1
|
Lanzone J, Motolese F, Ricci L, Tecchio F, Tombini M, Zappasodi F, Cruciani A, Capone F, Di Lazzaro V, Assenza G. Quantitative measures of the resting EEG in stroke: a systematic review on clinical correlation and prognostic value. Neurol Sci 2023; 44:4247-4261. [PMID: 37542545 DOI: 10.1007/s10072-023-06981-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
OBJECT Quantitative electroencephalography (qEEG) has shown promising results as a predictor of clinical impairment in stroke. We systematically reviewed published papers that focus on qEEG metrics in the resting EEG of patients with mono-hemispheric stroke, to summarize current knowledge and pave the way for future research. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched the literature for papers that fitted our inclusion criteria. Rayyan QCRR was used to allow deduplication and collaborative blinded paper review. Due to multiple outcomes and non-homogeneous literature, a scoping review approach was used to address the topic. RESULTS Or initial search (PubMed, Embase, Google scholar) yielded 3200 papers. After proper screening, we selected 71 papers that fitted our inclusion criteria and we developed a scoping review thar describes the current state of the art of qEEG in stroke. Notably, among selected papers 53 (74.3%) focused on spectral power; 11 (15.7%) focused on symmetry indexes, 17 (24.3%) on connectivity metrics, while 5 (7.1%) were about other metrics (e.g. detrended fluctuation analysis). Moreover, 42 (58.6%) studies were performed with standard 19 electrodes EEG caps and only a minority used high-definition EEG. CONCLUSIONS We systematically assessed major findings on qEEG and stroke, evidencing strengths and potential pitfalls of this promising branch of research.
Collapse
Affiliation(s)
- J Lanzone
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Department of the Milano Institute, Milan, Italy.
| | - F Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
| | - L Ricci
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
| | - F Tecchio
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
| | - M Tombini
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
| | - F Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences and Institute for Advanced Biomedical Technologies, 'Gabriele D'Annunzio' University, Chieti, Italy
| | - A Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
| | - F Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
| | - V Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
| | - G Assenza
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
| |
Collapse
|
2
|
Zeng G, Zhou Y, Yang Y, Ruan L, Tan L, Luo H, Ruan J. Neural oscillations after acute large artery atherosclerotic cerebral infarction during resting state and sleep spindles. J Sleep Res 2023; 32:e13889. [PMID: 36944554 DOI: 10.1111/jsr.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
Electroencephalogram-microstate analysis was conducted using low-resolution electromagnetic tomography (LORETA)-KEY to evaluate dynamic brain network changes in patients with acute large artery atherosclerotic cerebral infarction (LAACI) during the rest and sleep stages. This study included 35 age- and sex-matched healthy controls and 34 patients with acute LAACI. Each participant performed a 3-h, 19-channel video electroencephalogram test. Subsequently, 20 epochs of 2-s sleep spindles during stage N2 sleep and five epochs of 10-s electroencephalogram data in the resting state for each participant were obtained. In both the resting state and sleep spindles, patients with LAACI displayed altered neural oscillations. The parameters of microstate A (coverage, occurrence, and duration) increased during the resting state in the patients with LAACI compared with healthy controls. The coverage and occurrence of microstate B and D were reduced in the LAACI group compared with the healthy controls (p < 0.05). Moreover, during sleep spindles, the duration of microstate A and the transition probability from microstate A and B to C decreased, but the coverage of microstate B and the transition rate from microstate B to D increased (p < 0.05) in the LAACI group compared with the healthy controls. These results enable better understanding of how neural oscillations are modified in patients with LAACI during the resting state and sleep spindles. Following LAACI, the dynamic brain network undergoes changes during sleep spindles and the resting state. Continued long-term investigations are required to determine how well these changes in brain dynamics reflect the clinical characteristics of patients with LAACI.
