifications of it were fitted to the data. Results showed overall satisfying fit. Visual information load explained most of the variance in item difficulty. Differences in difficulty between items of the same family were comparatively low, displaying the utility of the item generator for the creation of parallel test forms. Implications, limitations, and suggestions for the use and extensions of figumem are discussed.
Collapse
Affiliation(s)
- David Jendryczko
- Institute for Psychology, Universität Konstanz, Konstanz, Germany
- Institute for Psychology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Laura Berkemeyer
- Institute for Psychology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Heinz Holling
- Institute for Psychology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
44
|
Giehl K, Ophey A, Reker P, Rehberg S, Hammes J, Barbe MT, Zokaei N, Eggers C, Husain M, Kalbe E, van Eimeren T. Effects of Home-Based Working Memory Training on Visuo-Spatial Working Memory in Parkinson's Disease: A Randomized Controlled Trial. J Cent Nerv Syst Dis 2020; 12:1179573519899469. [PMID: 32002011 PMCID: PMC6966247 DOI: 10.1177/1179573519899469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/08/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cognitive impairment is a very frequent and severe nonmotor symptom of Parkinson's disease (PD). Early intervention in this at-risk group for cognitive decline may be crucial for long-term preservation of cognitive functions. Computerized working memory training (WMT) has been proven beneficial in non-PD patient populations, but such evidence is still needed for patients with PD. OBJECTIVE This study aimed to evaluate the effect of WMT on visuo-spatial working memory (WM) in cognitively unimpaired patients with PD. METHODS A single-blind randomized controlled trial encompassing 76 patients with PD but no cognitive impairment according to level II diagnostic criteria was conducted. Thirty-seven patients engaged in home-based adaptive WMT 5 times per week for a period of 5 weeks, whereas the remaining patients were in the waiting list arm of the study (control group [CG]). Working memory performance was evaluated using a computerized task before and after intervention and at 14-week follow-up, allowing to quantify the precision of WM on a continuous scale, ie, to test not only if an item was remembered but also how well the location of this item was retained. RESULTS Coincidently, the WMT group showed slightly worse WM performance compared with the CG at baseline, which was ameliorated after WMT. This training-induced effect remained stable until follow-up. CONCLUSION Patients showing relatively low WM performance, despite not formally diagnosable as Parkinson's disease with mild cognitive impairment (PD-MCI), seem to benefit from home-based WMT. Thus, WMT could potentially be implemented in future trials as a time- and cost-efficient route to counteract subtle cognitive changes in early disease stages. TRIAL REGISTRATION German Clinical Trial Register (drks.de, DRKS00009379).
Collapse
Affiliation(s)
- Kathrin Giehl
- Multimodal Neuroimaging Group,
Department of Nuclear Medicine, University Hospital of Cologne, Faculty of Medicine,
University of Cologne, Cologne, Germany
| | - Anja Ophey
- Department of Medical Psychology,
Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and
Intervention (CeNDI), University Hospital of Cologne, Faculty of Medicine,
University of Cologne, Cologne, Germany
| | - Paul Reker
- Department of Neurology, University
Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne,
Germany
| | - Sarah Rehberg
- Department of Medical Psychology,
Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and
Intervention (CeNDI), University Hospital of Cologne, Faculty of Medicine,
University of Cologne, Cologne, Germany
| | - Jochen Hammes
- Multimodal Neuroimaging Group,
Department of Nuclear Medicine, University Hospital of Cologne, Faculty of Medicine,
University of Cologne, Cologne, Germany
| | - Michael T Barbe
- Department of Neurology, University
Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne,
Germany
| | - Nahid Zokaei
- Oxford Centre for Human Brain Activity,
Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University
of Oxford, Oxford, UK
| | - Carsten Eggers
- Department of Neurology, University
Hospital of Marburg, Faculty of Medicine, Philipps-University of Marburg, Marburg,
Germany
- Center for Mind, Brain and Behavior,
Philipps-University of Marburg and Justus Liebig University Giessen, Marburg,
Germany
| | - Masud Husain
- Nuffield Department of Clinical
Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology,
University of Oxford, Oxford, UK
| | - Elke Kalbe
- Department of Medical Psychology,
Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and
Intervention (CeNDI), University Hospital of Cologne, Faculty of Medicine,
University of Cologne, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group,
Department of Nuclear Medicine, University Hospital of Cologne, Faculty of Medicine,
University of Cologne, Cologne, Germany
- Department of Neurology, University
Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne,
Germany
- German Center for Neurodegenerative
Diseases (DZNE), Bonn, Germany
| |
Collapse
|
45
|
The striatum, the hippocampus, and short-term memory binding: Volumetric analysis of the subcortical grey matter's role in mild cognitive impairment. NEUROIMAGE-CLINICAL 2019; 25:102158. [PMID: 31918064 PMCID: PMC7036699 DOI: 10.1016/j.nicl.2019.102158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/14/2022]
Abstract
Hippocampal atrophy plays no role in short-term memory binding. The globus pallidus could be part of the brain network supporting binding. Total brain atrophy does not correlate with striatal grey matter atrophy in MCI. Striatal grey matter atrophy reflects in total brain atrophy in controls. Hippocampal and parahippocampal volumes correlate in MCI and controls.
