1
|
Recent Advances in Cancer Vaccines: Challenges, Achievements, and Futuristic Prospects. Vaccines (Basel) 2022; 10:vaccines10122011. [PMID: 36560420 PMCID: PMC9788126 DOI: 10.3390/vaccines10122011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a chronic disease, and it can be lethal due to limited therapeutic options. The conventional treatment options for cancer have numerous challenges, such as a low blood circulation time as well as poor solubility of anticancer drugs. Therapeutic cancer vaccines emerged to try to improve anticancer drugs' efficiency and to deliver them to the target site. Cancer vaccines are considered a viable therapeutic technique for most solid tumors. Vaccines boost antitumor immunity by delivering tumor antigens, nucleic acids, entire cells, and peptides. Cancer vaccines are designed to induce long-term antitumor memory, causing tumor regression, eradicate minimal residual illness, and prevent non-specific or unpleasant effects. These vaccines can assist in the elimination of cancer cells from various organs or organ systems in the body, with minimal risk of tumor recurrence or metastasis. Vaccines and antigens for anticancer therapy are discussed in this review, including current vaccine adjuvants and mechanisms of action for various types of vaccines, such as DNA- or mRNA-based cancer vaccines. Potential applications of these vaccines focusing on their clinical use for better therapeutic efficacy are also discussed along with the latest research available in this field.
Collapse
|
2
|
Tu Q, Feng W, Chen Z, Li Q, Zhao Y, Chen J, Jiang P, Xue X, Zhang L, Zhao KN. Characterization of Episomal Replication of Bovine Papillomavirus Type 1 DNA in Long-Term Virion-Infected Saccharomyces Cerevisiae Culture. Virol Sin 2021; 36:1492-1502. [PMID: 34460066 PMCID: PMC8692549 DOI: 10.1007/s12250-021-00439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
We have previously reported that bovine papillomavirus type 1 (BPV-1) DNA can replicate its genome and produce infectious virus-like particles in short term virion-infected S. cerevisiae (budding yeast) cultures (Zhao and Frazer 2002, Journal of Virology, 76:3359–64 and 76:12265–73). Here, we report the episomal replications of BPV-1 DNA in long term virion-infected S. cerevisiae culture up to 108 days. Episomal replications of the BPV-1 DNA could be divided into three patterns at three stages, early active replication (day 3–16), middle weak replication (day 23–34/45) and late stable replication (day 45–82). Two-dimensional gel electrophoresis analysis and Southern blot hybridization have revealed further that multiple replication intermediates of BPV-1 DNA including linear form, stranded DNA, monomers and higher oligomers were detected in the virion-infected yeast cells over the time course. Higher oligomers shown as covalently closed circular DNAs (cccDNAs) are the most important replication intermediates that serve as the main nuclear transcription template for producing all viral RNAs in the viral life cycle. In this study, the cccDNAs were generated at the early active replication stage with the highest frequencies and then at late stable replication, but they appeared to be suppressed at the middle weak replication. Our data provided a novel insight that BPV-1 genomic DNA could replicate episomally for the long period and produce the key replication intermediates cccDNAs in S. cerevisiae system.
Collapse
Affiliation(s)
- Quanmei Tu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Weixu Feng
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhuo Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qijia Li
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China.,Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Pengfei Jiang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiangyang Xue
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Kong-Nan Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China. .,Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, 4067, Australia.