Collapse
Affiliation(s)
- Guoli Zeng
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Neurology, Luzhou People's Hospital, Luzhou, China
| | - Yan Zhou
- Department of Neurology, Jianyang People's Hospital, Jianyang, China
| | - Yushu Yang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Lili Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Linjie Tan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
3
|
Scano A, Guanziroli E, Brambilla C, Amendola C, Pirovano I, Gasperini G, Molteni F, Spinelli L, Molinari Tosatti L, Rizzo G, Re R, Mastropietro A. A Narrative Review on Multi-Domain Instrumental Approaches to Evaluate Neuromotor Function in Rehabilitation. Healthcare (Basel) 2023; 11:2282. [PMID: 37628480 PMCID: PMC10454517 DOI: 10.3390/healthcare11162282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
In clinical scenarios, the use of biomedical sensors, devices and multi-parameter assessments is fundamental to provide a comprehensive portrait of patients' state, in order to adapt and personalize rehabilitation interventions and support clinical decision-making. However, there is a huge gap between the potential of the multidomain techniques available and the limited practical use that is made in the clinical scenario. This paper reviews the current state-of-the-art and provides insights into future directions of multi-domain instrumental approaches in the clinical assessment of patients involved in neuromotor rehabilitation. We also summarize the main achievements and challenges of using multi-domain approaches in the assessment of rehabilitation for various neurological disorders affecting motor functions. Our results showed that multi-domain approaches combine information and measurements from different tools and biological signals, such as kinematics, electromyography (EMG), electroencephalography (EEG), near-infrared spectroscopy (NIRS), and clinical scales, to provide a comprehensive and objective evaluation of patients' state and recovery. This multi-domain approach permits the progress of research in clinical and rehabilitative practice and the understanding of the pathophysiological changes occurring during and after rehabilitation. We discuss the potential benefits and limitations of multi-domain approaches for clinical decision-making, personalized therapy, and prognosis. We conclude by highlighting the need for more standardized methods, validation studies, and the integration of multi-domain approaches in clinical practice and research.
Collapse
Affiliation(s)
- Alessandro Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Cristina Brambilla
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Caterina Amendola
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.A.); (R.R.)
| | - Ileana Pirovano
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| | - Giulio Gasperini
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Lorenzo Spinelli
- Institute for Photonics and Nanotechnology (IFN), Italian National Research Council (CNR), Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Lorenzo Molinari Tosatti
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Giovanna Rizzo
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| | - Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.A.); (R.R.)
- Institute for Photonics and Nanotechnology (IFN), Italian National Research Council (CNR), Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Alfonso Mastropietro
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| |
Collapse
|
4
|
Salvalaggio S, Turolla A, Andò M, Barresi R, Burgio F, Busan P, Cortese AM, D’Imperio D, Danesin L, Ferrazzi G, Maistrello L, Mascotto E, Parrotta I, Pezzetta R, Rigon E, Vedovato A, Zago S, Zorzi M, Arcara G, Mantini D, Filippini N. Prediction of rehabilitation induced motor recovery after stroke using a multi-dimensional and multi-modal approach. Front Aging Neurosci 2023; 15:1205063. [PMID: 37469951 PMCID: PMC10352609 DOI: 10.3389/fnagi.2023.1205063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Background Stroke is a debilitating disease affecting millions of people worldwide. Despite the survival rate has significantly increased over the years, many stroke survivors are left with severe impairments impacting their quality of life. Rehabilitation programs have proved to be successful in improving the recovery process. However, a reliable model of sensorimotor recovery and a clear identification of predictive markers of rehabilitation-induced recovery are still needed. This article introduces the cross-modality protocols designed to investigate the rehabilitation treatment's effect in a group of stroke survivors. Methods/design A total of 75 stroke patients, admitted at the IRCCS San Camillo rehabilitation Hospital in Venice (Italy), will be included in this study. Here, we describe the rehabilitation programs, clinical, neuropsychological, and physiological/imaging [including electroencephalography (EEG), transcranial magnetic stimulation (TMS), and magnetic resonance imaging (MRI) techniques] protocols set up for this study. Blood collection for the characterization of predictive biological biomarkers will also be taken. Measures derived from data acquired will be used as candidate predictors of motor recovery. Discussion/summary The integration of cutting-edge physiological and imaging techniques, with clinical and cognitive assessment, dose of rehabilitation and biological variables will provide a unique opportunity to define a predictive model of recovery in stroke patients. Taken together, the data acquired in this project will help to define a model of rehabilitation induced sensorimotor recovery, with the final aim of developing personalized treatments promoting the greatest chance of recovery of the compromised functions.
