1
|
Le Goff A, Louvel S, Boullier H, Allard P. Toxicoepigenetics for Risk Assessment: Bridging the Gap Between Basic and Regulatory Science. Epigenet Insights 2022; 15:25168657221113149. [PMID: 35860623 PMCID: PMC9290111 DOI: 10.1177/25168657221113149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Toxicoepigenetics examines the health effects of environmental exposure associated with, or mediated by, changes in the epigenome. Despite high expectations, toxicoepigenomic data and methods have yet to become significantly utilized in chemical risk assessment. This article draws on a social science framework to highlight hitherto overlooked structural barriers to the incorporation of toxicoepigenetics in risk assessment and to propose ways forward. The present barriers stem not only from the lack of maturity of the field but also from differences in constraints and standards between the data produced by toxicoepigenetics and the regulatory science data that risk assessment processes require. Criteria and strategies that frame the validation of knowledge used for regulatory purposes limit the application of basic research in toxicoepigenetics toward risk assessment. First, the need in regulatory toxicology for standardized methods that form a consensus between regulatory agencies, basic research, and the industry conflicts with the wealth of heterogeneous data in toxicoepigenetics. Second, molecular epigenetic data do not readily translate into typical toxicological endpoints. Third, toxicoepigenetics investigates new forms of toxicity, in particular low-dose and long-term effects, that do not align well with the traditional framework of regulatory toxicology. We propose that increasing the usefulness of epigenetic data for risk assessment will require deliberate efforts on the part of the toxicoepigenetics community in 4 areas: fostering the understanding of epigenetics among risk assessors, developing knowledge infrastructure to demonstrate applicability, facilitating the normalization and exchange of data, and opening the field to other stakeholders.
Collapse
Affiliation(s)
- Anne Le Goff
- The Institute for Society and Genetics and The EpiCenter, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Séverine Louvel
- Université Grenoble Alpes, CNRS, Sciences Po Grenoble, PACTE, Grenoble, France and Institut Universitaire de France, Paris, France
| | - Henri Boullier
- Centre National de la Recherche Scientifique, IRISSO, Université Paris-Dauphine—PSL, Paris, France
| | - Patrick Allard
- The Institute for Society and Genetics and The EpiCenter, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
2
|
Ghazimoradi MM, Ghorbani MH, Ebadian E, Hassani A, Mirzababaei S, Hodjat M, Navaei-Nigjeh M, Abdollahi M. Epigenetic effects of graphene oxide and its derivatives: A mini-review. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503483. [PMID: 35649677 DOI: 10.1016/j.mrgentox.2022.503483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide (GO), an engineered nanomaterial, has a two-dimensional structure with carbon atoms arranged in a hexagonal array. While it has been widely used in many industries, such as biomedicine, electronics, and biosensors, there are still concerns over its safety. Recently, many studies have focused on the potential toxicity of GO. Epigenetic toxicity is an important aspect of a material's toxicological profile, since changes in gene expression have been associated with carcinogenicity and disease progression. In this review, we focus on the epigenetic alterations caused by GO, including DNA methylation, histone modification, and altered expression of non-coding RNAs. GO can affect DNA methyltransferase activity and disrupt the methylation of cytosine bases in DNA strands, leading to alteration of genome expression. Modulation of histones by GO, targeting histone deacetylase and demethylase, as well as dysregulation of miRNA and lncRNA expression have been reported. Further studies are required to determine the mechanisms of GO-induced epigenetic alterations.
Collapse
Affiliation(s)
- Mohammad Mahdi Ghazimoradi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Hossein Ghorbani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ehsan Ebadian
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheyl Mirzababaei
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
3
|
Johnson KJ, Costa E, Marshall V, Sriram S, Venkatraman A, Stebbins K, LaRocca J. A microRNA or messenger RNA point of departure estimates an apical endpoint point of departure in a rat developmental toxicity model. Birth Defects Res 2022; 114:559-576. [PMID: 35596682 PMCID: PMC9324934 DOI: 10.1002/bdr2.2046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Traditional developmental toxicity testing practice examines fetal apical endpoints to identify a point of departure (POD) for risk assessment. A potential new testing paradigm involves deriving a POD from a comprehensive analysis of molecular-level change. Here, the rat ketoconazole endocrine-mediated developmental toxicity model was used to test the hypothesis that maternal epigenomic (miRNA) and transcriptomic (mRNA) PODs are similar to fetal apical endpoint PODs. Sprague-Dawley rats were exposed from gestation day (GD) 6-21 to 0, 0.063, 0.2, 0.63, 2, 6.3, 20, or 40 mg/kg/day ketoconazole. Dam systemic, liver, and placenta PODs, along with GD 21 fetal resorption, body weight, and skeletal apical PODs were derived using BMDS software. GD 21 dam liver and placenta miRNA and mRNA PODs were obtained using three methods: a novel individual molecule POD accumulation method, a first mode method, and a gene set method. Dam apical POD values ranged from 2.0 to 38.6 mg/kg/day; the lowest value was for placenta histopathology. Fetal apical POD values were 10.9-20.3 mg/kg/day; the lowest value was for fetal resorption. Dam liver miRNA and mRNA POD values were 0.34-0.69 mg/kg/day, and placenta miRNA and mRNA POD values were 2.53-6.83 mg/kg/day. Epigenomic and transcriptomic POD values were similar across liver and placenta. Deriving a molecular POD from dam liver or placenta was protective of a fetal apical POD. These data support the conclusion that a molecular POD can be used to estimate, or be protective of, a developmental toxicity apical POD.
