1
|
Rizzo M, Petrini L, Del Percio C, Arendt-Nielsen L, Babiloni C. Neurophysiological Oscillatory Mechanisms Underlying the Effect of Mirror Visual Feedback-Induced Illusion of Hand Movements on Nociception and Cortical Activation. Brain Sci 2024; 14:696. [PMID: 39061436 PMCID: PMC11274372 DOI: 10.3390/brainsci14070696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mirror Visual Feedback (MVF)-induced illusion of hand movements produces beneficial effects in patients with chronic pain. However, neurophysiological mechanisms underlying these effects are poorly known. In this preliminary study, we test the novel hypothesis that such an MVF-induced movement illusion may exert its effects by changing the activity in midline cortical areas associated with pain processing. Electrical stimuli with individually fixed intensity were applied to the left hand of healthy adults to produce painful and non-painful sensations during unilateral right-hand movements with such an MVF illusion and right and bilateral hand movements without MVF. During these events, electroencephalographic (EEG) activity was recorded from 64 scalp electrodes. Event-related desynchronization (ERD) of EEG alpha rhythms (8-12 Hz) indexed the neurophysiological oscillatory mechanisms inducing cortical activation. Compared to the painful sensations, the non-painful sensations were specifically characterized by (1) lower alpha ERD estimated in the cortical midline, angular gyrus, and lateral parietal regions during the experimental condition with MVF and (2) higher alpha ERD estimated in the lateral prefrontal and parietal regions during the control conditions without MVF. These preliminary results suggest that the MVF-induced movement illusion may affect nociception and neurophysiological oscillatory mechanisms, reducing the activation in cortical limbic and default mode regions.
Collapse
Affiliation(s)
- Marco Rizzo
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (M.R.); (L.P.); (L.A.-N.)
| | - Laura Petrini
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (M.R.); (L.P.); (L.A.-N.)
| | - Claudio Del Percio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (M.R.); (L.P.); (L.A.-N.)
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, 9220 Aalborg, Denmark
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Hospital San Raffaele Cassino, 03043 Cassino, Italy
| |
Collapse
|
2
|
Gómez DMC, Braidot AAA. Improving motor imagery through a mirror box for BCI users. J Neurophysiol 2024; 131:832-841. [PMID: 38323330 DOI: 10.1152/jn.00121.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/08/2024] Open
Abstract
The aim of this study was to evaluate mirror visual feedback (MVF) as a training tool for brain-computer interface (BCI) users. This is because approximately 20-30% of subjects require more training to operate a BCI system using motor imagery. Electroencephalograms (EEGs) were recorded from 18 healthy subjects, using event-related desynchronization (ERD) to observe the responses during the movement or movement intention of the hand for the conditions of control, imagination, and the MVF with the mirror box. We constituted two groups: group 1: control, imagination, and MVF; group 2: control, MVF, and imagination. There were significant differences in imagination conditions between groups using MVF before or after imagination (right-hand, P = 0.0403; left-hand, P = 0.00939). The illusion of movement through MVF is not possible in all subjects, but even in those cases, we found an increase in imagination when the subject used the MVF previously. The increase in the r2s of imagination in the right and left hands suggests cross-learning. The increase in motor imagery recorded with EEG after MVF suggests that the mirror box made it easier to imagine movements. Our results provide evidence that the MVF could be used as a training tool to improve motor imagery.NEW & NOTEWORTHY The increase in motor imagery recorded with EEG after MVF (mirror visual feedback) suggests that the mirror box made it easier to imagine movements. Our results demonstrate that MVF could be used as a training tool to improve motor imagery.
Collapse
Affiliation(s)
- Diana Margarita Casas Gómez
- Laboratory of Biomechanics, School of Engineering, National University of Entre Ríos, Entre Ríos, Argentina
- Escuela Ciencias Básicas Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, Dosquebradas, Colombia
| | | |
Collapse
|
3
|
Tesio L, Caronni A, Russo C, Felisari G, Banco E, Simone A, Scarano S, Bolognini N. Reversed Mirror Therapy (REMIT) after Stroke-A Proof-of-Concept Study. Brain Sci 2023; 13:847. [PMID: 37371327 DOI: 10.3390/brainsci13060847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
In mirror training (MIT), stroke patients strive to move their hands while looking at the reflected image of the unaffected one. The recruitment of the mirror neurons and visual-proprioceptive conflict are expected to facilitate the paretic voluntary movement. Here, a reversed MIT (REMIT) is presented, which requires moving hands while looking at the reflected image of the paretic one, giving the illusion of being unable to move the unimpaired hand. This study compares MIT and REMIT on post-stroke upper-limb recovery to gain clues on the mechanism of action of mirror therapies. Eight chronic stroke patients underwent two weeks of MIT and REMIT (five sessions each) in a crossover design. Upper-limb Fugl-Meyer, Box and Block and handgrip strength tests were administered at baseline and treatments end. The strength of the mirror illusion was evaluated after each session. MIT induced a larger illusory effect. The Fugl-Meyer score improved to the same extent after both treatments. No changes occurred in the Box and Block and the handgrip tests. REMIT and MIT were equally effective on upper-limb dexterity, challenging the exclusive role of mirror neurons. Contrasting learned nonuse through an intersensory conflict might provide the rationale for both forms of mirror-based rehabilitation after stroke.
