1
|
Chidharom M, Carlisle NB. Distinct mechanisms of attentional suppression: exploration of trait factors underlying cued- and learned-suppression. Cogn Res Princ Implic 2024; 9:26. [PMID: 38691325 PMCID: PMC11063026 DOI: 10.1186/s41235-024-00554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Attention allows us to focus on relevant information while ignoring distractions. Effective suppression of distracting information is crucial for efficient visual search. Recent studies have developed two paradigms to investigate attentional suppression: cued-suppression which is based on top-down control, and learned-suppression which is based on selection history. While both types of suppression reportedly engage proactive control, it remains unclear whether they rely on shared mechanisms. This study aimed to determine the relationship between cued- and learned-suppression. In a within-subjects design, 54 participants performed a cued-suppression task where pre-cues indicated upcoming target or distractor colors, and a learned-suppression task where a salient color distractor was present or absent. No significant correlation emerged between performance in the two tasks, suggesting distinct suppression mechanisms. Cued-suppression correlated with visual working memory capacity, indicating reliance on explicit control. In contrast, learned-suppression correlated with everyday distractibility, suggesting implicit control based on regularities. These results provide evidence for heterogeneous proactive control mechanisms underlying cued- and learned-suppression. While both engage inhibition, cued-suppression relies on deliberate top-down control modulated by working memory, whereas learned-suppression involves implicit suppression shaped by selection history and distractibility traits.
Collapse
Affiliation(s)
- Matthieu Chidharom
- Department of Psychology, Lehigh University, 17 Memorial Drive, Bethlehem, PA, 18015, USA
| | - Nancy B Carlisle
- Department of Psychology, Lehigh University, 17 Memorial Drive, Bethlehem, PA, 18015, USA.
| |
Collapse
|
2
|
Alizadeh Mansouri F, Buckley MJ, Tanaka K. Mapping causal links between prefrontal cortical regions and intra-individual behavioral variability. Nat Commun 2024; 15:140. [PMID: 38168052 PMCID: PMC10762061 DOI: 10.1038/s41467-023-44341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Intra-individual behavioral variability is significantly heightened by aging or neuropsychological disorders, however it is unknown which brain regions are causally linked to such variabilities. We examine response time (RT) variability in 21 macaque monkeys performing a rule-guided decision-making task. In monkeys with selective-bilateral lesions in the anterior cingulate cortex (ACC) or in the dorsolateral prefrontal cortex, cognitive flexibility is impaired, but the RT variability is significantly diminished. Bilateral lesions within the frontopolar cortex or within the mid-dorsolateral prefrontal cortex, has no significant effect on cognitive flexibility or RT variability. In monkeys with lesions in the posterior cingulate cortex, the RT variability significantly increases without any deficit in cognitive flexibility. The effect of lesions in the orbitofrontal cortex (OFC) is unique in that it leads to deficits in cognitive flexibility and a significant increase in RT variability. Our findings indicate remarkable dissociations in contribution of frontal cortical regions to behavioral variability. They suggest that the altered variability in OFC-lesioned monkeys is related to deficits in assessing and accumulating evidence to inform a rule-guided decision, whereas in ACC-lesioned monkeys it results from a non-adaptive decrease in decision threshold and consequently immature impulsive responses.
