1
|
Yang F, Zhu H, Cao X, Li H, Fang X, Yu L, Li S, Wu Z, Li C, Zhang C, Tian X. Impaired motor-to-sensory transformation mediates auditory hallucinations. PLoS Biol 2024; 22:e3002836. [PMID: 39361912 PMCID: PMC11449488 DOI: 10.1371/journal.pbio.3002836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024] Open
Abstract
Distinguishing reality from hallucinations requires efficient monitoring of agency. It has been hypothesized that a copy of motor signals, termed efference copy (EC) or corollary discharge (CD), suppresses sensory responses to yield a sense of agency; impairment of the inhibitory function leads to hallucinations. However, how can the sole absence of inhibition yield positive symptoms of hallucinations? We hypothesize that selective impairments in functionally distinct signals of CD and EC during motor-to-sensory transformation cause the positive symptoms of hallucinations. In an electroencephalography (EEG) experiment with a delayed articulation paradigm in schizophrenic patients with (AVHs) and without auditory verbal hallucinations (non-AVHs), we found that preparing to speak without knowing the contents (general preparation) did not suppress auditory responses in both patient groups, suggesting the absent of inhibitory function of CD. Whereas, preparing to speak a syllable (specific preparation) enhanced the auditory responses to the prepared syllable in non-AVHs, whereas AVHs showed enhancement in responses to unprepared syllables, opposite to the observations in the normal population, suggesting that the enhancement function of EC is not precise in AVHs. A computational model with a virtual lesion of an inhibitory inter-neuron and disproportional sensitization of auditory cortices fitted the empirical data and further quantified the distinct impairments in motor-to-sensory transformation in AVHs. These results suggest that "broken" CD plus "noisy" EC causes erroneous monitoring of the imprecise generation of internal auditory representation and yields auditory hallucinations. Specific impairments in functional granularity of motor-to-sensory transformation mediate positivity symptoms of agency abnormality in mental disorders.
Collapse
Affiliation(s)
- Fuyin Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Hao Zhu
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning; Division of Arts and Sciences, New York University Shanghai, Shanghai, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfang Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siqi Li
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Zenan Wu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Tian
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning; Division of Arts and Sciences, New York University Shanghai, Shanghai, China
| |
Collapse
|
2
|
Beño-Ruiz-de-la-Sierra RM, Arjona-Valladares A, Hernández-García M, Fernández-Linsenbarth I, Díez Á, Roig-Herrero A, Osorio-Iriarte E, Molina V. Corollary discharge and anomalous self-experiences in schizophrenia and bipolar disorder: A specificity analysis. Clin Neurophysiol 2024; 166:87-95. [PMID: 39137502 DOI: 10.1016/j.clinph.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE The Corollary Discharge (CD) mechanism inhibits self-generated speech sound perception, appearing disrupted in schizophrenia and potentially contributing to Anomalous Self-Experiences (ASEs). However, it remains unclear if this alteration and its correlation with ASEs extend to other psychotic disorders. METHODS Electroencephalography was used to study the N1 Event-Related Potential (ERP) as an index of CD-mediated suppression in the auditory cortex across thirty-five participants with schizophrenia, twenty-six with bipolar disorder, and thirty healthy controls. Auditory N1 was elicited by two conditions: real-time listening to self-pronounced vowels while speaking through connected microphone and earphones (listen/talk -or talk condition in previous literature-) and passive listening to the same previously recorded self-uttered vowels (listen/no talk -or listen condition-). RESULTS N1 ERP amplitude was lower in the listen/talk condition compared to listen/no talk across all groups. However, N1 suppression was significantly reduced in schizophrenia, with bipolar patients showing intermediate attenuation between both groups (i.e., non-significantly different from controls). Furthermore, N1 suppression inversely correlated with ASEs severity only in schizophrenia. CONCLUSIONS Dysfunction of the CD mechanism may be a defining feature of schizophrenia, where it is connected to ASEs. SIGNIFICANCE These results corroborate previous findings linking auditory N1 ERP suppression with disrupted CD mechanism in schizophrenia, but not in bipolar disorder.