| |
Collapse
|
3
|
Sun C, Chen XC, Kang YF, Zeng MS. The Status and Prospects of Epstein-Barr Virus Prophylactic Vaccine Development. Front Immunol 2021; 12:677027. [PMID: 34168649 PMCID: PMC8218244 DOI: 10.3389/fimmu.2021.677027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Epstein–Barr virus (EBV) is a human herpesvirus that is common among the global population, causing an enormous disease burden. EBV can directly cause infectious mononucleosis and is also associated with various malignancies and autoimmune diseases. In order to prevent primary infection and subsequent chronic disease, efforts have been made to develop a prophylactic vaccine against EBV in recent years, but there is still no vaccine in clinical use. The outbreak of the COVID-19 pandemic and the global cooperation in vaccine development against SARS-CoV-2 provide insights for next-generation antiviral vaccine design and opportunities for developing an effective prophylactic EBV vaccine. With improvements in antigen selection, vaccine platforms, formulation and evaluation systems, novel vaccines against EBV are expected to elicit dual protection against infection of both B lymphocytes and epithelial cells. This would provide sustainable immunity against EBV-associated malignancies, finally enabling the control of worldwide EBV infection and management of EBV-associated diseases.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Xin-Chun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Ni G, Liao Z, Chen S, Wang T, Yuan J, Pan X, Mounsey K, Cavezza S, Liu X, Wei MQ. Blocking IL-10 signalling at the time of immunization does not increase unwanted side effects in mice. BMC Immunol 2017; 18:40. [PMID: 28810829 PMCID: PMC5557397 DOI: 10.1186/s12865-017-0224-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/01/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cancer therapeutic vaccine induced cytotoxic T cell (CTL) responses are pivotal for the killing of tumour cells. Blocking interleukin 10 (IL-10) signalling at the time of immunization increases vaccine induced CTL responses and improves prevention of tumour growth in animal models compared to immunization without an IL-10 signalling blockade. Therefore, this immunization strategy may have potential to curtail cancer in a clinical setting. However, IL-10 deficiency leads to autoimmune disease in the gut. Blocking IL-10 at the time of immunization may result in unwanted side effects, especially immune-pathological diseases in the intestine. METHODS We investigated whether blocking IL-10 at the time of immunization results in intestinal inflammation responses in a mouse TC-1 tumour model and in a NOD autoimmune disease prone mouse model. RESULTS We now show that blocking IL-10 at the time of immunization increases IL-10 production by CD4+ T cells in the spleen and draining lymph nodes, and does not result in blood cell infiltration to the intestines leading to intestinal pathological changes. Moreover, immunization with papillomavirus like particles combined with simultaneously blocking IL-10 signalling does not increase the incidence of autoimmune disease in Non-obese diabetic (NOD) mice. CONCLUSIONS Our results indicate that immunization with an IL-10 inhibitor may facilitate the generation of safe, effective therapeutic vaccines against chronic viral infection and cancer.
Collapse
Affiliation(s)
- Guoying Ni
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast, QLD 4333 Australia
| | - Zaowen Liao
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong 528000 China
| | - Shu Chen
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong 528000 China
| | - Tianfang Wang
- Inflammation and Healing Research Cluster, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
| | - Jianwei Yuan
- Molecular diagnosis and Target Therapy Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong China
| | - Xuan Pan
- Molecular diagnosis and Target Therapy Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong China
| | - Kate Mounsey
- Inflammation and Healing Research Cluster, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
| | - Shelley Cavezza
- Inflammation and Healing Research Cluster, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
| | - Xiaosong Liu
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong 528000 China
- Inflammation and Healing Research Cluster, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
- Molecular diagnosis and Target Therapy Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong China
| | - Ming Q. Wei
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast, QLD 4333 Australia
| |
Collapse
|
5
|
Chen LK, Arai H, Chen LY, Chou MY, Djauzi S, Dong B, Kojima T, Kwon KT, Leong HN, Leung EMF, Liang CK, Liu X, Mathai D, Pan JY, Peng LN, Poblete ERS, Poi PJH, Reid S, Tantawichien T, Won CW. Looking back to move forward: a twenty-year audit of herpes zoster in Asia-Pacific. BMC Infect Dis 2017; 17:213. [PMID: 28298208 PMCID: PMC5353949 DOI: 10.1186/s12879-017-2198-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 01/09/2017] [Indexed: 02/05/2023] Open