Collapse
Affiliation(s)
- Luigi Tesio
- Department of Neurorehabilitation Sciences, Istituto Auxologico Italiano, IRCCS, Ospedale San Luca, 20149 Milano, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milano, Italy
| | - Antonio Caronni
- Department of Neurorehabilitation Sciences, Istituto Auxologico Italiano, IRCCS, Ospedale San Luca, 20149 Milano, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milano, Italy
| | - Cristina Russo
- Department of Psychology, University of Milano-Bicocca, 20126 Milano, Italy
| | - Giorgio Felisari
- Department of Neurorehabilitation Sciences, Istituto Auxologico Italiano, IRCCS, Ospedale San Luca, 20149 Milano, Italy
| | - Elisabetta Banco
- Department of Neurorehabilitation Sciences, Istituto Auxologico Italiano, IRCCS, Ospedale San Luca, 20149 Milano, Italy
| | - Anna Simone
- Department of Neurorehabilitation Sciences, Istituto Auxologico Italiano, IRCCS, Ospedale San Luca, 20149 Milano, Italy
| | - Stefano Scarano
- Department of Neurorehabilitation Sciences, Istituto Auxologico Italiano, IRCCS, Ospedale San Luca, 20149 Milano, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milano, Italy
| | - Nadia Bolognini
- Department of Psychology, University of Milano-Bicocca, 20126 Milano, Italy
- Neuropsychological Laboratory, Istituto Auxologico Italiano, IRCCS, 20122 Milano, Italy
| |
Collapse
|
4
|
Dubová D, Dvořáčková D, Pavlů D, Pánek D. Cerebral Projection of Mirrored Touch via sLORETA Imaging. Life (Basel) 2023; 13:life13051201. [PMID: 37240846 DOI: 10.3390/life13051201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Touch is one of the primary communication tools. Interestingly, the sensation of touch can also be experienced when observed in another person. Due to the system of mirror neurons, it is, in fact, being mapped on the somatosensory cortex of the observer. This phenomenon can be triggered not only by observing touch in another individual, but also by a mirror reflection of the contralateral limb. Our study aims to evaluate and localize changes in the intracerebral source activity via sLORETA imaging during the haptic stimulation of hands, while modifying this contact by a mirror illusion. A total of 10 healthy volunteers aged 23-42 years attended the experiment. The electrical brain activity was detected via scalp EEG. First, we registered the brain activity during resting state with open and with closed eyes, each for 5 min. Afterwards, the subjects were seated at a table with a mirror reflecting their left hand and occluding their right hand. The EEG was then recorded in 2 min sequencies during four modifications of the experiment (haptic contact on both hands, stimulation of the left hand only, right hand only and without any tactile stimuli). We randomized the order of the modifications for each participant. The obtained EEG data were converted into the sLORETA program and evaluated statistically at the significance level of p ≤ 0.05. The subjective experience of all the participants was registered using a survey. A statistically significant difference in source brain activity occurred during all four modifications of our experiment in the beta-2, beta-3 and delta frequency bands, resulting in the activation of 10 different Brodmann areas varying by modification. The results suggest that the summation of stimuli secured by interpersonal haptic contact modified by mirror illusion can activate the brain areas integrating motor, sensory and cognitive functions and further areas related to communication and understanding processes, including the mirror neuron system. We believe these findings may have potential for therapy.