Collapse
Affiliation(s)
| | | | | | | | - Álvaro Díez
- Psychiatry Department, School of Medicine, University of Valladolid, Spain
| | - Alejandro Roig-Herrero
- Psychiatry Department, School of Medicine, University of Valladolid, Spain; Imaging Processing Laboratory, University of Valladolid, Spain
| | | | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Spain; Psychiatry Service, University Clinical Hospital of Valladolid, Spain.
| |
Collapse
|
3
|
Quirmbach F, Limanowski J. Visuomotor prediction during action planning in the human frontoparietal cortex and cerebellum. Cereb Cortex 2024; 34:bhae382. [PMID: 39325000 DOI: 10.1093/cercor/bhae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
The concept of forward models in the brain, classically applied to describing on-line motor control, can in principle be extended to action planning, i.e. assuming forward sensory predictions are issued during the mere preparation of movements. To test this idea, we combined a delayed movement task with a virtual reality based manipulation of visuomotor congruence during functional magnetic resonance imaging. Participants executed simple hand movements after a delay. During the delay, two aspects of the upcoming movement could be cued: the movement type and the visuomotor mapping (i.e. congruence of executed hand movements and visual movement feedback by a glove-controlled virtual hand). Frontoparietal areas showed increased delay period activity when preparing pre-specified movements (cued > uncued). The cerebellum showed increased activity during the preparation for incongruent > congruent visuomotor mappings. The left anterior intraparietal sulcus showed an interaction effect, responding most strongly when a pre-specified (cued) movement was prepared under expected visuomotor incongruence. These results suggest that motor planning entails a forward prediction of visual body movement feedback, which can be adjusted in anticipation of nonstandard visuomotor mappings, and which is likely computed by the cerebellum and integrated with state estimates for (planned) control in the anterior intraparietal sulcus.
Collapse
Affiliation(s)
- Felix Quirmbach
- Faculty of Psychology, Technical University of Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
| | - Jakub Limanowski
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
- Institute of Psychology, University of Greifswald, Franz-Mehring-Straße 47, 17489 Greifswald, Germany
| |
Collapse
|
4
|
Chung LKH, Jack BN, Griffiths O, Pearson D, Luque D, Harris AWF, Spencer KM, Le Pelley ME, So SHW, Whitford TJ. Neurophysiological evidence of motor preparation in inner speech and the effect of content predictability. Cereb Cortex 2023; 33:11556-11569. [PMID: 37943760 PMCID: PMC10751289 DOI: 10.1093/cercor/bhad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023] Open
Abstract
Self-generated overt actions are preceded by a slow negativity as measured by electroencephalogram, which has been associated with motor preparation. Recent studies have shown that this neural activity is modulated by the predictability of action outcomes. It is unclear whether inner speech is also preceded by a motor-related negativity and influenced by the same factor. In three experiments, we compared the contingent negative variation elicited in a cue paradigm in an active vs. passive condition. In Experiment 1, participants produced an inner phoneme, at which an audible phoneme whose identity was unpredictable was concurrently presented. We found that while passive listening elicited a late contingent negative variation, inner speech production generated a more negative late contingent negative variation. In Experiment 2, the same pattern of results was found when participants were instead asked to overtly vocalize the phoneme. In Experiment 3, the identity of the audible phoneme was made predictable by establishing probabilistic expectations. We observed a smaller late contingent negative variation in the inner speech condition when the identity of the audible phoneme was predictable, but not in the passive condition. These findings suggest that inner speech is associated with motor preparatory activity that may also represent the predicted action-effects of covert actions.