Abstract
Background Herpes zoster (HZ) is a prevalent viral disease that inflicts substantial morbidity and associated healthcare and socioeconomic burdens. Current treatments are not fully effective, especially among the most vulnerable patients. Although widely recommended, vaccination against HZ is not routine; barriers in Asia-Pacific include long-standing neglect of adult immunisation and sparse local data. To address knowledge gaps, raise awareness, and disseminate best practice, we reviewed recent data and guidelines on HZ from the Asia-Pacific region. Methods We searched PubMed, Scopus, and World Health Organization databases for articles about HZ published from 1994 to 2014 by authors from Australia, China, Hong Kong, India, Indonesia, Japan, Korea, Malaysia, New Zealand, the Philippines, Singapore, Taiwan, Thailand, and Vietnam. We selected articles about epidemiology, burden, complications, comorbidities, management, prevention, and recommendations/guidelines. Internet searches retrieved additional HZ immunisation guidelines. Results From 4007 retrieved articles, we screened-out 1501 duplicates and excluded 1264 extraneous articles, leaving 1242 unique articles. We found guidelines on adult immunisation from Australia, India, Indonesia, Malaysia, New Zealand, the Philippines, South Korea, and Thailand. HZ epidemiology in Asia-Pacific is similar to elsewhere; incidence rises with age and peaks at around 70 years – lifetime risk is approximately one-third. Average incidence of 3–10/1000 person-years is rising at around 5% per year. The principal risk factors are immunosenescence and immunosuppression. HZ almost always causes pain, and post-herpetic neuralgia is its most common complication. Half or more of hospitalised HZ patients have post-herpetic neuralgia, secondary infections, or inflammatory sequelae that are occasionally fatal. These disease burdens severely diminish patients’ quality of life and incur heavy healthcare utilisation. Conclusions Several countries have abundant data on HZ, but others, especially in South-East Asia, very few. However, Asia-Pacific countries generally lack data on HZ vaccine safety, efficacy and cost-effectiveness. Physicians treating HZ and its complications in Asia-Pacific face familiar challenges but, with a vast aged population, Asia bears a unique and growing burden of disease. Given the strong rationale for prevention, most adult immunisation guidelines include HZ vaccine, yet it remains underused. We urge all stakeholders to give higher priority to adult immunisation in general and HZ in particular. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2198-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang-Kung Chen
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei, 11217, Taiwan. .,Aging and Health Research Center, National Yang Ming University, Taipei, Taiwan.
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, 7-340 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Liang-Yu Chen
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei, 11217, Taiwan
| | - Ming-Yueh Chou
- Aging and Health Research Center, National Yang Ming University, Taipei, Taiwan.,Center for Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, No. 386 Ta-Chun 1st Rd., Kaohsiung, 81362, Taiwan
| | - Samsuridjal Djauzi
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Salemba Raya No. 6, Jakarta, 10430, Indonesia
| | - Birong Dong
- The Center of Gerontology and Geriatrics, West China Medical School/West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Renmin Nan Lu, Chengdu, Sichuan, 610041, China
| | - Taro Kojima
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Jongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ki Tae Kwon
- Division of Infectious Diseases, Daegu Fatima Hospital, 99 Ayang-ro, Dong-gu, Daegu, 710-600, Korea
| | - Hoe Nam Leong
- Rophi Clinic, 38 Irrawaddy Rd. #07-54/55, Mount Elizabeth Novena Specialist Centre, Singapore, 329563, Singapore
| | - Edward M F Leung
- Geriatric Medicine Centre (Healthy Ageing), Hong Kong Sanatorium and Hospital, 2 Village Rd. Happy Valley, Hong Kong S.A.R., China
| | - Chih-Kuang Liang
- Aging and Health Research Center, National Yang Ming University, Taipei, Taiwan.,Center for Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, No. 386 Ta-Chun 1st Rd., Kaohsiung, 81362, Taiwan.,Division of Neurology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Xiaohong Liu
- Division of Geriatrics, Department of Internal Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Dilip Mathai
- Apollo Institute of Medical Sciences and Research, Apollo Health City Campus, Jubilee Hills, Hyderabad, 500096, India
| | - Jiun Yit Pan
- National Skin Centre, 1 Mandalay Rd., Singapore, 308205, Singapore
| | - Li-Ning Peng
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei, 11217, Taiwan.,Aging and Health Research Center, National Yang Ming University, Taipei, Taiwan