Collapse
Affiliation(s)
- Silvia Salvalaggio
- IRCCS San Camillo Hospital, Venice, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
| | - Andrea Turolla
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum – Università di Bologna, Bologna, Italy
- Unit of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | | | | | - Anna Maria Cortese
- Department of Rehabilitation Medicine, AULSS 3 Serenissima, Venice, Italy
| | | | | | | | | | - Eleonora Mascotto
- Department of Physical Medicine and Rehabilitation, Venice Hospital, Venice, Italy
| | | | | | | | - Anna Vedovato
- General Hospital San Camillo of Treviso, Treviso, Italy
| | - Sara Zago
- IRCCS San Camillo Hospital, Venice, Italy
| | - Marco Zorzi
- IRCCS San Camillo Hospital, Venice, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
- Department of General Psychology, University of Padova, Padua, Italy
| | | | - Dante Mantini
- IRCCS San Camillo Hospital, Venice, Italy
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
5
|
Romeo Z, Marino M, Mantini D, Angrilli A, Spironelli C. Language Network Connectivity of Euthymic Bipolar Patients Is Altered at Rest and during a Verbal Fluency Task. Biomedicines 2023; 11:1647. [PMID: 37371743 DOI: 10.3390/biomedicines11061647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Abnormalities of the Language Network (LN) have been found in different psychiatric conditions (e.g., schizophrenia and bipolar disorder), supporting the hypothesis that language plays a central role in a high-level integration/connectivity of second-level cognitive processes and the underlying cortical regions. This view implies a continuum of shared neural alterations along the psychotic disorder spectrum. In particular, bipolar disorder (BD) patients were recently documented to have an altered LN asymmetry during resting state. The extent to which the LN architecture is altered and stable also during a language task has yet to be investigated. To address this question, we analyzed fMRI data recorded during an open-eyes resting state session and a silent verbal fluency task in 16 euthymic BD patients and 16 matched healthy controls (HC). Functional connectivity in the LN of both groups was computed using spatial independent component analysis, and group comparisons were carried out to assess the network organization during both rest and active linguistic task conditions. The LN of BD patients involved left and right brain areas during both resting state and linguistic task. Compared to the left-lateralized network found in HC, the BD group was characterized by two anterior clusters (in left frontal and right temporo-insular regions) and the disengagement of the posterior language areas, especially during the verbal fluency task. Our findings support the hypothesis that reduced language lateralization may represent a biological marker across different psychotic disorders and that the altered language network connectivity found at rest in bipolar patients is stable and pervasive as it is also impaired during a verbal fluency task.
Collapse
Affiliation(s)
- Zaira Romeo
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Marco Marino
- Department of General Psychology, University of Padova, 35131 Padova, Italy
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium
| | - Alessandro Angrilli
- Department of General Psychology, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Chiara Spironelli
- Department of General Psychology, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Soleimani B, Dallasta I, Das P, Kulasingham JP, Girgenti S, Simon JZ, Babadi B, Marsh EB. Altered directional functional connectivity underlies post-stroke cognitive recovery. Brain Commun 2023; 5:fcad149. [PMID: 37288315 PMCID: PMC10243775 DOI: 10.1093/braincomms/fcad149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Cortical ischaemic strokes result in cognitive deficits depending on the area of the affected brain. However, we have demonstrated that difficulties with attention and processing speed can occur even with small subcortical infarcts. Symptoms appear independent of lesion location, suggesting they arise from generalized disruption of cognitive networks. Longitudinal studies evaluating directional measures of functional connectivity in this population are lacking. We evaluated six patients with minor stroke exhibiting cognitive impairment 6-8 weeks post-infarct and four age-similar controls. Resting-state magnetoencephalography data were collected. Clinical and imaging evaluations of both groups were repeated 6- and 12 months later. Network Localized Granger Causality was used to determine differences in directional connectivity between groups and across visits, which were correlated with clinical performance. Directional connectivity patterns remained stable across visits for controls. After the stroke, inter-hemispheric connectivity between the frontoparietal cortex and the non-frontoparietal cortex significantly increased between visits 1 and 2, corresponding to uniform improvement in reaction times and cognitive scores. Initially, the majority of functional links originated from non-frontal areas contralateral to the lesion, connecting to ipsilesional brain regions. By visit 2, inter-hemispheric connections, directed from the ipsilesional to the contralesional cortex significantly increased. At visit 3, patients demonstrating continued favourable cognitive recovery showed less reliance on these inter-hemispheric connections. These changes were not observed in those without continued improvement. Our findings provide supporting evidence that the neural basis of early post-stroke cognitive dysfunction occurs at the network level, and continued recovery correlates with the evolution of inter-hemispheric connectivity.