Collapse
Affiliation(s)
- Dita Dubová
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic
| | - Dominika Dvořáčková
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic
| | - Dagmar Pavlů
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic
| | - David Pánek
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic
| |
Collapse
|
5
|
Ding L, Sun Q, Jiang N, He J, Jia J. The instant effect of embodiment via mirror visual feedback on electroencephalogram-based brain connectivity changes: A pilot study. Front Neurosci 2023; 17:1138406. [PMID: 37021135 PMCID: PMC10067600 DOI: 10.3389/fnins.2023.1138406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The therapeutic efficacy of mirror visual feedback (MVF) is attributed to the perception of embodiment. This study intends to investigate the instantaneous effect of embodiment on brain connectivity. Twelve healthy subjects were required to clench and open their non-dominant hands and keep the dominant hands still during two experimental sessions. In the first session, the dominant hand was covered and no MVF was applied, named the sham-MVF condition. Random vibrotactile stimulations were applied to the non-dominant hand with MVF in the subsequent session. Subjects were asked to pedal while having embodiment perception during motor tasks. As suggested by previous findings, trials of no vibration and continuous vibration were selected for this study, named the condition of MVF and vt-MVF. EEG signals were recorded and the alterations in brain connectivity were analyzed. The average node degrees of sham-MVF, MVF, and vt-MVF conditions were largely different in the alpha band (9.94, 11.19, and 17.37, respectively). Further analyses showed the MVF and vt-MVF had more nodes with a significantly large degree, which mainly occurred in the central and the visual stream involved regions. Results of network metrics showed a significant increment of local and global efficiency, and a reduction of characteristic path length for the vt-MVF condition in the alpha and beta bands compared to sham-MVF, and in the alpha band compared to MVF. Similar trends were found for MVF condition in the beta band compared to sham-MVF. Moreover, significant leftward asymmetry of global efficiency and rightward asymmetry of characteristic path length was reported in the vt-MVF condition in the beta band. These results indicated a positive impact of embodiment on network connectivity and neural communication efficiency, which reflected the potential mechanisms of MVF for new insight into neural modulation.
Collapse
Affiliation(s)
- Li Ding
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- The National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Sun
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
- Med-X Center for Manufacturing, Sichuan University, Sichuan, China
| | - Ning Jiang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
- Med-X Center for Manufacturing, Sichuan University, Sichuan, China
| | - Jiayuan He
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
- Med-X Center for Manufacturing, Sichuan University, Sichuan, China
- Jiayuan He,
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- The National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jie Jia,
| |
Collapse
|
6
|
Song T, Du F, Xu L, Peng Z, Wang L, Dai C, Xu M, Zhang Y, Shao Y, Weng X, Li S. Total sleep deprivation selectively impairs motor preparation sub-stages in visual search task: Evidence from lateralized readiness potentials. Front Neurosci 2023; 17:989512. [PMID: 36925740 PMCID: PMC10011076 DOI: 10.3389/fnins.2023.989512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Many studies have provided evidence of a damage effect triggered by total sleep deprivation (TSD). However, it remains unclear whether the motor preparation processing is affected by TSD. Methods In the current study, 23 volunteers performed a stimulus-response compatibility visual search task before and after TSD while undergoing spontaneous electroencephalography (EEG). Results Repeated-measures analysis of variance revealed that: Compared with that at baseline, the visual search task's accuracy decreased after TSD, while the response time variance increased significantly. The peak amplitude of the stimulus-locked lateralized readiness potential (LRP) induced by a compatible stimulus was significantly more negative than that induced by an incompatible stimulus before TSD, whereas this difference was not significant after TSD. However, when taking sleep status into consideration, there were no significant main or interaction effects on response-locked LRPs. Discussion Our findings suggest that TSD damages visual search behavior, selectively impairs the earlier sub-stages of motor preparation (sensory integration). These findings will provide a new perspective for understanding the effects of sleep loss.
Collapse
Affiliation(s)
- Tao Song
- School of Psychology, Beijing Sport University, Beijing, China
| | - Fangchong Du
- Department of Xiangshan Road Outpatient General Clinic, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Cimin Dai
- School of Psychology, Beijing Sport University, Beijing, China
| | - Mengmeng Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Ying Zhang
- Department of Xiangshan Road Outpatient General Clinic, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shijun Li
- Department of Radiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Nguyen T, Miguel HO, Condy EE, Park S, Gandjbakhche A. Using Functional Connectivity to Examine the Correlation between Mirror Neuron Network and Autistic Traits in a Typically Developing Sample: A fNIRS Study. Brain Sci 2021; 11:397. [PMID: 33804774 PMCID: PMC8004055 DOI: 10.3390/brainsci11030397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Mirror neuron network (MNN) is associated with one's ability to recognize and interpret others' actions and emotions and has a crucial role in cognition, perception, and social interaction. MNN connectivity and its relation to social attributes, such as autistic traits have not been thoroughly examined. This study aimed to investigate functional connectivity in the MNN and assess relationship between MNN connectivity and subclinical autistic traits in neurotypical adults. Hemodynamic responses, including oxy- and deoxy-hemoglobin were measured in the central and parietal cortex of 30 healthy participants using a 24-channel functional Near-Infrared spectroscopy (fNIRS) system during a live action-observation and action-execution task. Functional connectivity was derived from oxy-hemoglobin data. Connections with significantly greater connectivity in both tasks were assigned to MNN connectivity. Correlation between connectivity and autistic traits were performed using Pearson correlation. Connections within the right precentral, right supramarginal, left inferior parietal, left postcentral, and between left supramarginal-left angular regions were identified as MNN connections. In addition, individuals with higher subclinical autistic traits present higher connectivity in both action-execution and action-observation conditions. Positive correlation between MNN connectivity and subclinical autistic traits can be used in future studies to investigate MNN in a developing population with autism spectrum disorder.
