1
|
Chen Y, Bai J, Shi N, Jiang Y, Chen X, Ku Y, Gao X. Intermodulation frequency components in steady-state visual evoked potentials: Generation, characteristics and applications. Neuroimage 2024; 303:120937. [PMID: 39550056 DOI: 10.1016/j.neuroimage.2024.120937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
The steady-state visual evoked potentials (SSVEPs), evoked by dual-frequency or multi-frequency stimulation, likely contains intermodulation frequency components (IMs). Visual IMs are products of nonlinear integration of neural signals and can be evoked by various paradigms that induce neural interaction. IMs have demonstrated many interesting and important characteristics in cognitive psychology, clinical neuroscience, brain-computer interface and other fields, and possess substantial research potential. In this paper, we first review the definition of IMs and summarize the stimulation paradigms capable of inducing them, along with the possible neural origins of IMs. Subsequently, we describe the characteristics and derived applications of IMs in previous studies, and then introduced three signal processing methods favored by researchers to enhance the signal-to-noise ratio of IMs. Finally, we summarize the characteristics of IMs, and propose several potential future research directions related to IMs.
Collapse
Affiliation(s)
- Yuzhen Chen
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
| | - Jiawen Bai
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
| | - Nanlin Shi
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
| | - Yunpeng Jiang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China.
| | - Xiaorong Gao
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Heitmann C, Zhan M, Linke M, Hölig C, Kekunnaya R, van Hoof R, Goebel R, Röder B. Early visual experience refines the retinotopic organization within and across visual cortical regions. Curr Biol 2023; 33:4950-4959.e4. [PMID: 37918397 DOI: 10.1016/j.cub.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Early visual areas are retinotopically organized in human and non-human primates. Population receptive field (pRF) size increases with eccentricity and from lower- to higher-level visual areas. Furthermore, the cortical magnification factor (CMF), a measure of how much cortical space is devoted to each degree of visual angle, is typically larger for foveal as opposed to peripheral regions of the visual field. Whether this fine-scale organization within and across visual areas depends on early visual experience has yet been unknown. Here, we employed 7T functional magnetic resonance imaging pRF mapping to assess the retinotopic organization of early visual regions (i.e., V1, V2, and V3) in eight sight recovery individuals with a history of congenital blindness until a maximum of 4 years of age. Compared with sighted controls, foveal pRF sizes in these individuals were larger, and pRF sizes did not show the typical increase with eccentricity and down the visual cortical processing stream (V1-V2-V3). Cortical magnification was overall diminished and decreased less from foveal to parafoveal visual field locations. Furthermore, cortical magnification correlated with visual acuity in sight recovery individuals. The results of this study suggest that early visual experience is essential for refining a presumably innate prototypical retinotopic organization in humans within and across visual areas, which seems to be crucial for acquiring full visual capabilities.
Collapse
Affiliation(s)
- Carolin Heitmann
- Biological Psychology and Neuropsychology Lab, Faculty of Psychology and Movement Sciences, Universität Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany.
| | - Minye Zhan
- U992 (Cognitive neuroimaging unit), NeuroSpin, INSERM-CEA, 91191 Gif sur Yvette, France
| | - Madita Linke
- Biological Psychology and Neuropsychology Lab, Faculty of Psychology and Movement Sciences, Universität Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| | - Cordula Hölig
- Biological Psychology and Neuropsychology Lab, Faculty of Psychology and Movement Sciences, Universität Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| | - Ramesh Kekunnaya
- U992 (Cognitive neuroimaging unit), NeuroSpin, INSERM-CEA, 91191 Gif sur Yvette, France
| | - Rick van Hoof
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Department of Development and Research, Brain Innovation B.V., Oxfordlaan 55, 6229 EV Maastricht, the Netherlands
| | - Brigitte Röder
- Biological Psychology and Neuropsychology Lab, Faculty of Psychology and Movement Sciences, Universität Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany; Child Sight Institute, Jasti V. Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India.