| | - Eduardo Rommel S Poblete
- Geriatric Center, St. Luke's Medical Center, 279 E. Rodriguez Sr. Ave., Quezon City, 1102, Philippines
| | - Philip J H Poi
- Division of Geriatrics, Department of Medicine, University Malaya Medical Centre, Lembah Pantai, 59100, Kuala Lumpur, Malaysia
| | - Stewart Reid
- Ropata Medical Centre, Lower Hutt, 5010, New Zealand
| | - Terapong Tantawichien
- Division of Infectious Diseases, Department of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chang Won Won
- Department of Family Medicine, College of Medicine, Kyung Hee University, 1 Hoigi-dong, Dongdaemun-gu, Seoul, 130-720, Korea
| |
Collapse
|
6
|
Chandra J, Miao Y, Romoff N, Frazer IH. Epithelium Expressing the E7 Oncoprotein of HPV16 Attracts Immune-Modulatory Dendritic Cells to the Skin and Suppresses Their Antigen-Processing Capacity. PLoS One 2016; 11:e0152886. [PMID: 27031095 PMCID: PMC4816461 DOI: 10.1371/journal.pone.0152886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
Antigen presenting cells (APCs) in skin can promote either antigen-specific effector functions or antigen tolerance, and thus determine clearance or persistence of cutaneous viral infections. Human papillomavirus (HPV) infections can persist in squamous epithelium in immunocompetent individuals, and some persisting HPV infections, particularly with HPV16, promote malignant epithelial transformation. Here, we investigate whether local expression of the HPV16 protein most associated with malignant transformation, HPV16-E7, affects the phenotype and function of APC subsets in the skin. We demonstrate an expanded population of Langerhans cells in HPV16-E7 transgenic skin with distinct cell surface markers which express immune-modulatory enzymes and cytokines not expressed by cells from non transgenic skin. Furthermore, HPV16-E7 transgene expression in keratinocytes attracts new APC subsets to the epidermis. In vivo migration and transport of antigen to the draining lymph node by these APCs is markedly enhanced in HPV16-E7 expressing skin, whereas antigen-processing, as measured by proteolytic cleavage of DQ-OVA and activation of T cells in vivo by APCs, is significantly impaired. These data suggest that local expression of HPV16-E7 in keratinocytes can contribute to persisting infection with this oncogenic virus, by altering the phenotype and function of local APCs.
Collapse
Affiliation(s)
- Janin Chandra
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Yan Miao
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Natasha Romoff
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Ian H. Frazer
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
- * E-mail:
| |
Collapse
|
7
|
Toledo-Machado CM, Bueno LL, Menezes-Souza D, Machado-de-Avila RA, Nguyen C, Granier C, Bartholomeu DC, Chávez-Olórtegui C, Fujiwara RT. Use of Phage Display technology in development of canine visceral leishmaniasis vaccine using synthetic peptide trapped in sphingomyelin/cholesterol liposomes. Parasit Vectors 2015; 8:133. [PMID: 25889286 PMCID: PMC4352561 DOI: 10.1186/s13071-015-0747-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/17/2015] [Indexed: 12/29/2022] Open
Abstract
Background Leishmania parasites can cause visceral or cutaneous disease and are found in subtropical and tropical regions of the Old and New World. The pathology of the infection is determined by both host immune factors and species/strain differences of the parasite. Dogs represent the major reservoir of Leishmania infantum (syn. L. chagasi) and vaccines are considered the most cost-effective control tools for canine disease. Methods Selection of immunodominant peptides was performed by Phage Display to identify sequences recognized by L. infantum naturally infected animals. Sera from Leishmania infected animals were used in the biopanning to selection of specific peptides. Serum samples from T. cruzi infected and healthy animals were used as control. After selection, synthetic peptides were produced in membrane (spot-synthesis) in soluble form and blotting and ELISA were performed for validation of serum reactivity. Selected peptide was formulated with aluminum hydroxide and liposomes and immunization was performed in BALB/c mice. Protection was determined by qPCR after challenge infection with virulent L. infantum. Results We reported the selection of Peptide 5 through Phage Display technique and demonstrate its ability to promote a state of immunity against L. infantum infection in murine model after immunization using liposomes as vaccine carrier. Our results demonstrate that immunization with Peptide 5 when formulated with aluminum hydroxide and liposomes is immunogenic and elicited significant protection associated with the induction of mixed Th1/Th2 immune response against L. infantum infection. Conclusion Peptide 5 is a promising vaccine candidate and the findings obtained in the present study encourage canine trials to confirm the effectiveness of a vaccine against CVL.
