1
|
Lee SH, Khoo ASB, Griffiths JR, Mat Lazim N. Metabolic regulation of the tumour and its microenvironment: The role of Epstein-Barr virus. Int J Cancer 2025; 156:488-498. [PMID: 39291683 DOI: 10.1002/ijc.35192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
The Epstein-Barr virus (EBV), the first identified human tumour virus, infects over 95% of the individuals globally and has the potential to induce different types of cancers. It is increasingly recognised that EBV infection not only alters cellular metabolism, contributing to neoplastic transformation, but also utilises several non-cell autonomous mechanisms to shape the metabolic milieu in the tumour microenvironment (TME) and its constituent stromal and immune cells. In this review, we explore how EBV modulates metabolism to shape the interactions between cancer cells, stromal cells, and immune cells within a hypoxic and acidic TME. We highlight how metabolites resulting from EBV infection act as paracrine factors to regulate the TME, and how targeting them can disrupt barriers to immunotherapy.
Collapse
Affiliation(s)
- Shen-Han Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alan Soo-Beng Khoo
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - John R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
2
|
Payaradka R, Sinduvadi Ramesh P, Rajendra VK, Prasad HLK, Patil P, Kumar M, Devegowda D, Shetty V. Association of Epstein-Barr Virus and its clinical relevance in Human Papillomavirus-negative oral squamous cell carcinoma: A cohort study from South India. Arch Oral Biol 2025; 172:106183. [PMID: 39864187 DOI: 10.1016/j.archoralbio.2025.106183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/23/2024] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE The study assessed the prevalence and clinical implications of Epstein Barr Virus (EBV)-positive but Human Papillomavirus (HPV)-negative oral squamous cell carcinoma (OSCC) in a tertiary care hospital setting. The overall goal was to elucidate the potential impact of EBV on OSCC disease progression and prognosis. DESIGN A total of 134 surgically resected and histopathologically confirmed OSCC tumor biopsies were collected from a tertiary care hospital. Tumor samples were analyzed for HPV and EBV using conventional and nested PCR. Clinical and demographic data, including age, sex, risk factors, tumor stage, and survival outcomes, were collected and analyzed to assess associations between EBV status and disease characteristics. RESULTS All the tumor samples tested negative for HPV. However, EBV was detected in 74 cases (55.3 %) using nested PCR which was confirmed by sanger sequencing. EBV prevalence was higher in males (62.1 %), and the left buccal mucosa was the most affected site, accounting for 34 % of cases. Although statistically not significant, 63.5 % (n = 47) of the EBV positive subjects had a history of consuming both tobacco and alcohol. Of these 20 subjects showing recurrence, 35 % (n = 7) were EBV positive suggesting poor prognosis for EBV positive OSCC subjects. CONCLUSION This study highlights a significant prevalence of EBV in HPV-negative OSCC cases, suggesting a potential oncogenic role for EBV in OSCC progression, particularly in patients with established lifestyle risk factors. These findings underscore the need for further research into EBV's molecular mechanisms in OSCC and its utility as a biomarker for prognosis and therapeutic targeting. The results advocate for region-specific strategies to better understand and manage EBV-associated OSCC, offering potential pathways to improve outcomes in high-risk populations.
Collapse
Affiliation(s)
- Rajesha Payaradka
- Department of Microbiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, India
| | - Pushkal Sinduvadi Ramesh
- Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, United States
| | - Vinay Kumar Rajendra
- Department of Surgical Oncology, KS Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, India
| | | | - Prakash Patil
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, India
| | - Mohana Kumar
- Nitte University Centre for Stem Cell Research & Regenerative Medicine (NUCSReM), KS Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, India
| | - Devanand Devegowda
- Center for Excellence in Molecular Biology & Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Veena Shetty
- Department of Microbiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, India.
