1
|
Liampas I, Kyriakoulopoulou P, Akrioti A, Stamati P, Germeni A, Batzikosta P, Tsiamaki E, Veltsista D, Kefalopoulou Z, Siokas V, Chroni E, Dardiotis E. Cognitive deficits and course of recovery in transient global amnesia: a systematic review. J Neurol 2024; 271:6401-6425. [PMID: 39090229 DOI: 10.1007/s00415-024-12563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Published evidence suggests that cognitive impairment during a TGA (transient global amnesia) spell may not be confined to episodic memory. We undertook a systematic review to determine the pattern of cognitive deficits during a TGA episode. As a secondary objective, we aimed to delineate the course of cognitive recovery. METHODS MEDLINE, EMBASE, CENTRAL, and Google scholar were systematically searched up to October 2023. Observational controlled studies including 10 or more TGA patients (Hodges and Warlow criteria) were retrieved. Data from case-control, cross-sectional, and cohort studies were reviewed and qualitatively synthesized. RESULTS Literature search yielded 1302 articles. After the screening of titles and abstracts, 115 full texts were retrieved and 17 of them were included in the present systematic review. During the acute phase, spatiotemporal disorientation, dense anterograde and variable retrograde amnesia, semantic memory retrieval difficulties, and working memory deficits comprised the neuropsychological profile of patients with TGA. Visuospatial abilities, attention and psychomotor speed, semantic memory, confrontation naming, and other measures of executive function (apart from semantic fluency and working memory) were consistently found normal. In the course of recovery, after the resolution of repetitive questioning, the restoration of spatiotemporal orientation follows, working memory and semantic memory retrieval ensue, while episodic memory impairment persists for longer. Meticulous evaluations may reveal subtle residual memory (especially recognition) deficits even after 24 h. CONCLUSIONS Μemory impairment, spatiotemporal disorientation, and working memory deficits constitute the pattern of cognitive impairment during a TGA spell. Residual memory deficits may persist even after 24 h.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo Hill, 41100, Larissa, Greece.
| | - Panayiota Kyriakoulopoulou
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504, Patras, Rio, Greece
| | - Anna Akrioti
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504, Patras, Rio, Greece
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo Hill, 41100, Larissa, Greece
| | - Alexandra Germeni
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504, Patras, Rio, Greece
| | - Paraskevi Batzikosta
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504, Patras, Rio, Greece
| | - Eirini Tsiamaki
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504, Patras, Rio, Greece
| | - Dimitra Veltsista
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504, Patras, Rio, Greece
| | - Zinovia Kefalopoulou
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504, Patras, Rio, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo Hill, 41100, Larissa, Greece
| | - Elisabeth Chroni
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504, Patras, Rio, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo Hill, 41100, Larissa, Greece
| |
Collapse
|
2
|
Dolfen N, Reverberi S, Op de Beeck H, King BR, Albouy G. The Hippocampus Represents Information about Movements in Their Temporal Position in a Learned Motor Sequence. J Neurosci 2024; 44:e0584242024. [PMID: 39137999 PMCID: PMC11403099 DOI: 10.1523/jneurosci.0584-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Our repertoire of motor skills is filled with sequential movements that need to be performed in a specific order. Here, we used functional magnetic resonance imaging to investigate whether the human hippocampus, a region known to support temporal order in non-motor memory, represents information about the order of sequential motor actions in human participants (both sexes). We also examined such representations in other regions of the motor network (i.e., the premotor cortex, supplementary motor area, anterior superior parietal lobule, and striatum) already known for their critical role in motor sequence learning. Results showed that the hippocampus represents information about movements in their learned temporal position in the sequence, but not about movements or temporal positions in random movement patterns. Other regions of the motor network coded for movements in their learned temporal position, as well as movements and positions in random movement patterns. Importantly, movement coding contributed to sequence learning patterns in primary, supplementary, and premotor cortices but not in striatal and parietal regions. Our findings deepen our understanding of how striatal and cortical regions contribute to motor sequence learning and point to the capacity of the hippocampus to represent movements in their temporal context, an ability possibly explaining its contribution to motor learning.