Collapse
Affiliation(s)
| | | | - Valerie Marshall
- Labcorp Early Development Laboratories, Inc., Greenfield, Indiana, USA
| | | | | | | | | |
Collapse
|
4
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
5
|
Clark J, Avula V, Ring C, Eaves LA, Howard T, Santos HP, Smeester L, Bangma JT, O’Shea TM, Fry RC, Rager JE. Comparing the Predictivity of Human Placental Gene, microRNA, and CpG Methylation Signatures in Relation to Perinatal Outcomes. Toxicol Sci 2021; 183:269-284. [PMID: 34255065 PMCID: PMC8478332 DOI: 10.1093/toxsci/kfab089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Molecular signatures are being increasingly integrated into predictive biology applications. However, there are limited studies comparing the overall predictivity of transcriptomic versus epigenomic signatures in relation to perinatal outcomes. This study set out to evaluate mRNA and microRNA (miRNA) expression and cytosine-guanine dinucleotide (CpG) methylation signatures in human placental tissues and relate these to perinatal outcomes known to influence maternal/fetal health; namely, birth weight, placenta weight, placental damage, and placental inflammation. The following hypotheses were tested: (1) different molecular signatures will demonstrate varying levels of predictivity towards perinatal outcomes, and (2) these signatures will show disruptions from an example exposure (ie, cadmium) known to elicit perinatal toxicity. Multi-omic placental profiles from 390 infants in the Extremely Low Gestational Age Newborns cohort were used to develop molecular signatures that predict each perinatal outcome. Epigenomic signatures (ie, miRNA and CpG methylation) consistently demonstrated the highest levels of predictivity, with model performance metrics including R2 (predicted vs observed) values of 0.36-0.57 for continuous outcomes and balanced accuracy values of 0.49-0.77 for categorical outcomes. Top-ranking predictors included miRNAs involved in injury and inflammation. To demonstrate the utility of these predictive signatures in screening of potentially harmful exogenous insults, top-ranking miRNA predictors were analyzed in a separate pregnancy cohort and related to cadmium. Key predictive miRNAs demonstrated altered expression in association with cadmium exposure, including miR-210, known to impact placental cell growth, blood vessel development, and fetal weight. These findings inform future predictive biology applications, where additional benefit will be gained by including epigenetic markers.
Collapse
Affiliation(s)
- Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Vennela Avula
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | - Lauren A Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Thomas Howard
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Hudson P Santos
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Biobehavioral Laboratory, School of Nursing, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jacqueline T Bangma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Thomas Michael O’Shea
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Maksimova V, Shalginskikh N, Vlasova O, Usalka O, Beizer A, Bugaeva P, Fedorov D, Lizogub O, Lesovaya E, Katz R, Belitsky G, Kirsanov K, Yakubovskaya M. HeLa TI cell-based assay as a new approach to screen for chemicals able to reactivate the expression of epigenetically silenced genes. PLoS One 2021; 16:e0252504. [PMID: 34115770 PMCID: PMC8195432 DOI: 10.1371/journal.pone.0252504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/17/2021] [Indexed: 11/18/2022] Open
Abstract
Chemicals reactivating epigenetically silenced genes target diverse classes of enzymes, including DNMTs, HDACs, HMTs and BET protein family members. They can strongly influence the expression of genes and endogenous retroviral elements with concomitant dsRNA synthesis and massive transcription of LTRs. Chemicals reactivating gene expression may cause both beneficial effects in cancer cells and may be hazardous by promoting carcinogenesis. Among chemicals used in medicine and commerce, only a small fraction has been studied with respect to their influence on epigenetic silencing. Screening of chemicals reactivating silent genes requires adequate systems mimicking whole-genome processes. We used a HeLa TSA-inducible cell population (HeLa TI cells) obtained by retroviral infection of a GFP-containing vector followed by several rounds of cell sorting for screening purposes. Previously, the details of GFP epigenetic silencing in HeLa TI cells were thoroughly described. Herein, we show that the epigenetically repressed gene GFP is reactivated by 15 agents, including HDAC inhibitors–vorinostat, sodium butyrate, valproic acid, depsipeptide, pomiferin, and entinostat; DNMT inhibitors–decitabine, 5-azacytidine, RG108; HMT inhibitors–UNC0638, BIX01294, DZNep; a chromatin remodeler–curaxin CBL0137; and BET inhibitors–JQ-1 and JQ-35. We demonstrate that combinations of epigenetic modulators caused a significant increase in cell number with reactivated GFP compared to the individual effects of each agent. HeLa TI cells are competent to metabolize xenobiotics and possess constitutively expressed and inducible cytochrome P450 mono-oxygenases involved in xenobiotic biotransformation. Thus, HeLa TI cells may be used as an adequate test system for the extensive screening of chemicals, including those that must be metabolically activated. Studying the additional metabolic activation of xenobiotics, we surprisingly found that the rat liver S9 fraction, which has been widely used for xenobiotic activation in genotoxicity tests, reactivated epigenetically silenced genes. Applying the HeLa TI system, we show that N-nitrosodiphenylamine and N-nitrosodimethylamine reactivate epigenetically silenced genes, probably by affecting DNA methylation.