Collapse
Affiliation(s)
- Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford, OX1 3UD, UK
| | - Keiji Tanaka
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
3
|
Prochnow A, Mückschel M, Eggert E, Senftleben J, Frings C, Münchau A, Roessner V, Bluschke A, Beste C. The Ability to Voluntarily Regulate Theta Band Activity Affects How Pharmacological Manipulation of the Catecholaminergic System Impacts Cognitive Control. Int J Neuropsychopharmacol 2024; 27:pyae003. [PMID: 38181228 PMCID: PMC10810285 DOI: 10.1093/ijnp/pyae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The catecholaminergic system influences response inhibition, but the magnitude of the impact of catecholaminergic manipulation is heterogeneous. Theoretical considerations suggest that the voluntary modulability of theta band activity can explain this variance. The study aimed to investigate to what extent interindividual differences in catecholaminergic effects on response inhibition depend on voluntary theta band activity modulation. METHODS A total of 67 healthy adults were tested in a randomized, double-blind, cross-over study design. At each appointment, they received a single dose of methylphenidate or placebo and performed a Go/Nogo task with stimuli of varying complexity. Before the first appointment, the individual's ability to modulate theta band activity was measured. Recorded EEG data were analyzed using temporal decomposition and multivariate pattern analysis. RESULTS Methylphenidate effects and voluntary modulability of theta band activity showed an interactive effect on the false alarm rates of the different Nogo conditions. The multivariate pattern analysis revealed that methylphenidate effects interacted with voluntary modulability of theta band activity at a stimulus processing level, whereas during response selection methylphenidate effects interacted with the complexity of the Nogo condition. CONCLUSIONS The findings reveal that the individual's theta band modulability affects the responsiveness of an individual's catecholaminergic system to pharmacological modulation. Thus, the impact of pharmacological manipulation of the catecholaminergic system on cognitive control most likely depends on the existing ability to self-modulate relevant brain oscillatory patterns underlying the cognitive processes being targeted by pharmacological modulations.
Collapse
Affiliation(s)
- Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Jessica Senftleben
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Frings
- Cognitive Psychology, Institute of Psychology, University of Trier, Trier, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
4
|
Kimura N, Hirano D, Yano H, Taniguchi K, Taniguchi T. Relationship between reaction time variability on go/no go tasks and neuropsychological functioning in younger and older adults. J Clin Exp Neuropsychol 2023; 45:905-914. [PMID: 38368621 DOI: 10.1080/13803395.2024.2319266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Early detection of cognitive impairment in older adults is important for the prevention of dementia. Intra-individual variability in reaction time (IIV-RT) during go/no-go tasks can be used for the early detection of cognitive impairment in older adults living in the community. This study aimed to determine the relationship between IIV-RT and cognitive function during go/no-go tasks and the cutoff values for determining the risk of cognitive impairment in community-dwelling older adults. METHODS This study included 31 older adults without cognitive impairment, 15 community-dwelling older adults with cognitive impairment, and 34 healthy young adults. All participants performed a go/no-go task to assess the IIV-RT. Additionally, older adults underwent neuropsychological testing. Based on the results of the Japanese version of the Montreal Test of Cognitive Abilities (MoCA-J), older adults were divided into those with normal cognition and those with cognitive impairment. RESULTS There were significant differences in the IIV-RT among groups, including a higher IIV in the cognitively impaired group than in young adults and cognitively normal older adults. Moreover, the IIV-RT was correlated with the MoCA-J (r = -0.531, p < 0.001), Trail Making Test Part A (r = 0.571, p < 0.001), and Verbal Fluency Test scores (r = -0.442, p = 0.002). Receiver operating curve analysis showed that the area under the curve for IIV-RT was 0.935, and the cutoff value at which the IIV-RT identified cognitive impairment was 25.37%. CONCLUSIONS These findings indicate that the IIV-RT during go/no-go tasks is a useful early indicator of cognitive impairment in community-dwelling older adults.