Collapse
Affiliation(s)
- Lawrence K-h Chung
- School of Psychology, University of New South Wales (UNSW Sydney), Mathews Building, Library Walk, Kensington NSW 2052, Australia
- Department of Psychology, The Chinese University of Hong Kong, 3/F Sino Building, Chung Chi Road, Shatin, New Territories, Hong Kong SAR, China
| | - Bradley N Jack
- Research School of Psychology, Australian National University, Building 39, Science Road, Canberra ACT 2601, Australia
| | - Oren Griffiths
- School of Psychological Sciences, University of Newcastle, Behavioural Sciences Building, University Drive, Callaghan NSW 2308, Australia
| | - Daniel Pearson
- School of Psychology, University of Sydney, Griffith Taylor Building, Manning Road, Camperdown NSW 2006, Australia
| | - David Luque
- Department of Basic Psychology and Speech Therapy, University of Malaga, Faculty of Psychology, Dr Ortiz Ramos Street, 29010 Malaga, Spain
| | - Anthony W F Harris
- Westmead Clinical School, University of Sydney, 176 Hawkesbury Road, Westmead NSW 2145, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Kevin M Spencer
- Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, 150 South Huntington Avenue, Boston MA 02130, United States
| | - Mike E Le Pelley
- School of Psychology, University of New South Wales (UNSW Sydney), Mathews Building, Library Walk, Kensington NSW 2052, Australia
| | - Suzanne H-w So
- Department of Psychology, The Chinese University of Hong Kong, 3/F Sino Building, Chung Chi Road, Shatin, New Territories, Hong Kong SAR, China
| | - Thomas J Whitford
- School of Psychology, University of New South Wales (UNSW Sydney), Mathews Building, Library Walk, Kensington NSW 2052, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| |
Collapse
|
5
|
Ody E, Kircher T, Straube B, He Y. Pre-movement event-related potentials and multivariate pattern of EEG encode action outcome prediction. Hum Brain Mapp 2023; 44:6198-6213. [PMID: 37792296 PMCID: PMC10619393 DOI: 10.1002/hbm.26506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/04/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023] Open
Abstract
Self-initiated movements are accompanied by an efference copy, a motor command sent from motor regions to the sensory cortices, containing a prediction of the movement's sensory outcome. Previous studies have proposed pre-motor event-related potentials (ERPs), including the readiness potential (RP) and its lateralized sub-component (LRP), as potential neural markers of action feedback prediction. However, it is not known how specific these neural markers are for voluntary (active) movements as compared to involuntary (passive) movements, which produce much of the same sensory feedback (tactile, proprioceptive) but are not accompanied by an efference copy. The goal of the current study was to investigate how active and passive movements are distinguishable from premotor electroencephalography (EEG), and to examine if this change of neural activity differs when participants engage in tasks that differ in their expectation of sensory outcomes. Participants made active (self-initiated) or passive (finger moved by device) finger movements that led to either visual or auditory stimuli (100 ms delay), or to no immediate contingency effects (control). We investigated the time window before the movement onset by measuring pre-movement ERPs time-locked to the button press. For RP, we observed an interaction between task and movement. This was driven by movement differences in the visual and auditory but not the control conditions. LRP conversely only showed a main effect of movement. We then used multivariate pattern analysis to decode movements (active vs. passive). The results revealed ramping decoding for all tasks from around -800 ms onwards up to an accuracy of approximately 85% at the movement. Importantly, similar to RP, we observed lower decoding accuracies for the control condition than the visual and auditory conditions, but only shortly (from -200 ms) before the button press. We also decoded visual vs. auditory conditions. Here, task is decodable for both active and passive conditions, but the active condition showed increased decoding shortly before the button press. Taken together, our results provide robust evidence that pre-movement EEG activity may represent action-feedback prediction in which information about the subsequent sensory outcome is encoded.