| |
Collapse
|
3
|
Chen Y, You W, Hu Y, Chu H, Chen X, Shi W, Gao X. EEG measurement for the effect of perceptual eye position and eye position training on comitant strabismus. Cereb Cortex 2023; 33:10194-10206. [PMID: 37522301 PMCID: PMC10502583 DOI: 10.1093/cercor/bhad275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
One of the clinical features of comitant strabismus is that the deviation angles in the first and second eye positions are equal. However, there has been no report of consistency in the electroencephalography (EEG) signals between the 2 positions. In order to address this issue, we developed a new paradigm based on perceptual eye position. We collected steady-state visual evoked potentials (SSVEPs) signals and resting-state EEG data before and after the eye position training. We found that SSVEP signals could characterize the suppression effect and eye position effect of comitant strabismus, that is, the SSVEP response of the dominant eye was stronger than that of the strabismus eye in the first eye position but not in the second eye position. Perceptual eye position training could modulate the frequency band activities in the occipital and surrounding areas. The changes in the visual function of comitant strabismus after training could also be characterized by SSVEP. There was a correlation between intermodulation frequency, power of parietal electrodes, and perceptual eye position, indicating that EEG might be a potential indicator for evaluating strabismus visual function.
Collapse
Affiliation(s)
- Yuzhen Chen
- Shenzhen International Graduate School, Tsinghua University, Nanshan District, Shenzhen 518055, China
| | - Weicong You
- Shenzhen International Graduate School, Tsinghua University, Nanshan District, Shenzhen 518055, China
| | - Yijun Hu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
| | - Hang Chu
- The National Engineering Research Center for Healthcare Devices, Tianhe District, Guangzhou 510500, China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai District, Tianjin 300192, China
| | - Wei Shi
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, Xicheng District, Beijing 100045, China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
| |
Collapse
|
4
|
Ossandón JP, Stange L, Gudi-Mindermann H, Rimmele JM, Sourav S, Bottari D, Kekunnaya R, Röder B. The development of oscillatory and aperiodic resting state activity is linked to a sensitive period in humans. Neuroimage 2023; 275:120171. [PMID: 37196987 DOI: 10.1016/j.neuroimage.2023.120171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
Congenital blindness leads to profound changes in electroencephalographic (EEG) resting state activity. A well-known consequence of congenital blindness in humans is the reduction of alpha activity which seems to go together with increased gamma activity during rest. These results have been interpreted as indicating a higher excitatory/inhibitory (E/I) ratio in visual cortex compared to normally sighted controls. Yet it is unknown whether the spectral profile of EEG during rest would recover if sight were restored. To test this question, the present study evaluated periodic and aperiodic components of the EEG resting state power spectrum. Previous research has linked the aperiodic components, which exhibit a power-law distribution and are operationalized as a linear fit of the spectrum in log-log space, to cortical E/I ratio. Moreover, by correcting for the aperiodic components from the power spectrum, a more valid estimate of the periodic activity is possible. Here we analyzed resting state EEG activity from two studies involving (1) 27 permanently congenitally blind adults (CB) and 27 age-matched normally sighted controls (MCB); (2) 38 individuals with reversed blindness due to bilateral, dense, congenital cataracts (CC) and 77 age-matched sighted controls (MCC). Based on a data driven approach, aperiodic components of the spectra were extracted for the low frequency (Lf-Slope 1.5 to 19.5 Hz) and high frequency (Hf-Slope 20 to 45 Hz) range. The Lf-Slope of the aperiodic component was significantly steeper (more negative slope), and the Hf-Slope of the aperiodic component was significantly flatter (less negative slope) in CB and CC participants compared to the typically sighted controls. Alpha power was significantly reduced, and gamma power was higher in the CB and the CC groups. These results suggest a sensitive period for the typical development of the spectral profile during rest and thus likely an irreversible change in the E/I ratio in visual cortex due to congenital blindness. We speculate that these changes are a consequence of impaired inhibitory circuits and imbalanced feedforward and feedback processing in early visual areas of individuals with a history of congenital blindness.
Collapse
Affiliation(s)
- José P Ossandón
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany.