Collapse
Affiliation(s)
- Behrad Soleimani
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD 20740, USA
| | - Isabella Dallasta
- Department of Neurology, the Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Proloy Das
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joshua P Kulasingham
- Department of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden
| | - Sophia Girgenti
- Department of Neurology, the Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD 20740, USA
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Behtash Babadi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD 20740, USA
| | - Elisabeth B Marsh
- Department of Neurology, the Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
7
|
Ma HL, Zeng TA, Jiang L, Zhang M, Li H, Su R, Wang ZX, Chen DM, Xu M, Xie WT, Dang P, Bu XO, Zhang T, Wang TZ. Altered resting-state network connectivity patterns for predicting attentional function in deaf individuals: An EEG study. Hear Res 2023; 429:108696. [PMID: 36669260 DOI: 10.1016/j.heares.2023.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/16/2023]
Abstract
Multiple aspects of brain development are influenced by early sensory loss such as deafness. Despite growing evidence of changes in attentional functions for prelingual profoundly deaf, the brain mechanisms underlying these attentional changes remain unclear. This study investigated the relationships between differential attention and the resting-state brain network difference in deaf individuals from the perspective of brain network connectivity. We recruited 36 deaf individuals and 34 healthy controls (HC). We recorded each participant's resting-state electroencephalogram (EEG) and the event-related potential (ERP) data from the Attention Network Test (ANT). The coherence (COH) method and graph theory were used to build brain networks and analyze network connectivity. First, the ERPs of analysis in task states were investigated. Then, we correlated the topological properties of the network functional connectivity with the ERPs. The results revealed a significant correlation between frontal-occipital connection in the resting state and the amplitude of alert N1 amplitude in the alpha band. Specifically, clustering coefficients and global and local efficiency correlate negatively with alert N1 amplitude, whereas the characteristic path length positively correlates with alert N1 amplitude. In addition, deaf individuals exhibited weaker frontal-occipital connections compared to the HC group. In executive control, the deaf group had longer reaction times and larger P3 amplitudes. However, the orienting function did not significantly differ from the HC group. Finally, the alert N1 amplitude in the ANT task for deaf individuals was predicted using a multiple linear regression model based on resting-state EEG network properties. Our results suggest that deafness affects the performance of alerting and executive control while orienting functions develop similarly to hearing individuals. Furthermore, weakened frontal-occipital connections in the deaf brain are a fundamental cause of altered alerting functions in the deaf. These results reveal important effects of brain networks on attentional function from the perspective of brain connections and provide potential physiological biomarkers to predicting attention.
Collapse
Affiliation(s)
- Hai-Lin Ma
- Faculty of Education, Shaanxi Normal University, No.199, Chang'an Road, Yanta District, Xi 'an, Shaanxi 710062, China; Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Tong-Ao Zeng
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Lin Jiang
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Mei Zhang
- College of Special Education, Leshan Normal University, Leshan 614000, China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Rui Su
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Zhi-Xin Wang
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China; Department of Psychology, Shandong Normal University, No. 88East Wenhua Road, Jinan, Shandong 250014, China
| | - Dong-Mei Chen
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Meng Xu
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Wen-Ting Xie
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Peng Dang
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China
| | - Xiao-Ou Bu
- Plateau Brain Science Research Center, Tibet University /South China Normal University, 850012/Guangzhou, Lhasa 510631, China; Faculty of Education, East China Normal University, Shanghai 200062, China
| | - Tao Zhang
- Mental Health Education Center and School of Science, Xihua University, Chengdu 610039, China,.
| | - Ting-Zhao Wang
- Faculty of Education, Shaanxi Normal University, No.199, Chang'an Road, Yanta District, Xi 'an, Shaanxi 710062, China.