Collapse
Affiliation(s)
- Christina Monerat Toledo-Machado
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, CP: 486 - CEP: 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Lilian Lacerda Bueno
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, CP: 486 - CEP: 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Daniel Menezes-Souza
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, CP: 486 - CEP: 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Ricardo Andrez Machado-de-Avila
- Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense - CEP: 88.806-000, Criciúma, Santa Catarina, Brazil.
| | - Christophe Nguyen
- SysDiag CNRS-BioRad UMR 3145, Cap Delta/Parc Euromédecine, 1682 rue de la Valsière, CS 61003, 34184, Montpellier Cedex 4, France.
| | - Claude Granier
- SysDiag CNRS-BioRad UMR 3145, Cap Delta/Parc Euromédecine, 1682 rue de la Valsière, CS 61003, 34184, Montpellier Cedex 4, France.
| | - Daniella Castanheira Bartholomeu
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, CP: 486 - CEP: 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Carlos Chávez-Olórtegui
- Departamento Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, CP: 486 - CEP: 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Ricardo Toshio Fujiwara
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, CP: 486 - CEP: 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Preventing and managing herpes zoster: key actions to foster healthy aging. Aging Clin Exp Res 2015; 27:5-11. [PMID: 25652328 DOI: 10.1007/s40520-015-0314-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023]
Abstract
Population aging is the demographic phenomenon characterizing all countries in the world, and it is challenging the national infrastructures, in particular health systems. However, aging itself is not associated with increased medical spending, but disability and comorbidity that affect older individuals are the actual drivers for health expenditures. Therefore, if people age in better health, medical spending may be significantly reduced. Preventative interventions proved to be effective in reducing/preventing disease and disability and often found to be cost effective, include diet and exercise interventions, medications, routine disease screenings, and immunizations. Vaccination can protect older citizens against life-threatening diseases, such as influenza, pneumococcal infections, tetanus, and against diseases which adversely impact their quality of life, such as herpes zoster (HZ). Including HZ vaccination in its citizens' lifetime immunization calendar can reinforce Europe's commitment toward active, healthy aging. This paper outlines the consensus statement of a group of Italian experts on HZ.
Collapse
|
9
|
Diez-Domingo J, Weinke T, Garcia de Lomas J, Meyer CU, Bertrand I, Eymin C, Thomas S, Sadorge C. Comparison of intramuscular and subcutaneous administration of a herpes zoster live-attenuated vaccine in adults aged ≥50 years: a randomised non-inferiority clinical trial. Vaccine 2014; 33:789-95. [PMID: 25555381 DOI: 10.1016/j.vaccine.2014.12.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
Zostavax(®) is a live, attenuated varicella zoster virus (VZV) vaccine developed specifically for the prevention of HZ and PHN in individuals aged ≥50 years. During the clinical development of Zostavax, which was mainly in the US, the vaccine was administrated by the subcutaneous (SC) route. In Europe, many healthcare professionals prefer administering vaccines by the intramuscular (IM) route. This was an open-label, randomised trial conducted in 354 subjects aged ≥50 years. The primary objectives were to demonstrate that IM administration is both non-inferior to SC administration in terms of 4-week post-vaccination geometric mean titres (GMTs), and elicits an acceptable geometric mean fold-rise (GMFR) of antibody titres measured by glycoprotein enzyme-linked immunosorbent assay. Pre-specified non-inferiority was set as the lower bound of the 95% confidence interval (CI) of the GMT ratio (IM/SC) being >0.67. An acceptable GMFR for the IM route was pre-specified as the lower bound of its 95% CI being >1.4. Description of the VZV immune response using the interferon-gamma enzyme-linked immunospot (IFN-γ ELISPOT) assay and of the safety were secondary objectives. Participants were randomised to IM or SC administration (1:1). The baseline demographics were comparable between groups; mean age: 62.6 years (range: 50.0-90.5). The primary immunogenicity objectives were met (per protocol analysis): GMT ratio (IM/SC): 1.05 (95% CI: 0.93-1.18); GMFR: 2.7 (2.4-3.0). VZV immune response using IFN-γ ELISPOT were comparable between groups. Frequencies of systemic adverse events were comparable between groups. Injection-site reactions were less frequent with IM than SC route: erythema (15.9% versus 52.5%), pain (25.6% versus 39.5%) and swelling (13.6% versus 37.3%), respectively. In adults aged ≥50 years, IM administration of Zostavax elicited similar immune responses to SC administration and was well tolerated, with fewer injection-site reactions than with SC administration.
