Molinero S, Giménez-Fernández T, López FJ, Carretié L, Luque D. Stimulus-response learning and expected reward value enhance stimulus cognitive processing: An ERP study.
Psychophysiology 2021;
58:e13795. [PMID:
33604885 DOI:
10.1111/psyp.13795]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Reward affects our attention to stimuli, prioritizing those that lead to high-value outcomes. Recently, it has been suggested that such reward-related cognitive prioritization might be associated with the process of learning new stimulus-response (S-R) associations, because both are acquired through extended reward training, and once established, they are hard to overcome. We used event-related potentials (ERP) to analyze the contribution of S-R links to the formation of reward-related cognitive prioritization during reinforcement learning. Reward-related cognitive prioritization was measured by comparing the ERP signals for stimuli predicting high-value and low-value outcomes. In addition, we compared a strong S-R link (same stimulus, same response), with a weak S-R link condition (same stimulus, two different responses). The participants' performance was more accurate and faster when the procedure allowed for establishing strong S-R links and for high-value outcomes. Furthermore, those stimuli associated with strong S-R links showed a larger P3 amplitude at parietal sites. Value effects (larger ERP activity for those stimuli predicting a high-value outcome) were obtained at parietal and occipital sites in the P3 time window. However, value effects did not benefit from strong S-R links in either the P1 or the P3 components. These results suggest that strong S-R learning is not necessary to develop reward-related modulations of ERP activity.
Collapse