Collapse
Affiliation(s)
| | | | | | | | - Amir Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892-4480, USA; (T.N.); (H.O.M.); (E.E.C.); (S.P.)
| |
Collapse
|
8
|
Bello UM, Kranz GS, Winser SJ, Chan CCH. Neural Processes Underlying Mirror-Induced Visual Illusion: An Activation Likelihood Estimation Meta-Analysis. Front Hum Neurosci 2020; 14:276. [PMID: 32848663 PMCID: PMC7412952 DOI: 10.3389/fnhum.2020.00276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/18/2020] [Indexed: 12/02/2022] Open
Abstract
Introduction: Neuroimaging studies on neural processes associated with mirror-induced visual illusion (MVI) are growing in number. Previous systematic reviews on these studies used qualitative approaches. Objective: The present study conducted activation likelihood estimation (ALE) meta-analysis to locate the brain areas for unfolding the neural processes associated with the MVI. Method: We searched the CINAHL, MEDLINE, Scopus, and PubMed databases and identified eight studies (with 14 experiments) that met the inclusion criteria. Results: Contrasting with a rest condition, strong convergence in the bilateral primary and premotor areas and the inferior parietal lobule suggested top-down motor planning and execution. In addition, convergence was identified in the ipsilateral precuneus, cerebellum, superior frontal gyrus, and superior parietal lobule, clusters corresponding to the static hidden hand indicating self-processing operations, somatosensory processing, and motor control. When contrasting with an active movement condition, additional substantial convergence was revealed in visual-related areas, such as the ipsilateral cuneus, fusiform gyrus, middle occipital gyrus (visual area V2) and lingual gyrus, which mediate basic visual processing. Conclusions: To the best of our knowledge, the current meta-analysis is the first to reveal the visualization, mental rehearsal and motor-related processes underpinning the MVI and offers theoretical support on using MVI as a clinical intervention for post-stroke patients.
Collapse
Affiliation(s)
- Umar Muhammad Bello
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Physiotherapy, Yobe State University Teaching Hospital, Damaturu, Nigeria
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Stanley John Winser
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chetwyn C H Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.,Applied Cognitive Neuroscience Laboratory, The Hong Kong Polytechnic University, Hong Kong, China.,University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
9
|
Bello UM, Winser SJ, Chan CCH. Role of kinaesthetic motor imagery in mirror-induced visual illusion as intervention in post-stroke rehabilitation. Rev Neurosci 2020; 31:659-674. [PMID: 32229682 DOI: 10.1515/revneuro-2019-0106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/15/2020] [Indexed: 01/12/2023]
Abstract
Mirror-induced visual illusion obtained through mirror therapy is widely used to facilitate motor recovery after stroke. Activation of primary motor cortex (M1) ipsilateral to the moving limb has been reported during mirror-induced visual illusion. However, the mechanism through which the mirror illusion elicits motor execution processes without movements observed in the mirrored limb remains unclear. This study aims to review evidence based on brain imaging studies for testing the hypothesis that neural processes associated with kinaesthetic motor imagery are attributed to ipsilateral M1 activation. Four electronic databases were searched. Studies on functional brain imaging, investigating the instant effects of mirror-induced visual illusion among stroke survivors and healthy participants were included. Thirty-five studies engaging 78 stroke survivors and 396 healthy participants were reviewed. Results of functional brain scans (n = 20) indicated that half of the studies (n = 10, 50%) reported significant changes in the activation of ipsilateral M1, which mediates motor preparation and execution. Other common neural substrates included primary somatosensory cortex (45%, kinaesthesia), precuneus (40%, image generation and self-processing operations) and cerebellum (20%, motor control). Similar patterns of ipsilateral M1 activations were observed in the two groups. These neural substrates mediated the generation, maintenance, and manipulation of motor-related images, which were the key processes in kinaesthetic motor imagery. Relationships in terms of shared neural substrates and mental processes between mirror-induced visual illusion and kinaesthetic motor imagery generate new evidence on the role of the latter in mirror therapy. Future studies should investigate the imagery processes in illusion training for post-stroke patients.