Collapse
Affiliation(s)
- Javier Diez-Domingo
- FISABIO-Public Health, Avda Cataluna 21, 46020 Valencia, Spain; Universidad Católica de Valencia, 'San Vicente Martir', Valencia, Spain.
| | - Thomas Weinke
- Klinikum Ernst von Bergmann, Charlottenstr. 72, 14467 Potsdam, Germany.
| | - Juan Garcia de Lomas
- Department of Microbiology, University of Valencia, School of Medicine, Avda Blasco Ibañez 17, 46010 Valencia, Spain.
| | - Claudius U Meyer
- Pediatric Immunlogy, University Medical Center of the Johannes Gutenberg University, Ober Zahlbacher Str. 63, 55128 Mainz, Germany.
| | - Isabelle Bertrand
- Sanofi Pasteur MSD, 162 avenue Jean Jaurès, CS 50712, 69367 Lyon Cedex 07, France.
| | - Cécile Eymin
- Sanofi Pasteur MSD, 162 avenue Jean Jaurès, CS 50712, 69367 Lyon Cedex 07, France.
| | - Stéphane Thomas
- Sanofi Pasteur MSD, 162 avenue Jean Jaurès, CS 50712, 69367 Lyon Cedex 07, France.
| | - Christine Sadorge
- Sanofi Pasteur MSD, 162 avenue Jean Jaurès, CS 50712, 69367 Lyon Cedex 07, France.
| |
Collapse
|
10
|
Raman VS, Duthie MS, Fox CB, Matlashewski G, Reed SG. Adjuvants for Leishmania vaccines: from models to clinical application. Front Immunol 2012; 3:144. [PMID: 22701453 PMCID: PMC3371596 DOI: 10.3389/fimmu.2012.00144] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/18/2012] [Indexed: 12/12/2022] Open
Abstract
Two million new cases of leishmaniasis occur every year, with the cutaneous leishmaniasis (CL) presentation accounting for approximately two-thirds of all cases. Despite the high incidence rates and geographic expansion of the disease, CL remains a neglected tropical disease without effective intervention strategies. Efforts to address this deficit have given rise to the experimental murine model of CL. By virtue of its simplicity and pliability, the CL model has been used to provide substantial information regarding cellular immunity, as well as in the discovery and evaluation of various vaccine adjuvants. The CL model has facilitated in vivo studies of the mechanism of action of many adjuvants, including the TLR4 agonist monophosphoryl lipid A, the TLR7/8 agonist imiquimod, the TLR9 agonist CpG, adenoviral vectors, and the immunostimulatory complexes. Together, these studies have helped to unveil the requirement for certain types of immune responses at specific stages of CL disease and provide a basis to aid the design of effective second-generation vaccines for human CL. This review focuses on adjuvants that have been tested in experimental CL, outlining how they have helped advance our understanding of the disease and ultimately, how they have performed when applied within clinical trials against human CL.
Collapse
Affiliation(s)
- Vanitha S Raman
- Pre-clinical Biology, Infectious Disease Research Institute, Seattle, WA, USA
| | | | | | | | | |
Collapse
|