| |
Collapse
|
3
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025:e0011923. [PMID: 39817754 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Chen C, Addepalli K, Soldan SS, Castro‐ Munoz LJ, Preston‐Alp S, Patel RJ, Albitz CJ, Tang H, Tempera I, Lieberman PM. USP7 Inhibitors Destabilize EBNA1 and Suppress Epstein-Barr Virus Tumorigenesis. J Med Virol 2025; 97:e70168. [PMID: 39821265 PMCID: PMC11740287 DOI: 10.1002/jmv.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human ɣ-herpesvirus implicated in various malignancies, including Burkitt's lymphoma and gastric carcinomas. In most EBV-associated cancers, the viral genome is maintained as an extrachromosomal episome by the EBV nuclear antigen-1 (EBNA1). EBNA1 is considered to be a highly stable protein that interacts with the ubiquitin-specific protease 7 (USP7). Here, we show that pharmacological inhibitors and small interfering RNA (siRNA) targeting USP7 reduce EBNA1 protein levels in a proteosome-dependent manner. Proteomic analysis revealed that USP7 inhibitor GNE6776 altered the EBNA1 protein interactome, including disrupting USP7 association with EBNA1. GNE6776 also inhibited EBNA1 binding to EBV oriP DNA and reduced viral episome copy number. Transcriptomic studies revealed that USP7 inhibition affected chromosome segregation and mitotic cell division pathways in EBV+ cells. Finally, we show that GNE6776 selectively inhibited EBV+ gastric and lymphoid cell proliferation in cell culture and slowed EBV+ tumor growth in mouse xenograft models. These findings suggest that USP7 inhibitors perturb EBNA1 stability and function and may be exploited to treat EBV latent infection and tumorigenesis.
Collapse
Grants
- R01 DE017336 NIDCR NIH HHS
- R01 CA259171 NCI NIH HHS
- This work was supported by R01 CA259171, P01 CA269043, R01 AI53508 (PML), P30 Cancer Center Support Grant P30 CA010815 (D. Altieri), T32 CA009171 to CC. The funders provided salary support for PML, SSS, LJCM (NIH DE017336, AI53508, CA140652, CA093606, CA2059171-02S1, HYT (R50 CA221838), and CC (T32 CA009171).
- P01 CA269043 NCI NIH HHS
- T32 CA009171 NCI NIH HHS
- R01 CA140652 NCI NIH HHS
- R21 AI053508 NIAID NIH HHS
- R01 CA093606 NCI NIH HHS
- P30 CA010815 NCI NIH HHS
- R50 CA221838 NCI NIH HHS
Collapse
|
5
|
Musa M, Bale BI, Suleman A, Aluyi-Osa G, Chukwuyem E, D’Esposito F, Gagliano C, Longo A, Russo A, Zeppieri M. Possible viral agents to consider in the differential diagnosis of blepharoconjunctivitis. World J Virol 2024; 13:97867. [PMID: 39722756 PMCID: PMC11551683 DOI: 10.5501/wjv.v13.i4.97867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Blepharoconjunctivitis poses a diagnostic challenge due to its diverse etiology, including viral infections. Blepharoconjunctivits can be acute or chronic, self-limiting, or needing medical therapy. AIM To review possible viral agents crucial for accurate differential diagnosis in cases of blepharoconjunctivitis. METHODS The PubMed database was searched for records relating to viral blepharoconjunctivitis. The search string generated was "("virally"[All Fields] OR "virals"[All Fields] OR "virology"[MeSH Terms] OR "virology"[All Fields] OR "viral"[All Fields]) AND "Blepharoconjunctivitis"[All Fields]". RESULTS A total of 24 publications were generated from the search string. Reference lists from each relevant article were also searched for more information and included in this review. Viral etiologies such as adenovirus, herpes simplex virus (HSV), varicella-zoster virus (VZV), and Epstein-Barr virus (EBV) are frequently implicated. Adenoviral infections manifest with follicular conjunctivitis and preauricular lymphadenopathy, often presenting as epidemic keratoconjunctivitis. HSV and VZV infections can result in herpetic keratitis and may exhibit characteristic dendritic corneal ulcers. EBV, although less common, can cause unilateral or bilateral follicular conjunctivitis, particularly in immunocompromised individuals. Other potential viral agents, such as enteroviruses and molluscum contagiosum virus, should also be considered, especially in pediatric cases. CONCLUSION Prompt recognition of these viral etiologies is essential for appropriate management and prevention of complications. Thus, a thorough understanding of the clinical presentation, epidemiology, and diagnostic modalities is crucial for accurate identification and management of viral blepharoconjunctivitis.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre Ltd, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa Ltd, Nkpor 434212, Nigeria
| | | | - Ayuba Suleman
- Department of Ophthalmology, Africa Eye Laser Centre Ltd, Benin 300105, Nigeria
| | - Gladness Aluyi-Osa
- Department of Ophthalmology, Africa Eye Laser Centre Ltd, Benin 300105, Nigeria
| | - Ekele Chukwuyem
- Department of Ophthalmology, Centre for Sight Africa Ltd, Nkpor 434212, Nigeria