Collapse
Affiliation(s)
- Umar M Bello
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, No. 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China.,Department of Physiotherapy, Yobe State University Teaching Hospital, Along Potiskum Road, Damaturu, Yobe State, Nigeria
| | - Stanley J Winser
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, No. 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China
| | - Chetwyn C H Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, No. 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China.,Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, No. 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China.,University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, No. 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
10
|
Rohafza M, Saleh S, Adamovich S. EEG Based Analysis of Cortical Activity during Mirror Visual Feedback Target-Directed Movement. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5156-5159. [PMID: 31947019 DOI: 10.1109/embc.2019.8857945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In mirror visual feedback (MVF) based rehabilitation, the illusion of mirror reflection of volitional movement of non-paretic limb tends to have a modulatory effect on visuomotor and sensorimotor brain activations. This paper presents EEG based analysis of hemispheric activation asymmetry within the beta band (15-28 Hz) when MVF is combined with a target-directed hand motor task in a block design versus a similar task without any target requirements. MVF coupled with target-directed movement was associated with a decrease in hemispheric asymmetry in both preparation and execution phases of movement. These results emphasize the potential importance of incorporating visuomotor goals into the task to maximize the rehabilitation outcomes of MVF-based training activities.
Collapse
|
11
|
Inagaki Y, Seki K, Makino H, Matsuo Y, Miyamoto T, Ikoma K. Exploring Hemodynamic Responses Using Mirror Visual Feedback With Electromyogram-Triggered Stimulation and Functional Near-Infrared Spectroscopy. Front Hum Neurosci 2019; 13:60. [PMID: 30863295 PMCID: PMC6399579 DOI: 10.3389/fnhum.2019.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
In recent years, mirror visual feedback (MVF) therapy combined with electrical stimulation (ES) have been proposed for patients with hemiparesis. However, the neurophysiological effect remains unknown. We investigated the effects of MVF by itself and along with electromyogram-triggered ES (ETES) on hemodynamic responses using functional near-infrared spectroscopy (NIRS). Eighteen healthy subjects participated in this study. We measured changes in brain oxygenation using 48 NIRS channels. We investigated the effects of three main factors of visual feedback (observation of a mark, right hand, and hand movements via mirror) with or without ES on bilateral precentral gyrus (PrG), postcentral gyrus (PoG), supplementary motor area (SMA), supramarginal gyrus area (SMG), and angular gyrus (AG) to determine the contribution of each factor. The results showed that the left PoG was significantly more activated when performing mirrored tasks (MT) than when performing circle or Right-hand Tasks (RTs). In addition, the right PoG and right SMA in MT were significantly more activated than in MT + ES cases. Our findings suggested that observation of movements through the mirror caused activation of the postcentral gyrus rather than the PrG, and MVF along with ETES decreased cortical activation.
Collapse
Affiliation(s)
- Yuji Inagaki
- Department of Rehabilitation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Hitoshi Makino
- Department of Physical Therapy, Hokkaido Bunkyo University, Eniwa, Japan
| | | | - Tamaki Miyamoto
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katsunori Ikoma
- Department of Rehabilitation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Katayama O, Nishi Y, Osumi M, Takamura Y, Kodama T, Morioka S. Neural activities behind the influence of sensorimotor incongruence on dysesthesia and motor control. Neurosci Lett 2019; 698:19-26. [PMID: 30625348 DOI: 10.1016/j.neulet.2019.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 11/26/2022]
Abstract
Sensorimotor incongruence (SMI) is associated with pathological pain, such as phantom limb pain. Additionally, patients with pathological pain and brain dysfunction typically present with movement disorders, including diminished voluntary control and increased variability in bimanual movement performance. In healthy subjects, SMI leads to dysesthesia and bimanual movement motor dysfunction. However, the brain localization of this activity remains unclear, particularly in SMI-induced dysesthesia and decrease in movement accuracy. In this study, 17 healthy participants were asked to perform repetitive flexion/extension exercises with their wrists in a congruent/incongruent position while viewing the activity in a mirror. Indeed, SMI induced dysesthesia and decreased bimanual movement accuracy. Moreover, beta band activities of the bilateral presupplementary (P < 0.01) and bilateral cingulate (P < 0.05) motor areas were decreased. Collectively, our findings indicate that SMI induces dysesthesia and movement disorders and reduces beta band activities in motor-related areas.