Collapse
Affiliation(s)
- Naotoshi Kimura
- Department of Occupational Therapy, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, Japan
| | - Daisuke Hirano
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Tochigi, Japan
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Tokyo, Japan
| | - Hana Yano
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Keita Taniguchi
- Department of Psychiatry and Neuroscience, Keio University Graduate School of Medicine, Tokyo, Japan
| | - Takamichi Taniguchi
- Department of Occupational Therapy, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, Japan
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
5
|
Clemente L, La Rocca M, Quaranta N, Iannuzzi L, Vecchio E, Brunetti A, Gentile E, Dibattista M, Lobasso S, Bevilacqua V, Stramaglia S, de Tommaso M. Prefrontal dysfunction in post-COVID-19 hyposmia: an EEG/fNIRS study. Front Hum Neurosci 2023; 17:1240831. [PMID: 37829821 PMCID: PMC10564993 DOI: 10.3389/fnhum.2023.1240831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Subtle cognitive dysfunction and mental fatigue are frequent after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, characterizing the so-called long COVID-19 syndrome. This study aimed to correlate cognitive, neurophysiological, and olfactory function in a group of subjects who experienced acute SARS-CoV-2 infection with persistent hyposmia at least 12 weeks before the observation. Methods For each participant (32 post-COVID-19 patients and 16 controls), electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) data were acquired using an integrated EEG-fNIRS system during the execution of a P300 odd-ball task and a Stroop test. The Sniffin' Sticks test was conducted to assess subjects' olfactory performance. The Montreal Cognitive Assessment (MoCA) and the Frontal Assessment Battery (FAB) were also administered. Results The post-COVID-19 group consisted of 32 individuals (20 women and 12 men) with an average education level of 12.9 ± 3.12 years, while the control group consisted of 16 individuals (10 women and 6 men) with an average education level of 14.9 ± 3.2 years. There were no significant differences in gender (X2 = 0, p = 1) or age between the two groups (age 44.81 ± 13.9 vs. 36.62 ± 11.4, p = 0.058). We identified a lower concentration of oxyhemoglobin (p < 0.05) at the prefrontal cortical level in post-COVID-19 subjects during the execution of the Stroop task, as well as a reduction in the amplitude of the P3a response. Moreover, we found that post-COVID-19 subjects performed worst at the MoCA screening test (p = 0.001), Sniffin's Sticks test (p < 0.001), and Stroop task response latency test (p < 0.001). Conclusions This study showed that post-COVID-19 patients with persistent hyposmia present mild deficits in prefrontal function, even 4 months after the end of the infection. These deficits, although subtle, could have long-term implications for quality of life and cognitive wellbeing. It is essential to continue monitoring and evaluating these patients to better understand the extent and duration of cognitive impairments associated with long COVID-19.
Collapse
Affiliation(s)
- Livio Clemente
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Marianna La Rocca
- M. Merlin Inter-university Physics Department, University of Bari, Bari, Italy
- Laboratory of Neuroimaging, Keck School of Medicine of USC, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Nicola Quaranta
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Lucia Iannuzzi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Vecchio
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Antonio Brunetti
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Bari, Italy
| | - Eleonora Gentile
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Michele Dibattista
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Simona Lobasso
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Vitoantonio Bevilacqua
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Bari, Italy
| | | | - Marina de Tommaso
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
Chidharom M, Bonnefond A. Mind-wandering does not always rhyme with proactive functioning! Changes in the temporal dynamics of the mPFC-mediated theta oscillations during moments of mind-wandering. Biol Psychol 2023; 181:108598. [PMID: 37269897 DOI: 10.1016/j.biopsycho.2023.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
The reduced engagement of the cognitive control network has been documented widely during mind-wandering (MW). However, it remains unknown how MW affects the neural dynamics of cognitive control processes. From this perspective, we explored neural dynamics mediated by the medial prefrontal cortex (mPFC). Their engagement can be both transient (or reactive) and anticipated (or proactive). A total of fortyseven healthy subjects (37 females) were engaged in a long-lasting sustained-attention Go/NoGo task. Subjective probes were used to detect MW episodes. Channel-based EEG time-frequency analysis was performed to measure the theta oscillations, an index of the mPFC activity. The theta oscillations were computed immediately after conflictual NoGo trials to explore the reactive engagement of the mPFC. Proactive control was measured on the Go trials preceded the NoGo. Behaviorally, periods of MW were associated with an increase in errors and in RT variability in comparison to on-task periods. The analysis of the frontal midline theta power (MFθ) revealed that MW periods were associated with lower anticipated/proactive engagement and similar transient/reactive engagement of mPFC-mediated processes. Moreover, the communication between the mPFC and the DLPFC, as revealed by the poorer theta synchronization between these two regions, was also impaired during MW periods. Our results provide new insights about performance impairment during MW. They could be an important step in improving the existing understanding of the altered performances that are reported for some disorders that are known to be associated with excessive MW.
Collapse
Affiliation(s)
- Matthieu Chidharom
- Department of Psychology, Lehigh University, Bethlehem 18015, PA, USA; INSERM U1114, Strasbourg 67085, France; University of Strasbourg, Strasbourg 67081, France.
| | - Anne Bonnefond
- INSERM U1114, Strasbourg 67085, France; University of Strasbourg, Strasbourg 67081, France
| |
Collapse
|