1
|
Li H, Peng A, Lai W, Wu J, Ji S, Hu D, Chen S, Zhu C, Hong Q, Zhang M, Chen L. Impacts of education level on Montreal Cognitive Assessment and saccades in community residents from Western China. Clin Neurophysiol 2024; 161:27-39. [PMID: 38432186 DOI: 10.1016/j.clinph.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES This cross-sectional study sought to evaluate the effectiveness of the Montreal Cognitive Assessment (MoCA) and saccade in discerning the cognitive function levels among community populations characterized by diverse educational backgrounds. METHODS Data from 665 Western China individuals encompassed MoCA scores and saccade performance. The study examined how education level and age influenced these assessments and highlighted the contrasting abilities of these measures in detecting cognitive abnormalities. RESULTS The saccade model revealed a consistent cognitive impairment prevalence (15.5%) compared to previous clinical data (9.7% to 23.3%), while MoCA exhibited variable rates (25.1% to 52.8%). Notably, saccades and MoCA significantly diverged in detecting cognitive dysfunction. Additionally, education level had a greater impact on MoCA (effect size: 0.272) compared to saccades (0.024) affecting all MoCA sub-items, with age exerting a smaller influence on MoCA (0.037) compared to saccades (0.056). CONCLUSION Saccades are less susceptible to the influence of education level when compared to MoCA, making saccade a potentially more suitable cognitive screening tool for rural community populations. SIGNIFICANCE This study represents a pioneering approach by employing saccade detection within community populations to distinguish cognitive function status.
Collapse
Affiliation(s)
- Hua Li
- Research Center of Clinical Epidemiology and Evidence-Based Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China; Joint Research Institute of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Anjiao Peng
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Wanlin Lai
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Junru Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Shuming Ji
- Department of Clinical Research Management, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Dan Hu
- Department of Clinical Research Management, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Shujuan Chen
- Department of Clinical Research Management, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Chenxing Zhu
- Department of Clinical Research Management, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Qiulei Hong
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Lei Chen
- Research Center of Clinical Epidemiology and Evidence-Based Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China; Joint Research Institute of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
DeYoe EA, Huddleston W, Greenberg AS. Are neuronal mechanisms of attention universal across human sensory and motor brain maps? Psychon Bull Rev 2024:10.3758/s13423-024-02495-3. [PMID: 38587756 DOI: 10.3758/s13423-024-02495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
One's experience of shifting attention from the color to the smell to the act of picking a flower seems like a unitary process applied, at will, to one modality after another. Yet, the unique and separable experiences of sight versus smell versus movement might suggest that the neural mechanisms of attention have been separately optimized to employ each modality to its greatest advantage. Moreover, addressing the issue of universality can be particularly difficult due to a paucity of existing cross-modal comparisons and a dearth of neurophysiological methods that can be applied equally well across disparate modalities. Here we outline some of the conceptual and methodological issues related to this problem and present an instructive example of an experimental approach that can be applied widely throughout the human brain to permit detailed, quantitative comparison of attentional mechanisms across modalities. The ultimate goal is to spur efforts across disciplines to provide a large and varied database of empirical observations that will either support the notion of a universal neural substrate for attention or more clearly identify the degree to which attentional mechanisms are specialized for each modality.
Collapse
Affiliation(s)
- Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
- , Signal Mountain, USA.
| | - Wendy Huddleston
- School of Rehabilitation Sciences and Technology, College of Health Professions and Sciences, University of Wisconsin - Milwaukee, 3409 N. Downer Ave, Milwaukee, WI, 53211, USA
| | - Adam S Greenberg
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, 53226, USA
| |
Collapse
|
3
|
Ghaderi A, Niemeier M, Crawford JD. Saccades and presaccadic stimulus repetition alter cortical network topology and dynamics: evidence from EEG and graph theoretical analysis. Cereb Cortex 2023; 33:2075-2100. [PMID: 35639544 DOI: 10.1093/cercor/bhac194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Parietal and frontal cortex are involved in saccade generation, and their output signals modify visual signals throughout cortex. Local signals associated with these interactions are well described, but their large-scale progression and network dynamics are unknown. Here, we combined source localized electroencephalography (EEG) and graph theory analysis (GTA) to understand how saccades and presaccadic visual stimuli interactively alter cortical network dynamics in humans. Twenty-one participants viewed 1-3 vertical/horizontal grids, followed by grid with the opposite orientation just before a horizontal saccade or continued fixation. EEG signals from the presaccadic interval (or equivalent fixation period) were used for analysis. Source localization-through-time revealed a rapid frontoparietal progression of presaccadic motor signals and stimulus-motor interactions, with additional band-specific modulations in several frontoparietal regions. GTA analysis revealed a saccade-specific functional network with major hubs in inferior parietal cortex (alpha) and the frontal eye fields (beta), and major saccade-repetition interactions in left prefrontal (theta) and supramarginal gyrus (gamma). This network showed enhanced segregation, integration, synchronization, and complexity (compared with fixation), whereas stimulus repetition interactions reduced synchronization and complexity. These cortical results demonstrate a widespread influence of saccades on both regional and network dynamics, likely responsible for both the motor and perceptual aspects of saccades.
Collapse
Affiliation(s)
- Amirhossein Ghaderi
- Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Vision Science to Applications (VISTA) Program York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Matthias Niemeier
- Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Vision Science to Applications (VISTA) Program York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| | - John Douglas Crawford
- Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Vision Science to Applications (VISTA) Program York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Department of Biology, York University, 4700 Keele St,, Toronto, ON M3J 1P3, Canada.,Department of Psychology, York University, 4700 Keele St,, Toronto, ON M3J 1P3, Canada.,Department of Kinesiology and Health Sciences, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada
| |
Collapse
|
4
|
Li HH, Hanning NM, Carrasco M. To look or not to look: dissociating presaccadic and covert spatial attention. Trends Neurosci 2021; 44:669-686. [PMID: 34099240 PMCID: PMC8552810 DOI: 10.1016/j.tins.2021.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
Attention is a central neural process that enables selective and efficient processing of visual information. Individuals can attend to specific visual information either overtly, by making an eye movement to an object of interest, or covertly, without moving their eyes. We review behavioral, neuropsychological, neurophysiological, and computational evidence of presaccadic attentional modulations that occur while preparing saccadic eye movements, and highlight their differences from those of covert spatial endogenous (voluntary) and exogenous (involuntary) attention. We discuss recent studies and experimental procedures on how these different types of attention impact visual performance, alter appearance, differentially modulate the featural representation of basic visual dimensions (orientation and spatial frequency), engage different neural computations, and recruit partially distinct neural substrates. We conclude that presaccadic attention and covert attention are dissociable.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA.
| | - Nina M Hanning
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
5
|
Smith DT, van der Stigchel S, Casteau S, Schenk T. Cognitive and motor processes in visuospatial attention: An interactionist perspective. Cortex 2021; 143:A1-A5. [PMID: 34304859 DOI: 10.1016/j.cortex.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Daniel T Smith
- Department of Psychology, Durham University, Durham, UK.
| | | | | | - Thomas Schenk
- LMU Munich, Department of Psychology, München, Germany
| |
Collapse
|