| | - Liesa Stange
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Helene Gudi-Mindermann
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany; Institute of Public Health and Nursing Research, University of Bremen, Bremen, Germany
| | - Johanna M Rimmele
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Frankfurt, Germany; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck NYU Center for Language, Music, and Emotion Frankfurt am Main, Germany, New York, NY, USA
| | - Suddha Sourav
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Davide Bottari
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany; IMT School for Advanced Studies Lucca, Italy
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany; Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
5
|
Pant R, Ossandón J, Stange L, Shareef I, Kekunnaya R, Röder B. Stimulus-evoked and resting-state alpha oscillations show a linked dependence on patterned visual experience for development. Neuroimage Clin 2023; 38:103375. [PMID: 36963312 PMCID: PMC10064270 DOI: 10.1016/j.nicl.2023.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Persistent visual impairments after congenital blindness due to dense bilateral cataracts have been attributed to altered visual cortex development within a sensitive period. Occipital alpha (8-14 Hz) oscillations were found to be reduced after congenital cataract reversal, while participants performed visual motion tasks. However, it has been unclear whether reduced alpha oscillations were task-specific, or linked to impaired visual behavior in cataract-reversed individuals. Here, we compared resting-state and stimulus-evoked alpha activity between individuals who had been treated for dense bilateral congenital cataracts (CC, n = 13, mean duration of blindness = 11.0 years) and age-matched, normally sighted individuals (SC, n = 13). We employed the visual impulse response function, adapted from VanRullen and MacDonald (2012), to test for the characteristic alpha response to visual white noise. Participants observed white noise stimuli changing in luminance with equal power at frequencies between 0 and 30 Hz. Compared to SC individuals, CC individuals demonstrated a reduced likelihood of exhibiting an evoked alpha response. Moreover, stimulus-evoked alpha power was reduced and correlated with a corresponding reduction of resting-state alpha power in the same CC individuals. Finally, CC individuals with an above-threshold evoked alpha peak had better visual acuity than CC individual without an evoked alpha peak. Since alpha oscillations have been linked to feedback communication, we suggest that the concurrent impairment in resting-state and stimulus-evoked alpha oscillations indicates an altered interaction of top-down and bottom-up processing in the visual hierarchy, which likely contributes to incomplete behavioral recovery in individuals who experienced transient congenital blindness.
Collapse
Affiliation(s)
- Rashi Pant
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany.
| | - José Ossandón
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| | - Liesa Stange
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| | - Idris Shareef
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, LV Prasad Eye Institute, 500034 Hyderabad, India; Department of Psychology, University of Nevada, 1664 N Virginia St, Reno, NV 89557, United States
| | - Ramesh Kekunnaya
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, LV Prasad Eye Institute, 500034 Hyderabad, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Ossandón JP, Zerr P, Shareef I, Kekunnaya R, Röder B. Active vision in sight recovery individuals with a history of long-lasting congenital blindness. eNeuro 2022; 9:ENEURO.0051-22.2022. [PMID: 36163106 PMCID: PMC9532021 DOI: 10.1523/eneuro.0051-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
What we see is intimately linked to how we actively and systematically explore the world through eye movements. However, it is unknown to what degree visual experience during early development is necessary for such systematic visual exploration to emerge. The present study investigated visual exploration behavior in ten human participants whose sight had been restored only in childhood or adulthood, after a period of congenital blindness due to dense bilateral congenital cataracts. Participants freely explored real-world images while their eye movements were recorded. Despite severe residual visual impairments and gaze instability (nystagmus), visual exploration patterns were preserved in individuals with reversed congenital cataract. Modelling analyses indicated that similar to healthy controls, visual exploration in individuals with reversed congenital cataract was based on the low-level (luminance contrast) and high-level (object components) visual content of the images. Moreover, participants used visual short-term memory representations for narrowing down the exploration space. More systematic visual exploration in individuals with reversed congenital cataract was associated with better object recognition, suggesting that active vision might be a driving force for visual system development and recovery. The present results argue against a sensitive period for the development of neural mechanisms associated with visual exploration.SIGNIFICANCE STATEMENTHumans explore the visual world with systematic patterns of eye movements, but it is unknown whether early visual experience is necessary for the acquisition of visual exploration. Here, we show that sight recovery individuals who had been born blind demonstrate highly systematic eye movements while exploring real-world images, despite visual impairments and pervasive gaze instability. In fact, their eye movement patterns were predicted by those of normally sighted controls and models calculating eye movements based on low- and high-level visual features, and they moreover took memory information into account. Since object recognition performance was associated with systematic visual exploration it was concluded that eye movements might be a driving factor for the development of the visual system.
Collapse
Affiliation(s)
- José P Ossandón
- Biological Psychology and Neuropsychology, Hamburg University, Hamburg, Germany
| | - Paul Zerr
- Biological Psychology and Neuropsychology, Hamburg University, Hamburg, Germany
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Idris Shareef
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, India
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, Hamburg University, Hamburg, Germany
| |
Collapse
|