Collapse
Affiliation(s)
- Nina Dolfen
- Department of Movement Sciences, KU Leuven, 3001 Leuven, Flemish Brabant, Belgium
- KU Leuven Brain Institute (LBI), 3000 Leuven, Flemish Brabant, Belgium
- Department of Psychology, Columbia University, New York City, New York 10027
| | - Serena Reverberi
- Department of Movement Sciences, KU Leuven, 3001 Leuven, Flemish Brabant, Belgium
- KU Leuven Brain Institute (LBI), 3000 Leuven, Flemish Brabant, Belgium
| | - Hans Op de Beeck
- KU Leuven Brain Institute (LBI), 3000 Leuven, Flemish Brabant, Belgium
- Department of Brain and Cognition, KU Leuven, 3000 Leuven, Flemish Brabant, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, Utah 84112
| | - Genevieve Albouy
- Department of Movement Sciences, KU Leuven, 3001 Leuven, Flemish Brabant, Belgium
- KU Leuven Brain Institute (LBI), 3000 Leuven, Flemish Brabant, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
3
|
Della-Maggiore V. The human hippocampus beyond episodic memory. Nat Rev Neurosci 2024; 25:211. [PMID: 38332013 DOI: 10.1038/s41583-024-00798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Affiliation(s)
- Valeria Della-Maggiore
- IFIBIO Houssay, CONICET, Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
- School of Science and Technology (ECyT), National University of San Martin (UNSAM), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Schneider I, Schönfeld R, Hanert A, Philippen S, Tödt I, Granert O, Mehdorn M, Becktepe J, Deuschl G, Berg D, Paschen S, Bartsch T. Deep brain stimulation of the subthalamic nucleus restores spatial reversal learning in patients with Parkinson's disease. Brain Commun 2024; 6:fcae068. [PMID: 38560516 PMCID: PMC10979721 DOI: 10.1093/braincomms/fcae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Spatial learning and navigation are supported by distinct memory systems in the human brain such as the hippocampus-based navigational system and the striatum-cortex-based system involved in motor sequence, habit and reversal learning. Here, we studied the role of subthalamic circuits in hippocampus-associated spatial memory and striatal-associated spatial reversal learning formation in patients with Parkinson's disease, who underwent a deep brain stimulation of the subthalamic nucleus. Deep brain stimulation patients (Parkinson's disease-subthalamic nucleus: n = 26) and healthy subjects (n = 15) were tested in a novel experimental spatial memory task based on the Morris water maze that assesses both hippocampal place memory as well as spatial reversal learning. All subjects were trained to navigate to a distinct spatial location hidden within the virtual environment during 16 learning trials in a subthalamic nucleus Stim-On condition. Patients were then randomized into two groups with either a deep brain stimulation On or Off condition. Four hours later, subjects were retested in a delayed recall and reversal learning condition. The reversal learning was realized with a new hidden location that should be memorized during six consecutive trials. The performance was measured by means of an index indicating the improvement during the reversal learning. In the delayed recall condition, neither patients, healthy subjects nor the deep brain stimulation On- versus Off groups showed a difference in place memory performance of the former trained location. In the reversal learning condition, healthy subjects (reversal index 2.0) and patients in the deep brain stimulation On condition (reversal index 1.6) showed a significant improvement. However, patients in the deep brain stimulation Off condition (reversal index 1.1) performed significantly worse and did not improve. There were no differences between all groups in a final visual guided navigation task with a visible target. These results suggest that deep brain stimulation of subthalamic nucleus restores spatial reversal learning in a virtual navigation task in patients with Parkinson's disease and gives insight into the neuromodulation effects on cognition of subthalamic circuits in Parkinson's disease.