Background Deficits in short-term memory (STM) binding are a distinguishing feature of preclinical stages leading to Alzheimer's disease (AD). However, the neuroanatomical correlates of conjunctive STM binding are largely unexplored. Here we examine the possible association between the volumes of hippocampi, parahippocampal gyri, and grey matter within the subcortical structures – all found to have foci that seemingly correlate with basic daily living activities in AD patients - with cognitive tests related to conjunctive STM binding. Materials and methods Hippocampal, thalamic, parahippocampal and corpus striatum volumes were semi-automatically quantified in brain magnetic resonance images from 25 cognitively normal people and 21 patients with Mild Cognitive Impairment (MCI) at high risk of AD progression, who undertook a battery of cognitive tests and the short-term memory binding test. Associations were assessed using linear regression models and group differences were assessed using the Mann-Whitney U test. Results Hippocampal and parahippocampal gyrus volumes differed between MCI and control groups. Although the grey matter volume in the globus pallidus (r = -0.71, p < 0.001) and parahippocampal gyry (r = -0.63, p < 0.05) correlated with a STM binding task in the MCI group, only the former remained associated with STM binding deficits in MCI patients, after correcting for age, gender and years of education (β = -0.56,P = 0.042) although with borderline significance. Conclusions Loss of hippocampal volume plays no role in the processing of STM binding. Structures within the basal ganglia, namely the globus pallidus, could be part of the extrahippocampal network supporting binding. Replication of this study in large samples is now needed.
Collapse
|
46
|
Validation of the Chinese version of the memory binding test for distinguishing amnestic mild cognitive impairment from cognitively normal elderly individuals. Int Psychogeriatr 2019; 31:1721-1730. [PMID: 31658921 DOI: 10.1017/s1041610219001649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Episodic memory starts to decline very early in the development of Alzheimer's disease (AD). Subtle impairments in memory binding may be detected in mild cognitive impairment (MCI). This study aims to examine the psychometric properties of the Chinese version of the memory binding test (MBT). METHODS One hundred and sixty-four subjects (26 individuals with AD, 67 individuals with amnestic MCI (aMCI), 30 individuals with subjective cognitive impairment (SCI), and 41 cognitively normal elderly individuals (NC)) participated in the study. Twenty-two subjects repeated the assessment of the MBT within 6 weeks (± 2 weeks). Pearson correlation was used to calculate the convergent validity. The test--retest reliability was determined by the calculation of the intraclass correlation coefficient (ICC). Discriminative validity was calculated to evaluate the receiver-operating characteristic curves. The optimal index was chosen by comparing the area under the curve for specificity and sensitivity ≥ 0.80. The optimal cutoff score of the index was chosen to maximize the sum of sensitivity and specificity. RESULTS The absolute value of the convergent validity of the direct indexes of MBT ranged from 0.443 to 0.684. The ICC for each of direct indexes was 0.887-0.958. Total delayed paired recall (TDPR) was the optimal index for discriminating aMCI from NC. The cutoff score for TDPR was ≤25 to distinguish aMCI from NC (sensitivity = 0.896, specificity = 0.707). CONCLUSION The Chinese version of MBT is a valid and reliable instrument to detect MCI.