Collapse
Affiliation(s)
- Varvara Maksimova
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- * E-mail:
| | - Natalya Shalginskikh
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Fox Chase Cancer Center, Temple University, Philadelphia, PA, United States of America
| | - Olga Vlasova
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Olga Usalka
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- International School "Medicine of the Future", Sechenov University, Moscow, Russia
| | - Anastasia Beizer
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Polina Bugaeva
- Department of Translational Neurobiology, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany
| | - Dmitry Fedorov
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Department of Urology, A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, Russia
| | - Olga Lizogub
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- International School "Medicine of the Future", Sechenov University, Moscow, Russia
| | - Ekaterina Lesovaya
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Department of Oncology, Ryazan State Medical University, Ryazan, Russia
| | - Richard Katz
- Fox Chase Cancer Center, Temple University, Philadelphia, PA, United States of America
| | - Gennady Belitsky
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Kirill Kirsanov
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Department of General and Medical Practice, Medical Institute, The Peoples’ Friendship University of Russia, Moscow, Russia
| | - Marianna Yakubovskaya
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
7
|
Johnson KJ, Auerbach SS, Costa E. A Rat Liver Transcriptomic Point of Departure Predicts a Prospective Liver or Non-liver Apical Point of Departure. Toxicol Sci 2020; 176:86-102. [PMID: 32384157 PMCID: PMC7357187 DOI: 10.1093/toxsci/kfaa062] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identifying a toxicity point of departure (POD) is a required step in human health risk characterization of crop protection molecules, and this POD has historically been derived from apical endpoints across a battery of animal-based toxicology studies. Using rat transcriptome and apical data for 79 molecules obtained from Open TG-GATES (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System) (632 datasets), the hypothesis was tested that a short-term exposure, transcriptome-based liver biological effect POD (BEPOD) could estimate a longer-term exposure "systemic" apical endpoint POD. Apical endpoints considered were body weight, clinical observation, kidney weight and histopathology and liver weight and histopathology. A BMDExpress algorithm using Gene Ontology Biological Process gene sets was optimized to derive a liver BEPOD most predictive of a systemic apical POD. Liver BEPODs were stable from 3 h to 29 days of exposure; the median fold difference of the 29-day BEPOD to BEPODs from earlier time points was approximately 1 (range: 0.7-1.1). Strong positive correlation (Pearson R = 0.86) and predictive accuracy (root mean square difference = 0.41) were observed between a concurrent (29 days) liver BEPOD and the systemic apical POD. Similar Pearson R and root mean square difference values were observed for comparisons between a 29-day systemic apical POD and liver BEPODs derived from 3 h to 15 days of exposure. These data across 79 molecules suggest that a longer-term exposure study apical POD from liver and non-liver compartments can be estimated using a liver BEPOD derived from an acute or subacute exposure study.
Collapse
Affiliation(s)
- Kamin J Johnson
- Predictive Safety Center, Corteva Agriscience, Indianapolis, Indiana
| | - Scott S Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Eduardo Costa
- Data Science and Informatics, Corteva Agriscience, Mogi Mirim, Sao Paulo, Brazil
| |
Collapse
|
8
|
Finding synergies for the 3Rs – Repeated Dose Toxicity testing: Report from an EPAA Partners' Forum. Regul Toxicol Pharmacol 2019; 108:104470. [DOI: 10.1016/j.yrtph.2019.104470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 08/30/2019] [Indexed: 11/21/2022]
|