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group Unit, Imperial College, London NW1 5QH, United Kingdom
- GENOFTA srl, Via A. Balsamo, 93, Naples 80065, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Catania 94100, Italy
- Eye Clinic, Catania University San Marco Hospital, Catania 95121, Italy
| | - Antonio Longo
- Department of Ophthalmology, University Hospital of Catania, Catania 95123, Italy
| | - Andrea Russo
- Department of Ophthalmology, University Hospital of Catania, Catania 95123, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
6
|
Davis MT, Anders NM, Colevas AD, Messick TE, Rudek MA. Validation of a robust and rapid liquid chromatography tandem mass spectrometric method for the quantitative analysis of VK-2019, a selective EBNA1 inhibitor. Biomed Chromatogr 2024; 38:e5775. [PMID: 37942577 PMCID: PMC11027104 DOI: 10.1002/bmc.5775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
EBNA1 is an Epstein Barr virus (EBV) protein expressed in all EBV-associated cancers. EBNA1 plays a critical role in the replication and maintenance of EBV episomes in latently infected cells. VK-2019 was developed as a highly specific inhibitor of EBNA1 DNA binding activity and is currently in phase 1 development as a treatment for EBV-associated carcinomas. A sensitive and reliable method was developed to quantify VK-2019 in human plasma using liquid chromatography with tandem mass spectrometry to perform detailed pharmacokinetic studies. VK-2019 was extracted from plasma using protein precipitation with acetonitrile. Separation of VK-2019, two purported metabolites, and the internal standard, VK-2019-d6, was achieved with a Zorbax XDB C18 column using a gradient flow over 6 min. VK-2019 was detected using a SCIEX 4500 triple quadrupole mass spectrometer operating in positive electrospray ionization mode. The assay range was 0.5-500 ng/mL and proved to be accurate and precise. Dilutions of 1:10 were accurately quantified. VK-2019 was stable in plasma at -70°C for approximately 18 months. The method was applied to assess the total plasma concentrations of VK-2019 in a patient who received a single and multiple oral daily doses of 120 mg.
Collapse
Affiliation(s)
- Michael T. Davis
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Nicole M. Anders
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Michelle A. Rudek
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland USA
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Cesarman E, Totonchy J. Editorial overview: Viruses and Cancer. Curr Opin Virol 2023; 62:101364. [PMID: 37672873 DOI: 10.1016/j.coviro.2023.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Affiliation(s)
- Ethel Cesarman
- Department of Pathology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States.
| | - Jennifer Totonchy
- Department of Pathology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States.
| |
Collapse
|
8
|
Monaco MCG, Soldan SS, Su C, Clauze A, Cooper JF, Patel RJ, Lu F, Hughes RJ, Messick TE, Andrada FC, Ohayon J, Lieberman PM, Jacobson S. EBNA1 Inhibitors Block Proliferation of Spontaneous Lymphoblastoid Cell Lines From Patients With Multiple Sclerosis and Healthy Controls. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200149. [PMID: 37562974 PMCID: PMC10414776 DOI: 10.1212/nxi.0000000000200149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/13/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that establishes lifelong latency in memory B cells and has been identified as a major risk factor of multiple sclerosis (MS). B cell depletion therapies have disease-modifying benefit in MS. However, it is unclear whether this benefit is partly attributable to the elimination of EBV+ B cells. Currently, there are no EBV-specific antiviral therapies available for targeting EBV latent infection in MS and limited experimental models to study EBV in MS. METHODS In this study, we describe the establishment of spontaneous lymphoblastoid cell lines (SLCLs) generated ex vivo with the endogenous EBV of patients with MS and controls and treated with either an Epstein-Barr virus nuclear antigen 1 (EBNA1) inhibitor (VK-1727) or cladribine, a nucleoside analog that eliminates B cells. RESULTS We showed that a small molecule inhibitor of EBNA1, a critical regulator of the EBV life cycle, blocks the proliferation and metabolic activity of these SLCLs. In contrast to cladribine, a highly cytotoxic B cell depleting therapy currently used in MS, the EBNA1 inhibitor VK-1727 was cytostatic rather than cytotoxic and selective for EBV+ cells, while having no discernible effects on EBV- cells. We validate that VK-1727 reduces EBNA1 DNA binding at known viral and cellular sites by ChIP-qPCR. DISCUSSION This study shows that patient-derived SLCLs provide a useful tool for interrogating the role of EBV+ B cells in MS and suggests that a clinical trial testing the effect of EBNA1 inhibitors in MS may be warranted.