Collapse
|
47
|
Visual versus Verbal Working Memory in Statistically Determined Patients with Mild Cognitive Impairment: On behalf of the Consortium for Clinical and Epidemiological Neuropsychological Data Analysis (CENDA). J Int Neuropsychol Soc 2019; 25:1001-1010. [PMID: 31543085 DOI: 10.1017/s1355617719000808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Previous research in mild cognitive impairment (MCI) suggests that visual episodic memory impairment may emerge before analogous verbal episodic memory impairment. The current study examined working memory (WM) test performance in MCI to assess whether patients present with greater visual versus verbal WM impairment. WM performance was also assessed in relation to hippocampal occupancy (HO), a ratio of hippocampal volume to ventricular dilation adjusted for demographic variables and intracranial volume. METHODS Jak et al. (2009) (The American Journal of Geriatric Psychiatry, 17, 368-375) and Edmonds, Delano-Wood, Galasko, Salmon, & Bondi (2015) (Journal of Alzheimer's Disease, 47(1), 231-242) criteria classify patients into four groups: little to no cognitive impairment (non-MCI); subtle cognitive impairment (SCI); amnestic MCI (aMCI); and a combined mixed/dysexecutive MCI (mixed/dys MCI). WM was assessed using co-normed Wechsler Adult Intelligence Scale-IV (WAIS-IV) Digit Span Backwards and Wechsler Memory Scale-IV (WMS-IV) Symbol Span Z-scores. RESULTS Between-group analyses found worse WMS-IV Symbol Span and WAIS-IV Digit Span Backwards performance for mixed/dys MCI compared to non-MCI patients. Within-group analyses found no differences for non-MCI patients; however, all other groups scored lower on WMS-IV Symbol Span than WAIS-IV Digit Span Backwards. Regression analysis with HO as the dependent variable was statistically significant for WMS-IV Symbol Span performance. WAIS-IV Digit Span Backwards performance failed to reach statistical significance. CONCLUSIONS Worse WMS-IV Symbol Span performance was observed in patient groups with measurable neuropsychological impairment and better WMS-IV Symbol Span performance was associated with higher HO ratios. These results suggest that visual WM may be particularly sensitive to emergent illness compared to analogous verbal WM tests.
Collapse
|
48
|
Sadeh T, Pertzov Y. Scale-invariant Characteristics of Forgetting: Toward a Unifying Account of Hippocampal Forgetting across Short and Long Timescales. J Cogn Neurosci 2019; 32:386-402. [PMID: 31659923 DOI: 10.1162/jocn_a_01491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
After over 100 years of relative silence in the cognitive literature, recent advances in the study of the neural underpinnings of memory-specifically, the hippocampus-have led to a resurgence of interest in the topic of forgetting. This review draws a theoretically driven picture of the effects of time on forgetting of hippocampus-dependent memories. We review evidence indicating that time-dependent forgetting across short and long timescales is reflected in progressive degradation of hippocampal-dependent relational information. This evidence provides an important extension to a growing body of research accumulated in recent years, showing that-in contrast to the once prevailing view that the hippocampus is exclusively involved in memory and forgetting over long timescales-the role of the hippocampus also extends to memory and forgetting over short timescales. Thus, we maintain that similar rules govern not only remembering but also forgetting of hippocampus-dependent information over short and long timescales.
Collapse
|
49
|
Allison SL, Rodebaugh TL, Johnston C, Fagan AM, Morris JC, Head D. Developing a Spatial Navigation Screening Tool Sensitive to the Preclinical Alzheimer Disease Continuum. Arch Clin Neuropsychol 2019; 34:1138-1155. [PMID: 31197326 PMCID: PMC6849466 DOI: 10.1093/arclin/acz019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE There remains a need for a non-invasive and cost-effective screening measure that could be administered prior to the provision of a lumbar puncture or positron emission tomography scan for the detection of preclinical Alzheimer disease (AD). Previous findings suggest that a hippocampally-based spatial navigation task may be effective for screening individuals for the preclinical AD continuum (i.e., low cerebrospinal fluid (CSF) Aβ42). Unfortunately, this task took 1.5-2 hours to administer, which would be time-prohibitive in a clinical setting. Therefore, the goal of this study was to compare psychometric properties of six spatial navigation-related tasks in order to take the next steps in developing a clinically appropriate screening measure. METHODS Psychometric properties (i.e., reliability, diagnostic accuracy, validity) of a modified version of the cognitive mapping task, two binding tasks, a visual perspective taking task, and self- and informant report versions of a questionnaire were examined in a sample of 91 clinically normal (CN) individuals. CSF Aβ42 and ptau181 were available for 30 individuals. RESULTS The learning phase of the cognitive mapping task and the self-report questionnaire were sensitive to identifying individuals in the preclinical AD continuum (93% and 87% sensitivity, 60% and 67% specificity, respectively). These two measures also demonstrated good test-retest stability (intraclass correlation coefficients = .719 and .838, respectively) and internal consistency (Cronbach's αs = .825 and .965, respectively). CONCLUSIONS These findings suggest that a self-report questionnaire and aspects of a cognitive mapping task may be particularly appropriate for development as screening tools for identifying individuals in the preclinical AD continuum.
Collapse
Affiliation(s)
- Samantha L Allison
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Thomas L Rodebaugh
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chiharu Johnston
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anne M Fagan
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, Missouri, USA
- Neurology Department, Washington University in St. Louis, St. Louis, Missouri, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, Missouri, USA
- Neurology Department, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Denise Head
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, Missouri, USA
- Radiology Department, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
50
|
A portable tablet task for assessment of short-term memory. IBRO Rep 2019. [DOI: 10.1016/j.ibror.2019.07.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|