Collapse
Affiliation(s)
- Isabel Schneider
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Robby Schönfeld
- Institute of Psychology, Martin-Luther-University Halle-Wittenberg, Halle 06108, Germany
| | - Annika Hanert
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Sarah Philippen
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Inken Tödt
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Oliver Granert
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Maximilian Mehdorn
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Jos Becktepe
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Günther Deuschl
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Daniela Berg
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Steffen Paschen
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Thorsten Bartsch
- Memory Disorders and Plasticity Group, Department of Neurology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
5
|
Liang LX, Liang J, Li QQ, Zeeshan M, Zhang Z, Jin N, Lin LZ, Wu LY, Sun MK, Tan WH, Zhou Y, Chu C, Hu LW, Liu RQ, Zeng XW, Yu Y, Dong GH. Early life exposure to F-53B induces neurobehavioral changes in developing children and disturbs dopamine-dependent synaptic signaling in weaning mice. ENVIRONMENT INTERNATIONAL 2023; 181:108272. [PMID: 37890264 DOI: 10.1016/j.envint.2023.108272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Previous studies have shown that F-53B exposure may be neurotoxic to animals, but there is a lack of epidemiological evidence, and its mechanism needs further investigation. METHODS Serum F-53B concentrations and Wisconsin Card Sorting Test (WCST) were evaluated in 314 growing children from Guangzhou, China, and the association between them were analyzed. To study the developmental neurotoxicity of F-53B, experiments on sucking mice exposed via placental transfer and breast milk was performed. Maternal mice were orally exposed to 4, 40, and 400 μg/L of F-53B from postnatal day 0 (GD0) to postnatal day 21 (PND 21). Several genes and proteins related to neurodevelopment, dopamine anabolism, and synaptic plasticity were examined by qPCR and western blot, respectively, while dopamine contents were detected by ELISA kit in weaning mice. RESULTS The result showed that F-53B was positively associated with poor WCST performance. For example, with an interquartile range increase in F-53B, the change with 95 % confidence interval (CI) of correct response (CR), and non-perseverative errors (NPE) was -2.47 (95 % CI: -3.89, -1.05, P = 0.001), 2.78 (95 % CI: 0.79, 4.76, P = 0.007), respectively. Compared with the control group, the highest exposure group of weaning mice had a longer escape latency (35.24 s vs. 51.18 s, P = 0.034) and a lesser distance movement (34.81 % vs. 21.02 %, P < 0.001) in the target quadrant, as observed from morris water maze (MWM) test. The protein expression of brain-derived neurotrophic factor (BDNF) and growth associated protein-43 (GAP-43) levels were decreased, as compared to control (0.367-fold, P < 0.001; 0.366-fold, P < 0.001; respectively). We also observed the upregulation of dopamine transporter (DAT) (2.940-fold, P < 0.001) consistent with the trend of dopamine content (1.313-fold, P < 0.001) in the hippocampus. CONCLUSION Early life exposure to F-53B is associated with adverse neurobehavioral changes in developing children and weaning mice which may be modulated by dopamine-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingjing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Nanxiang Jin
- A.I.Virtanen Institute for Molecular Science, University of Eastern Finland, Neulaniementie 2, 70210 Kuopio, Finland
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu-Yin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming-Kun Sun
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Hong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
6
|
Deleglise A, Donnelly-Kehoe PA, Yeffal A, Jacobacci F, Jovicich J, Amaro E, Armony JL, Doyon J, Della-Maggiore V. Human motor sequence learning drives transient changes in network topology and hippocampal connectivity early during memory consolidation. Cereb Cortex 2023; 33:6120-6131. [PMID: 36587288 DOI: 10.1093/cercor/bhac489] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 01/02/2023] Open
Abstract
In the last decade, the exclusive role of the hippocampus in human declarative learning has been challenged. Recently, we have shown that gains in performance observed in motor sequence learning (MSL) during the quiet rest periods interleaved with practice are associated with increased hippocampal activity, suggesting a role of this structure in motor memory reactivation. Yet, skill also develops offline as memory stabilizes after training and overnight. To examine whether the hippocampus contributes to motor sequence memory consolidation, here we used a network neuroscience strategy to track its functional connectivity offline 30 min and 24 h post learning using resting-state functional magnetic resonance imaging. Using a graph-analytical approach we found that MSL transiently increased network modularity, reflected in an increment in local information processing at 30 min that returned to baseline at 24 h. Within the same time window, MSL decreased the connectivity of a hippocampal-sensorimotor network, and increased the connectivity of a striatal-premotor network in an antagonistic manner. Finally, a supervised classification identified a low-dimensional pattern of hippocampal connectivity that discriminated between control and MSL data with high accuracy. The fact that changes in hippocampal connectivity were detected shortly after training supports a relevant role of the hippocampus in early stages of motor memory consolidation.