| |
Collapse
|
8
|
Bian R, Huo M, Liu W, Mansouri N, Tanglay O, Young I, Osipowicz K, Hu X, Zhang X, Doyen S, Sughrue ME, Liu L. Connectomics underlying motor functional outcomes in the acute period following stroke. Front Aging Neurosci 2023; 15:1131415. [PMID: 36875697 PMCID: PMC9975347 DOI: 10.3389/fnagi.2023.1131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Objective Stroke remains the number one cause of morbidity in many developing countries, and while effective neurorehabilitation strategies exist, it remains difficult to predict the individual trajectories of patients in the acute period, making personalized therapies difficult. Sophisticated and data-driven methods are necessary to identify markers of functional outcomes. Methods Baseline anatomical T1 magnetic resonance imaging (MRI), resting-state functional MRI (rsfMRI), and diffusion weighted scans were obtained from 79 patients following stroke. Sixteen models were constructed to predict performance across six tests of motor impairment, spasticity, and activities of daily living, using either whole-brain structural or functional connectivity. Feature importance analysis was also performed to identify brain regions and networks associated with performance in each test. Results The area under the receiver operating characteristic curve ranged from 0.650 to 0.868. Models utilizing functional connectivity tended to have better performance than those utilizing structural connectivity. The Dorsal and Ventral Attention Networks were among the top three features in several structural and functional models, while the Language and Accessory Language Networks were most commonly implicated in structural models. Conclusions Our study highlights the potential of machine learning methods combined with connectivity analysis in predicting outcomes in neurorehabilitation and disentangling the neural correlates of functional impairments, though further longitudinal studies are necessary.
Collapse
Affiliation(s)
- Rong Bian
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Huo
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wan Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, NSW, Australia
| | | | | | - Xiaorong Hu
- Xijia Medical Technology Company Limited, Shenzhen, China
| | - Xia Zhang
- Xijia Medical Technology Company Limited, Shenzhen, China.,International Joint Research Center on Precision Brain Medicine, Xidian Group Hospital, Xi'an, China
| | | | - Michael E Sughrue
- Omniscient Neurotechnology, Sydney, NSW, Australia.,International Joint Research Center on Precision Brain Medicine, Xidian Group Hospital, Xi'an, China
| | - Li Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
The pro-inflammatory factors contribute to the EEG microstate abnormalities in patients with major depressive disorder. Brain Behav Immun Health 2022; 26:100523. [PMID: 36267834 PMCID: PMC9576533 DOI: 10.1016/j.bbih.2022.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022] Open
Abstract
Pro-inflammatory factors may be associated with abnormalities in functional brain networks, which may be a mechanism in the pathogenesis of major depressive disorder (MDD). Electroencephalogram (EEG) microstates reflect the functioning of brain networks. However, the relationship between pro-inflammatory factors and the microstate abnormalities in patients with MDD is poorly understood. 24 MDD patients and 24 age-and sex-matched healthy controls (HC) were recruited. Montgomery-Asberg Depression Rating Scale(MADRS) were assessed. Serum (interleukin- 2(IL- 2), tumor necrosis factor-α (TNF-α) and hs-C-reactive protein (CRP)and EEG data were collected. K-means clustering was performed to characterize different microstates. For each microstate, duration, occurrence and coverage were estimated. Four microstates (e.g. A, B, C, D) were characterized, MDD group showed lower duration, occurrence and coverage of microstate B and microstate D, while higher duration of microstate A and microstate C and levels of IL-2, TNF-α, hs-CRP than HC group. The duration, occurrence and coverage of microstate D were negatively correlated with levels of pro-inflammatory factors (IL-2, TNF- α and hs- CRP) (all P < 0.05). Serum pro-inflammatory induced the abnormalities of microstate D. Together, these findings add to the understanding of the pathophysiology of MDD and point to pro-inflammatory factors contribute to EEG microstate abnormalities in patients with MDD.
Collapse
|
10
|
Mak J, Kocanaogullari D, Huang X, Kersey J, Shih M, Grattan ES, Skidmore ER, Wittenberg GF, Ostadabbas S, Akcakaya M. Detection of Stroke-Induced Visual Neglect and Target Response Prediction Using Augmented Reality and Electroencephalography. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1840-1850. [PMID: 35786558 DOI: 10.1109/tnsre.2022.3188184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We aim to build a system incorporating electroencephalography (EEG) and augmented reality (AR) that is capable of identifying the presence of visual spatial neglect (SN) and mapping the estimated neglected visual field. An EEG-based brain-computer interface (BCI) was used to identify those spatiospectral features that best detect participants with SN among stroke survivors using their EEG responses to ipsilesional and contralesional visual stimuli. Frontal-central delta and alpha, frontal-parietal theta, Fp1 beta, and left frontal gamma were found to be important features for neglect detection. Additionally, temporal analysis of the responses shows that the proposed model is accurate in detecting potentially neglected targets. These targets were predicted using common spatial patterns as the feature extraction algorithm and regularized discriminant analysis combined with kernel density estimation for classification. With our preliminary results, our system shows promise for reliably detecting the presence of SN and predicting visual target responses in stroke patients with SN.