Collapse
Affiliation(s)
- Edward Ody
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgGermany
| | - Tilo Kircher
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgGermany
| | - Benjamin Straube
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgGermany
| | - Yifei He
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgGermany
| |
Collapse
|
6
|
Beño-Ruiz-de-la-Sierra RM, Arjona-Valladares A, Fondevila Estevez S, Fernández-Linsenbarth I, Díez Á, Molina V. Corollary discharge function in healthy controls: Evidence about self-speech and external speech processing. Eur J Neurosci 2023; 58:3705-3713. [PMID: 37635264 DOI: 10.1111/ejn.16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
As we speak, corollary discharge mechanisms suppress the auditory conscious perception of the self-generated voice in healthy subjects. This suppression has been associated with the attenuation of the auditory N1 component. To analyse this corollary discharge phenomenon (agency and ownership), we registered the event-related potentials of 42 healthy subjects. The N1 and P2 components were elicited by spoken vowels (talk condition; agency), by played-back vowels recorded with their own voice (listen-self condition; ownership) and by played-back vowels recorded with an external voice (listen-other condition). The N1 amplitude elicited by the talk condition was smaller compared with the listen-self and listen-other conditions. There were no amplitude differences in N1 between listen-self and listen-other conditions. The P2 component did not show differences between conditions. Additionally, a peak latency analysis of N1 and P2 components between the three conditions showed no differences. These findings corroborate previous results showing that the corollary discharge mechanisms dampen sensory responses to self-generated speech (agency experience) and provide new neurophysiological evidence about the similarities in the processing of played-back vowels with our own voice (ownership experience) and with an external voice.
Collapse
Affiliation(s)
| | | | | | | | - Álvaro Díez
- Department of Psychiatry, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Vicente Molina
- Department of Psychiatry, School of Medicine, University of Valladolid, Valladolid, Spain
- Psychiatry Service, University Clinical Hospital of Valladolid, Valladolid, Spain
| |
Collapse
|
7
|
Piveteau E, Di Rienzo F, Bolliet O, Guillot A. Inter-task transfer of force gains is facilitated by motor imagery. Front Neurosci 2023; 17:1228062. [PMID: 37645373 PMCID: PMC10461095 DOI: 10.3389/fnins.2023.1228062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction There is compelling evidence that motor imagery (MI) contributes to improve muscle strength. While strong effects have been observed for finger muscles, only few experiments with moderate benefits were conducted within applied settings targeting large upper or lower limb muscles. The aim of the present study was therefore to extend the investigation of embedded MI practice designed to improve maximal voluntary strength on a multi-joint dynamic exercise involving the lower limbs. Additionally, we tested whether targeting the content of MI on another movement than that physically performed and involving the same body parts might promote inter-task transfer of strength gains. Methods A total of 75 participants were randomly assigned into three groups who underwent a physical training on back squat. During inter-trial recovery periods, a first MI group (n = 25) mentally rehearsed the back squat, while a second MI group (n = 25) performed MI of a different movement involving the lower limbs (deadlift). Participants from the control group (n = 25) completed a neutral cognitive task during equivalent time. Strength and power gains were assessed ecologically using a velocity transducer device at 4 different time periods. Results Data first revealed that participants who engaged in MI of the back squat improved their back squat performance (p < 0.03 and p < 0.01, respectively), more than the control group (p < 0.05), hence supporting the positive effects of MI on strength. Data further supported the inter-task transfer of strength gains when MI targeted a movement that was not physically trained (p = 0.05). Discussion These findings provide experimental support for the use of MI during physical training sessions to improve and transfer force development.
Collapse
Affiliation(s)
| | | | | | - Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
8
|
Han N, Jack BN, Hughes G, Whitford TJ. The Role of Action-Effect Contingency on Sensory Attenuation in the Absence of Movement. J Cogn Neurosci 2022; 34:1488-1499. [PMID: 35579993 DOI: 10.1162/jocn_a_01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Stimuli that have been generated by a person's own willed motor actions generally elicit a suppressed electrophysiological, as well as phenomenological, response than identical stimuli that have been externally generated. This well-studied phenomenon, known as sensory attenuation, has mostly been studied by comparing ERPs evoked by self-initiated and externally generated sounds. However, most studies have assumed a uniform action-effect contingency, in which a motor action leads to a resulting sensation 100% of the time. In this study, we investigated the effect of manipulating the probability of action-effect contingencies on the sensory attenuation effect. In Experiment 1, participants watched a moving, marked tickertape while EEG was recorded. In the full-contingency (FC) condition, participants chose whether to press a button by a certain mark on the tickertape. If a button press had not occurred by the mark, a sound would be played a second later 100% of the time. If the button was pressed before the mark, the sound was not played. In the no-contingency (NC) condition, participants observed the same tickertape; in contrast, however, if participants did not press the button by the mark, a sound would occur only 50% of the time (NC-inaction). Furthermore, in the NC condition, if a participant pressed the button before the mark, a sound would also play 50% of the time (NC-action). In Experiment 2, the design was identical, except that a willed action (as opposed to a willed inaction) triggered the sound in the FC condition. The results were consistent across the two experiments: Although there were no differences in N1 amplitude between conditions, the amplitude of the Tb and P2 components were smaller in the FC condition compared with the NC-inaction condition, and the amplitude of the P2 component was also smaller in the FC condition compared with the NC-action condition. The results suggest that the effect of contingency on electrophysiological indices of sensory attenuation may be indexed primarily by the Tb and P2 components, rather than the N1 component which is most commonly studied.