Collapse
Affiliation(s)
- Alvaro Deleglise
- University of Buenos Aires, CONICET, Institute of Physiology and Biophysics (IFIBIO) Bernardo Houssay, Buenos Aires C1121ABG, Argentina
| | | | - Abraham Yeffal
- University of Buenos Aires, CONICET, Institute of Physiology and Biophysics (IFIBIO) Bernardo Houssay, Buenos Aires C1121ABG, Argentina
| | - Florencia Jacobacci
- University of Buenos Aires, CONICET, Institute of Physiology and Biophysics (IFIBIO) Bernardo Houssay, Buenos Aires C1121ABG, Argentina
| | - Jorge Jovicich
- Center for Mind/Brain Sciences, University of Trento, 38068 Trento, Italy
| | - Edson Amaro
- Plataforma de Imagens na Sala de Autopsia (PISA), Instituto de Radiologia, Facultade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Jorge L Armony
- Douglas Mental Health Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Valeria Della-Maggiore
- University of Buenos Aires, CONICET, Institute of Physiology and Biophysics (IFIBIO) Bernardo Houssay, Buenos Aires C1121ABG, Argentina
- School of Science and Technology (ECyT), National University of San Martin, B1650 Villa Lynch, Buenos Aires, Argentina
| |
Collapse
|
7
|
Kim T, Kim S, Kang J, Kwon M, Lee SH. The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front Neurosci 2022; 16:883848. [PMID: 35720688 PMCID: PMC9201256 DOI: 10.3389/fnins.2022.883848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep deprivation is known to have adverse effects on various cognitive abilities. In particular, a lack of sleep has been reported to disrupt memory consolidation and cognitive control functions. Here, focusing on long-term memory and cognitive control processes, we review the consistency and reliability of the results of previous studies of sleep deprivation effects on behavioral performance with variations in the types of stimuli and tasks. Moreover, we examine neural response changes related to these behavioral changes induced by sleep deprivation based on human fMRI studies to determine the brain regions in which neural responses increase or decrease as a consequence of sleep deprivation. Additionally, we discuss about the possibility that light as an environmentally influential factor affects our sleep cycles and related cognitive processes.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sejin Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Sue-Hyun Lee,
| |
Collapse
|
8
|
Solano A, Riquelme LA, Perez-Chada D, Della-Maggiore V. Motor Learning Promotes the Coupling between Fast Spindles and Slow Oscillations Locally over the Contralateral Motor Network. Cereb Cortex 2021; 32:2493-2507. [PMID: 34649283 DOI: 10.1093/cercor/bhab360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/03/2023] Open
Abstract
Recent studies from us and others suggest that traditionally declarative structures mediate some aspects of the encoding and consolidation of procedural memories. This evidence points to the existence of converging physiological pathways across memory systems. Here, we examined whether the coupling between slow oscillations (SO) and spindles, a mechanism well established in the consolidation of declarative memories, is relevant for the stabilization of human motor memories. To this aim, we conducted an electroencephalography study in which we quantified various parameters of these oscillations during a night of sleep that took place immediately after learning a visuomotor adaptation (VMA) task. We found that VMA increased the overall density of fast (≥12 Hz), but not slow (<12 Hz), spindles during nonrapid eye movement sleep, stage 3 (NREM3). This modulation occurred rather locally over the hemisphere contralateral to the trained hand. Although adaptation learning did not affect the density of SOs, it substantially enhanced the number of fast spindles locked to the active phase of SOs. The fact that only coupled spindles predicted overnight memory retention points to the relevance of this association in motor memory consolidation. Our work provides evidence in favor of a common mechanism at the basis of the stabilization of declarative and motor memories.
Collapse
Affiliation(s)
- Agustín Solano
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, C1121ABG, Argentina
| | - Luis A Riquelme
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, C1121ABG, Argentina
| | - Daniel Perez-Chada
- Department of Internal Medicine, Pulmonary and Sleep Medicine Service, Austral University Hospital, Buenos Aires B1629AHJ, Argentina
| | - Valeria Della-Maggiore
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, C1121ABG, Argentina
| |
Collapse
|
9
|
Abstract
Recent evidence suggests that gains in performance observed while humans learn a novel motor sequence occur during the quiet rest periods interleaved with practice (micro-offline gains, MOGs). This phenomenon is reminiscent of memory replay observed in the hippocampus during spatial learning in rodents. Whether the hippocampus is also involved in the production of MOGs remains currently unknown. Using a multimodal approach in humans, here we show that activity in the hippocampus and the precuneus increases during the quiet rest periods and predicts the level of MOGs before asymptotic performance is achieved. These functional changes were followed by rapid alterations in brain microstructure in the order of minutes, suggesting that the same network that reactivates during the quiet periods of training undergoes structural plasticity. Our work points to the involvement of the hippocampal system in the reactivation of procedural memories.