Collapse
Affiliation(s)
- Osamu Katayama
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, 4-2-2 Umami-naka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan; Department of Rehabilitation, Watanabe Hospital, 45-2 Noma-kamikawada, Mihama-cho, Chita-gun, Aichi 470-3235, Japan.
| | - Yuki Nishi
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, 4-2-2 Umami-naka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Michihiro Osumi
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, 4-2-2 Umami-naka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan; Department of Neurorehabilitation Research Center, Kio University, 4-2-2 Umami-naka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Yusaku Takamura
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, 4-2-2 Umami-naka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Takayuki Kodama
- Department of Physical Therapy, Graduate School of Health Sciences, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto 607-8175, Japan
| | - Shu Morioka
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, 4-2-2 Umami-naka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan; Department of Neurorehabilitation Research Center, Kio University, 4-2-2 Umami-naka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan
| |
Collapse
|
13
|
Abstract
What if the brain's response to reward occurs even when there is no reward? Wouldn't that be a further concern for people prone to problem gambling and other forms of addiction, like those related to eating? Electroencephalography was employed to investigate this possibility using probabilistic feedback manipulations and measures of known event-related potentials (ERPs) related to reward processing. We tested the hypothesis-that reward-based ERPs would occur even in the absence of a tangible reward and when manipulations on expectation are implicit. The well-known P300 response potential was a key focus, and was assessed in non-gambling volunteer undergraduates on a task involving experimentally-manipulated probabilities of positive or negative feedback comprising three trial types-80, 50, or 20% positive feedback. A feedback stimulus (F1) followed a guess response between two possible outcomes (implicit win/loss), and then a second feedback stimulus (F2) was presented to confirm an alleged 'win' or 'loss' (explicit win/loss). Results revealed that amplitude of the P300 in F1-locked data (implicit manipulation) was larger (more positive) on average for feedback outcomes that were manipulated to be less likely than expected. The effect is pronounced after increased time on task (later trials), even though the majority of participants were not explicitly aware of our probability manipulations. For the explicit effects in F2-locked data, no meaningful or significant effects were observed. These findings point to the existence of proposed success-response mechanisms that operate not only explicitly but also with implicit manipulations that do not involve any direct indication of a win or loss, and are not associated with tangible rewards. Thus, there seems to be a non-explicit form of perception (we call 'implicit') associated with an internal experience of wins/losses (in the absence of actual rewards or losses) that can be measured in associated brain processes. The potential significance of these findings is discussed in terms of implications for problem gambling.
Collapse
Affiliation(s)
- A Fielding
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Level 4, William James Building, 275 Leith Walk, Dunedin, 9016, New Zealand
| | - Y Fu
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Level 4, William James Building, 275 Leith Walk, Dunedin, 9016, New Zealand
| | - E A Franz
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Level 4, William James Building, 275 Leith Walk, Dunedin, 9016, New Zealand.
| |
Collapse
|
14
|
Spontaneous imitative movements induced by an illusory embodied fake hand. Neuropsychologia 2018; 111:77-84. [DOI: 10.1016/j.neuropsychologia.2018.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/06/2018] [Accepted: 01/16/2018] [Indexed: 12/29/2022]
|
15
|
Chancel M, Kavounoudias A, Guerraz M. What's left of the mirror illusion when the mirror can no longer be seen? Bilateral integration of proprioceptive afferents! Neuroscience 2017; 362:118-126. [PMID: 28843995 DOI: 10.1016/j.neuroscience.2017.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
Recent data suggest that manipulating the muscle afferents of one arm affects both ipsilateral and contralateral perceptual estimates. Here, we used the mirror paradigm to study the bimanual integration of kinesthetic muscle afferents. The reflection of a moving hand in a mirror positioned in the sagittal plane creates an illusion of symmetrical bimanual movement. Although vision clearly has a role in kinesthesia, its role in the mirror illusion might have been overestimated. Conversely, the role of bimanual integration of muscle afferents might have been underestimated. We hypothesized that muscle-proprioceptive afferents of the passively displaced arm (the image of which was reflected in the mirror) are involved in this illusion. We evoked in 19 healthy adult participants the mirror illusion by displacing passively their left arm, the image of which was reflected in the mirror. Once participants experienced the illusion that their hidden right arm was moving, we then either occluded their view of the mirror (using occlusive glasses) and/or prevent the passive left arm displacement. Participants' illusion characteristics (duration and kinematic) under these conditions were compared with classical mirror illusion (without visual occlusion). We found that as long as the arm was still moving, the kinesthetic illusion decayed slowly after visual occlusion. These findings suggest that the mirror illusion results from the combination of visuo-proprioceptive signals from the two arms and is not purely visual in origin. Our findings also support the more general concept whereby proprioceptive afferents are integrated bilaterally for the purpose of kinesthesia during bimanual tasks.