Collapse
Affiliation(s)
- Maria Chiara G Monaco
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Samantha S Soldan
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Chenhe Su
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Annaliese Clauze
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - John F Cooper
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Rishi J Patel
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Fang Lu
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Randall J Hughes
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Troy E Messick
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Frances C Andrada
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Joan Ohayon
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Paul M Lieberman
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.
| | - Steven Jacobson
- From the Neuroimmunology Branch (M.C.G.M., A.C., R.J.H., S.J.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; The Wistar Institute (S.S.S., C.S., J.F.C., R.J.P., F.L., T.E.M., P.M.L.), Philadelphia, PA; and Neuroimmunology Clinic (F.C.A., J.O.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.
| |
Collapse
|
9
|
Pan-Hammarström Q, Casanova JL. Human genetic and immunological determinants of SARS-CoV-2 and Epstein-Barr virus diseases in childhood: Insightful contrasts. J Intern Med 2023; 294:127-144. [PMID: 36906905 DOI: 10.1111/joim.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
There is growing evidence to suggest that severe disease in children infected with common viruses that are typically benign in other children can result from inborn errors of immunity or their phenocopies. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a cytolytic respiratory RNA virus, can lead to acute hypoxemic COVID-19 pneumonia in children with inborn errors of type I interferon (IFN) immunity or autoantibodies against IFNs. These patients do not appear to be prone to severe disease during infection with Epstein-Barr virus (EBV), a leukocyte-tropic DNA virus that can establish latency. By contrast, various forms of severe EBV disease, ranging from acute hemophagocytosis to chronic or long-term illnesses, such as agammaglobulinemia and lymphoma, can manifest in children with inborn errors disrupting specific molecular bridges involved in the control of EBV-infected B cells by cytotoxic T cells. The patients with these disorders do not seem to be prone to severe COVID-19 pneumonia. These experiments of nature reveal surprising levels of redundancy of two different arms of immunity, with type I IFN being essential for host defense against SARS-CoV-2 in respiratory epithelial cells, and certain surface molecules on cytotoxic T cells essential for host defense against EBV in B lymphocytes.
Collapse
Affiliation(s)
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
10
|
Abstract
Tabelecleucel (EbvalloTM) is an allogeneic Epstein-Barr virus (EBV)-specific T-cell immunotherapy that targets and eliminates EBV positive (EBV+) cells in a human leukocyte antigen (HLA) restricted manner. Tabelecleucel has been developed by Atara Biotherapeutics under a license from Memorial Sloan-Kettering Cancer Center (MSKCC) for the treatment of lymphoproliferative disorders (LPDs), including rituximab relapsed/refractory EBV+ post-transplant lymphoproliferative disease (PTLD). Tabelecleucel was granted marketing authorization under 'exceptional circumstances' on 16 December 2022 as monotherapy for the treatment of adult and paediatric patients 2 years of age and older with relapsed or refractory EBV+ PTLD who have received at least one prior therapy. For solid organ transplant patients, prior therapy includes chemotherapy unless chemotherapy is inappropriate. This article summarizes the milestones in the development of tabelecleucel leading to this first approval for EBV+ PTLD.
Collapse
Affiliation(s)
- Susan J Keam
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
11
|
Bjornevik K, Münz C, Cohen JI, Ascherio A. Epstein-Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat Rev Neurol 2023; 19:160-171. [PMID: 36759741 DOI: 10.1038/s41582-023-00775-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/11/2023]
Abstract
Epidemiological studies have provided compelling evidence that multiple sclerosis (MS) is a rare complication of infection with the Epstein-Barr virus (EBV), a herpesvirus that infects more than 90% of the global population. This link was long suspected because the risk of MS increases markedly after infectious mononucleosis (symptomatic primary EBV infection) and with high titres of antibodies to specific EBV antigens. However, it was not until 2022 that a longitudinal study demonstrated that MS risk is minimal in individuals who are not infected with EBV and that it increases over 30-fold following EBV infection. Over the past few years, a number of studies have provided clues on the underlying mechanisms, which might help us to develop more targeted treatments for MS. In this Review, we discuss the evidence linking EBV to the development of MS and the mechanisms by which the virus is thought to cause the disease. Furthermore, we discuss implications for the treatment and prevention of MS, including the use of antivirals and vaccines.
Collapse
Affiliation(s)
- Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|