Collapse
|
10
|
Schapiro AC, Reid AG, Morgan A, Manoach DS, Verfaellie M, Stickgold R. The hippocampus is necessary for the consolidation of a task that does not require the hippocampus for initial learning. Hippocampus 2019; 29:1091-1100. [PMID: 31157946 DOI: 10.1002/hipo.23101] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/29/2019] [Indexed: 11/09/2022]
Abstract
During sleep, the hippocampus plays an active role in consolidating memories that depend on it for initial encoding. There are hints in the literature that the hippocampus may have a broader influence, contributing to the consolidation of memories that may not initially require the area. We tested this possibility by evaluating learning and consolidation of the motor sequence task (MST) in hippocampal amnesics and demographically matched control participants. While the groups showed similar initial learning, only controls exhibited evidence of overnight consolidation. These results demonstrate that the hippocampus can be required for normal consolidation of a task without being required for its acquisition, suggesting that the area plays a broader role in coordinating memory consolidation than has previously been assumed.
Collapse
Affiliation(s)
- Anna C Schapiro
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allison G Reid
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Alexandra Morgan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Dara S Manoach
- Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Mieke Verfaellie
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, Massachusetts.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Affiliation(s)
- Felipe De Brigard
- Department of Philosophy, Department of Psychology and Neuroscience, Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Hanert A, Rave J, Granert O, Ziegler M, Pedersen A, Born J, Finke C, Bartsch T. Hippocampal Dentate Gyrus Atrophy Predicts Pattern Separation Impairment in Patients with LGI1 Encephalitis. Neuroscience 2019; 400:120-131. [PMID: 30625332 DOI: 10.1016/j.neuroscience.2018.12.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/18/2018] [Accepted: 12/25/2018] [Indexed: 12/27/2022]
Abstract
Day-to-day life involves the perception of events that resemble one another. For the sufficient encoding and correct retrieval of similar information, the hippocampus provides two essential cognitive processes. Pattern separation refers to the differentiation of similar input information, whereas pattern completion reactivates memory representations based on noisy or degraded stimuli. It has been shown that pattern separation specifically relies on the hippocampal dentate gyrus (DG), whereas pattern completion is performed within CA3 networks. Lesions to these hippocampal networks emerging in the course of neurological disorders may thus affect both processes. In anti-leucine-rich, glioma-inactivated 1 (LGI1) encephalitis it has been shown in animal models and human imaging studies that hippocampal DG and CA3 are preferentially involved in the pathophysiology process. Thus, in order to elucidate the structure-function relationship and contribution of hippocampal subfields to pattern separation, we examined patients (n = 15, age range: 36-77 years) with the rare LGI1 encephalitis showing lesions to hippocampal subfields. Patients were tested 3.53 ± 0.65 years after the acute phase of the disease. Structural sequelae were determined by hippocampal subfield volumetry for the DG, CA1, and CA2/3. Patients showed an overall memory deficit including a significant reduction in pattern separation performance (p = 0.016). In volumetry, we found a global hippocampal volume reduction. The deficits in pattern separation performance were best predicted by the DG (p = 0.029), whereas CA1 was highly predictive of recognition memory deficits (p < 0.001). These results corroborate the framework of a regional specialization of hippocampal functions involved in cognitive processing.
Collapse
Affiliation(s)
- Annika Hanert
- Dept. of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Julius Rave
- Dept. of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Oliver Granert
- Dept. of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| | - Martin Ziegler
- Nanoelectronics, Technical Faculty, University of Kiel, Kaiserstr 2, 24143 Kiel, Germany.
| | - Anya Pedersen
- Dept. of Psychology, Clinical Psychology and Psychotherapy, University of Kiel, Olshausenstr 62, 24118 Kiel, Germany.
| | - Jan Born
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany.
| | - Carsten Finke
- Dept. of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Thorsten Bartsch
- Dept. of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| |
Collapse
|
13
|
Beukema P, Verstynen T. Predicting and binding: interacting algorithms supporting the consolidation of sequential motor skills. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|