Collapse
Affiliation(s)
- Marie Chancel
- Univ. Grenoble Alpes, CNRS, LPNC, F-38000 Grenoble, France; Aix-Marseille University, CNRS, NIA UMR 7260, F-13331 Marseille, France
| | - Anne Kavounoudias
- Aix-Marseille University, CNRS, NIA UMR 7260, F-13331 Marseille, France
| | - Michel Guerraz
- Univ. Savoie Mont Blanc, CNRS, LPNC, F-73000 Chambéry, France.
| |
Collapse
|
16
|
Franz EA, Fu Y. Pre-movement planning processes in people with congenital mirror movements. Clin Neurophysiol 2017; 128:1985-1993. [PMID: 28829982 DOI: 10.1016/j.clinph.2017.07.412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/26/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Pre-movement processes were investigated in people with Congenital mirrormovement (CMM), a rare disorder in which bilateral movement (mirroring) occurs in the upper distal extremities (primarily the hands and fingers) during intended unilateral movements. Abnormal density of ipsilateral corticospinal projections is an established hallmark of CMM. This study tested whether the Lateralised Readiness Potential (LRP), which reflects movement planning and readiness, is also abnormal in people with CMM. METHODS Twenty-eight neurologically-normal controls and 8 people with CMM were tested on a unimanual Go/No-go task while electroencephalography (EEG) was recorded to assess the LRP. RESULTS No significant group differences were found in reaction time (RT). However, significantly smaller LRP amplitudes were found, on average, in the CMM group compared to Controls at central-motor (C3,C4) sites in stimulus-locked and response-locked epochs; similar group differences were also found at further frontal sites (F3,F4) during response-locked epochs. CONCLUSIONS Abnormal brain activity in pre-movement processes associated with response planning and preparation is present in people with CMM. SIGNIFICANCE Aberrant bilateral activity during pre-movement processes is clearly implicated; whether part of the etiology of CMM, or as a mechanism of neuro-compensation, is not yet known.
Collapse
Affiliation(s)
- E A Franz
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, New Zealand.
| | - Y Fu
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, New Zealand
| |
Collapse
|
17
|
Yarossi M, Manuweera T, Adamovich SV, Tunik E. The Effects of Mirror Feedback during Target Directed Movements on Ipsilateral Corticospinal Excitability. Front Hum Neurosci 2017; 11:242. [PMID: 28553218 PMCID: PMC5425477 DOI: 10.3389/fnhum.2017.00242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
Mirror visual feedback (MVF) training is a promising technique to promote activation in the lesioned hemisphere following stroke, and aid recovery. However, current outcomes of MVF training are mixed, in part, due to variability in the task undertaken during MVF. The present study investigated the hypothesis that movements directed toward visual targets may enhance MVF modulation of motor cortex (M1) excitability ipsilateral to the trained hand compared to movements without visual targets. Ten healthy subjects participated in a 2 × 2 factorial design in which feedback (veridical, mirror) and presence of a visual target (target present, target absent) for a right index-finger flexion task were systematically manipulated in a virtual environment. To measure M1 excitability, transcranial magnetic stimulation (TMS) was applied to the hemisphere ipsilateral to the trained hand to elicit motor evoked potentials (MEPs) in the untrained first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles at rest prior to and following each of four 2-min blocks of 30 movements (B1–B4). Targeted movement kinematics without visual feedback was measured before and after training to assess learning and transfer. FDI MEPs were decreased in B1 and B2 when movements were made with veridical feedback and visual targets were absent. FDI MEPs were decreased in B2 and B3 when movements were made with mirror feedback and visual targets were absent. FDI MEPs were increased in B3 when movements were made with mirror feedback and visual targets were present. Significant MEP changes were not present for the uninvolved ADM, suggesting a task-specific effect. Analysis of kinematics revealed learning occurred in visual target-directed conditions, but transfer was not sensitive to mirror feedback. Results are discussed with respect to current theoretical mechanisms underlying MVF-induced changes in ipsilateral excitability.