Collapse
|
9
|
The auditory brain in action: Intention determines predictive processing in the auditory system-A review of current paradigms and findings. Psychon Bull Rev 2021; 29:321-342. [PMID: 34505988 PMCID: PMC9038838 DOI: 10.3758/s13423-021-01992-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/08/2022]
Abstract
According to the ideomotor theory, action may serve to produce desired sensory outcomes. Perception has been widely described in terms of sensory predictions arising due to top-down input from higher order cortical areas. Here, we demonstrate that the action intention results in reliable top-down predictions that modulate the auditory brain responses. We bring together several lines of research, including sensory attenuation, active oddball, and action-related omission studies: Together, the results suggest that the intention-based predictions modulate several steps in the sound processing hierarchy, from preattentive to evaluation-related processes, also when controlling for additional prediction sources (i.e., sound regularity). We propose an integrative theoretical framework—the extended auditory event representation system (AERS), a model compatible with the ideomotor theory, theory of event coding, and predictive coding. Initially introduced to describe regularity-based auditory predictions, we argue that the extended AERS explains the effects of action intention on auditory processing while additionally allowing studying the differences and commonalities between intention- and regularity-based predictions—we thus believe that this framework could guide future research on action and perception.
Collapse
|
10
|
Hill CM, Waddell DE, Del Arco A. Cortical preparatory activity during motor learning reflects visuomotor retention deficits after punishment feedback. Exp Brain Res 2021; 239:3243-3254. [PMID: 34453554 DOI: 10.1007/s00221-021-06200-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Previous studies have shown that reinforcement-based motor learning requires the brain to process feedback-related information after movement execution. However, whether reinforcement feedback changes how the brain processes motor preparation before movement execution is unclear. By using electroencephalography (EEG), this study investigates whether reinforcement feedback changes cortical preparatory activity to modulate motor learning and memory. Human subjects were divided in three groups [reward, punishment, control] to perform a visuomotor rotation task under different conditions that assess adaptation (learning) and retention (memory) during the task. Reinforcement feedback was provided in the form of points after each trial that signaled monetary gains (reward) or losses (punishment). EEG was utilized to evaluate the amplitude of movement readiness potentials (MRPs) at the beginning of each trial for each group during the adaptation and retention conditions of the task. The results show that punishment feedback significantly decreased MRPs amplitude during both task conditions compared to Reward and Control groups. Moreover, the punishment-related decrease in MRPs amplitude paralleled decreases in motor performance during the retention but not the adaptation condition. No changes in MRPs or motor performance were observed in the Reward group. These results support the idea that reinforcement feedback modulates motor preparation and suggest that changes in cortical preparatory activity contribute to the visuomotor retention deficits observed after punishment feedback.
Collapse
Affiliation(s)
- Christopher M Hill
- Kinesiology and Physical Education, Northern Illinois University, 228 Anderson Hall, DeKalb, IL, 60115, USA.
| | - Dwight E Waddell
- Biomedical Engineering, University of Mississippi, Oxford, MS, USA
| | - Alberto Del Arco
- Health, Exercise Science, and Recreation Management, University of Mississippi, Oxford, MS, USA.,Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|