Collapse
|
11
|
Pirovano I, Mastropietro A, Guanziroli E, Molteni F, Faes L, Rizzo G. Comparison between directed causal flow metrics for the assessment of resting-state EEG motor network connectivity in subacute stroke patients. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:44-47. [PMID: 36085760 DOI: 10.1109/embc48229.2022.9870885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Isolated effective coherence (iCoh) is a measure of neural causal functional connectivity from EEG signals that was proven to overperform the Generalized Partial Directed Coherence (gPDC). However, iCoh sensitivity in the identification of reliable functional neural connections with respect to random links was not investigated. This study aims to compare the sensitivity of iCoh and gPDC with a statistical surrogates' approach. The cerebral motor network topology of a cohort of subjects in sub-acute stage after stroke was investigated. iCoh showed enhanced statistical discriminative power of the relevant connections within the motor network with respect to gPDC. This property influenced the assessment of ipsilesional intra-hemispheric topographic variations occurring in the population after a physical rehabilitation program.
Collapse
|
12
|
Pirovano I, Mastropietro A, Antonacci Y, Barà C, Guanziroli E, Molteni F, Faes L, Rizzo G. Resting State EEG Directed Functional Connectivity Unveils Changes in Motor Network Organization in Subacute Stroke Patients After Rehabilitation. Front Physiol 2022; 13:862207. [PMID: 35450158 PMCID: PMC9016279 DOI: 10.3389/fphys.2022.862207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 01/01/2023] Open
Abstract
Brain plasticity and functional reorganization are mechanisms behind functional motor recovery of patients after an ischemic stroke. The study of resting-state motor network functional connectivity by means of EEG proved to be useful in investigating changes occurring in the information flow and find correlation with motor function recovery. In the literature, most studies applying EEG to post-stroke patients investigated the undirected functional connectivity of interacting brain regions. Quite recently, works started to investigate the directionality of the connections and many approaches or features have been proposed, each of them being more suitable to describe different aspects, e.g., direct or indirect information flow between network nodes, the coupling strength or its characteristic oscillation frequency. Each work chose one specific measure, despite in literature there is not an agreed consensus, and the selection of the most appropriate measure is still an open issue. In an attempt to shed light on this methodological aspect, we propose here to combine the information of direct and indirect coupling provided by two frequency-domain measures based on Granger’s causality, i.e., the directed coherence (DC) and the generalized partial directed coherence (gPDC), to investigate the longitudinal changes of resting-state directed connectivity associated with sensorimotor rhythms α and β, occurring in 18 sub-acute ischemic stroke patients who followed a rehabilitation treatment. Our results showed a relevant role of the information flow through the pre-motor regions in the reorganization of the motor network after the rehabilitation in the sub-acute stage. In particular, DC highlighted an increase in intra-hemispheric coupling strength between pre-motor and primary motor areas, especially in ipsi-lesional hemisphere in both α and β frequency bands, whereas gPDC was more sensitive in the detection of those connection whose variation was mostly represented within the population. A decreased causal flow from contra-lesional premotor cortex towards supplementary motor area was detected in both α and β frequency bands and a significant reinforced inter-hemispheric connection from ipsi to contra-lesional pre-motor cortex was observed in β frequency. Interestingly, the connection from contra towards ipsilesional pre-motor area correlated with upper limb motor recovery in α band. The usage of two different measures of directed connectivity allowed a better comprehension of those coupling changes between brain motor regions, either direct or mediated, which mostly were influenced by the rehabilitation, revealing a particular involvement of the pre-motor areas in the cerebral functional reorganization.