Collapse
Affiliation(s)
- Mathew Yarossi
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health SciencesNewark, NJ, USA.,Department of Biomedical Engineering, New Jersey Institute of TechnologyNewark, NJ, USA.,Department of Rehabilitation and Movement Sciences, Rutgers Biomedical Health SciencesNewark, NJ, USA
| | - Thushini Manuweera
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health SciencesNewark, NJ, USA.,Department of Biomedical Engineering, New Jersey Institute of TechnologyNewark, NJ, USA.,Department of Rehabilitation and Movement Sciences, Rutgers Biomedical Health SciencesNewark, NJ, USA
| | - Sergei V Adamovich
- Department of Biomedical Engineering, New Jersey Institute of TechnologyNewark, NJ, USA.,Department of Rehabilitation and Movement Sciences, Rutgers Biomedical Health SciencesNewark, NJ, USA
| | - Eugene Tunik
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern UniversityBoston, MA, USA.,Department of Bioengineering, Northeastern UniversityBoston, MA, USA.,Department of Biology, Northeastern UniversityBoston, MA, USA.,Department of Electrical and Computer Engineering, Northeastern UniversityBoston, MA, USA
| |
Collapse
|
18
|
Jack AI, Rochford KC, Friedman JP, Passarelli AM, Boyatzis RE. Pitfalls in Organizational Neuroscience: A Critical Review and Suggestions for Future Research. ORGANIZATIONAL RESEARCH METHODS 2017. [DOI: 10.1177/1094428117708857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The potential of neuroscience to be a viable framework for studying human behavior in organizations depends on scholars’ ability to evaluate, design, analyze, and accurately interpret neuroscientific research. Prior to the publishing of this special issue, relatively little guidance has been available in the management literature for scholars seeking to integrate neuroscience and organization science in a balanced, informative and methodologically rigorous manner. In response to this need, we address design logic and inferential issues involved in evaluating and conducting neuroscience research capable of informing organizational science. Specifically, neuroscience methods of functional magnetic resonance imaging, electroencephalography, lesion studies, transcranial magnetic stimulation, and transcranial direct current stimulation are reviewed, with attention to how these methods might be combined to achieve convergent evidence. We then discuss strengths and limitations of various designs, highlighting the issue of reverse inference as precarious yet necessary for organizational neuroscience. We offer solutions for addressing limitations related to reverse inference, and propose features that allow stronger inferences to be made. The article concludes with a review of selected empirical work in organizational neuroscience in light of these critical design features.
Collapse
Affiliation(s)
- Anthony I. Jack
- Department of Philosophy, Case Western Reserve University, Cleveland, OH, USA
| | - Kylie C. Rochford
- Department of Organizational Behavior, Case Western Reserve University, Cleveland, OH, USA
| | - Jared P. Friedman
- Department of Organizational Behavior, Case Western Reserve University, Cleveland, OH, USA
| | - Angela M. Passarelli
- Department of Management and Marketing, College of Charleston, Charleston, SC, USA
| | - Richard E. Boyatzis
- Department of Organizational Behavior, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
19
|
Katayama O, Osumi M, Kodama T, Morioka S. Dysesthesia symptoms produced by sensorimotor incongruence in healthy volunteers: an electroencephalogram study. J Pain Res 2016; 9:1197-1204. [PMID: 27994482 PMCID: PMC5153295 DOI: 10.2147/jpr.s122564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objectives Pathological pain such as phantom limb pain is caused by sensorimotor incongruence. Several studies with healthy participants have clearly indicated that dysesthesia, which is similar to pathological pain, is caused by incongruence between proprioception and/or motor intention and visual feedback. It is not clear to what extent dysesthesia may be caused by incongruence between motor intention and visual feedback or by incongruence between proprioception and visual feedback. The aim of this study was to clarify the neurophysiology of these factors by analyzing electroencephalograms (EEGs). Methods In total, 18 healthy participants were recruited for this study. Participants were asked to perform repetitive flexion/extension exercises with their elbows in a congruent/incongruent position while viewing the activity in a mirror. EEGs were performed to determine cortical activation during sensorimotor congruence and incongruence. Results In the high-frequency alpha band (10–12 Hz), numeric rating scale scores of a feeling of peculiarity were significantly correlated with event-related desynchronization/synchronization under the incongruence and proprioception conditions associated with motor intention and visual feedback (right inferior parietal region; r=−0.63, P<0.01) and between proprioception and visual feedback (right temporoparietal region; r=−0.49 and r=−0.50, P<0.05). In these brain regions, there was a region in which incongruence between proprioception and visual feedback and between motor intention and visual feedback caused an increase in activity. Conclusion The present findings suggest that neural mechanisms of dysesthesia are caused by incongruence between proprioception associated with motor intention and visual feedback and, in particular, are a result of incongruence between proprioception only and visual feedback.
Collapse
Affiliation(s)
- Osamu Katayama
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara; Department of Rehabilitation, Watanabe Hospital, Aichi
| | - Michihiro Osumi
- Department of Neurorehabilitation Research Center, Kio University, Nara
| | - Takayuki Kodama
- Department of Physical Therapy, Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Shu Morioka
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara; Department of Neurorehabilitation Research Center, Kio University, Nara
| |
Collapse
|
20
|
Franz EA, Fu Y, Moore M, Winter T, Mayne T, Debnath R, Stringer C. Fooling the brain by mirroring the hand: Brain correlates of the perceptual capture of limb ownership. Restor Neurol Neurosci 2016; 34:721-32. [DOI: 10.3233/rnn-150622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|