Collapse
Affiliation(s)
- Ileana Pirovano
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Alfonso Mastropietro
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy
- *Correspondence: Alfonso Mastropietro,
| | - Yuri Antonacci
- Dipartimento di Ingegneria, Università di Palermo, Palermo, Italy
| | - Chiara Barà
- Dipartimento di Ingegneria, Università di Palermo, Palermo, Italy
| | | | - Franco Molteni
- Centro Riabilitativo Villa Beretta, Ospedale Valduce, Costa Masnaga, Italy
| | - Luca Faes
- Dipartimento di Ingegneria, Università di Palermo, Palermo, Italy
| | - Giovanna Rizzo
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy
| |
Collapse
|
13
|
Keser Z, Buchl SC, Seven NA, Markota M, Clark HM, Jones DT, Lanzino G, Brown RD, Worrell GA, Lundstrom BN. Electroencephalogram (EEG) With or Without Transcranial Magnetic Stimulation (TMS) as Biomarkers for Post-stroke Recovery: A Narrative Review. Front Neurol 2022; 13:827866. [PMID: 35273559 PMCID: PMC8902309 DOI: 10.3389/fneur.2022.827866] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 01/20/2023] Open
Abstract
Stroke is one of the leading causes of death and disability. Despite the high prevalence of stroke, characterizing the acute neural recovery patterns that follow stroke and predicting long-term recovery remains challenging. Objective methods to quantify and characterize neural injury are still lacking. Since neuroimaging methods have a poor temporal resolution, EEG has been used as a method for characterizing post-stroke recovery mechanisms for various deficits including motor, language, and cognition as well as predicting treatment response to experimental therapies. In addition, transcranial magnetic stimulation (TMS), a form of non-invasive brain stimulation, has been used in conjunction with EEG (TMS-EEG) to evaluate neurophysiology for a variety of indications. TMS-EEG has significant potential for exploring brain connectivity using focal TMS-evoked potentials and oscillations, which may allow for the system-specific delineation of recovery patterns after stroke. In this review, we summarize the use of EEG alone or in combination with TMS in post-stroke motor, language, cognition, and functional/global recovery. Overall, stroke leads to a reduction in higher frequency activity (≥8 Hz) and intra-hemispheric connectivity in the lesioned hemisphere, which creates an activity imbalance between non-lesioned and lesioned hemispheres. Compensatory activity in the non-lesioned hemisphere leads mostly to unfavorable outcomes and further aggravated interhemispheric imbalance. Balanced interhemispheric activity with increased intrahemispheric coherence in the lesioned networks correlates with improved post-stroke recovery. TMS-EEG studies reveal the clinical importance of cortical reactivity and functional connectivity within the sensorimotor cortex for motor recovery after stroke. Although post-stroke motor studies support the prognostic value of TMS-EEG, more studies are needed to determine its utility as a biomarker for recovery across domains including language, cognition, and hemispatial neglect. As a complement to MRI-based technologies, EEG-based technologies are accessible and valuable non-invasive clinical tools in stroke neurology.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Samuel C. Buchl
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Nathan A. Seven
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Matej Markota
- Department of Psychiatry, Mayo Clinic, Rochester, MN, United States
| | - Heather M. Clark
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - David T. Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Giuseppe Lanzino
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Robert D. Brown
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | | |
Collapse
|
14
|
D'Imperio D, Romeo Z, Maistrello L, Durgoni E, Della Pietà C, De Filippo De Grazia M, Meneghello F, Turolla A, Zorzi M. Sensorimotor, Attentional, and Neuroanatomical Predictors of Upper Limb Motor Deficits and Rehabilitation Outcome after Stroke. Neural Plast 2021; 2021:8845685. [PMID: 33868400 PMCID: PMC8035034 DOI: 10.1155/2021/8845685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 11/23/2022] Open
Abstract
The rehabilitation of motor deficits following stroke relies on both sensorimotor and cognitive abilities, thereby involving large-scale brain networks. However, few studies have investigated the integration between motor and cognitive domains, as well as its neuroanatomical basis. In this retrospective study, upper limb motor responsiveness to technology-based rehabilitation was examined in a sample of 29 stroke patients (18 with right and 11 with left brain damage). Pretreatment sensorimotor and attentional abilities were found to influence motor recovery. Training responsiveness increased as a function of the severity of motor deficits, whereas spared attentional abilities, especially visuospatial attention, supported motor improvements. Neuroanatomical analysis of structural lesions and white matter disconnections showed that the poststroke motor performance was associated with putamen, insula, corticospinal tract, and frontoparietal connectivity. Motor rehabilitation outcome was mainly associated with the superior longitudinal fasciculus and partial involvement of the corpus callosum. The latter findings support the hypothesis that motor recovery engages large-scale brain networks that involve cognitive abilities and provides insight into stroke rehabilitation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marco Zorzi
- IRCCS San Camillo Hospital, Venice, Italy
- Department of General Psychology and Padova Neuroscience Center, University of Padova, Italy
| |
Collapse
|