1
|
Nawaz K, Alifah N, Hussain T, Hameed H, Ali H, Hamayun S, Mir A, Wahab A, Naeem M, Zakria M, Pakki E, Hasan N. From genes to therapy: A comprehensive exploration of congenital heart disease through the lens of genetics and emerging technologies. Curr Probl Cardiol 2024; 49:102726. [PMID: 38944223 DOI: 10.1016/j.cpcardiol.2024.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Congenital heart disease (CHD) affects approximately 1 % of live births worldwide, making it the most common congenital anomaly in newborns. Recent advancements in genetics and genomics have significantly deepened our understanding of the genetics of CHDs. While the majority of CHD etiology remains unclear, evidence consistently indicates that genetics play a significant role in its development. CHD etiology holds promise for enhancing diagnosis and developing novel therapies to improve patient outcomes. In this review, we explore the contributions of both monogenic and polygenic factors of CHDs and highlight the transformative impact of emerging technologies on these fields. We also summarized the state-of-the-art techniques, including targeted next-generation sequencing (NGS), whole genome and whole exome sequencing (WGS, WES), single-cell RNA sequencing (scRNA-seq), human induced pluripotent stem cells (hiPSCs) and others, that have revolutionized our understanding of cardiovascular disease genetics both from diagnosis perspective and from disease mechanism perspective in children and young adults. These molecular diagnostic techniques have identified new genes and chromosomal regions involved in syndromic and non-syndromic CHD, enabling a more defined explanation of the underlying pathogenetic mechanisms. As our knowledge and technologies continue to evolve, they promise to enhance clinical outcomes and reduce the CHD burden worldwide.
Collapse
Affiliation(s)
- Khalid Nawaz
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Nur Alifah
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Talib Hussain
- Women Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Hamza Hameed
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Haider Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Awal Mir
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Mohammad Zakria
- Advanced Center for Genomic Technologies, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Ermina Pakki
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia.
| |
Collapse
|
2
|
Iqbal MK, Ambreen A, Mujahid M, Zarlashat Y, Abid M, Yasin A, Ullah MN, Shahzad R, Harlina PW, Khan SU, Alissa M, Algopishi UB, Almubarak HA. Cardiomegaly: Navigating the uncharted territories of heart failure - A multimodal radiological journey through advanced imaging, pathophysiological landscapes, and innovative therapeutic frontiers. Curr Probl Cardiol 2024; 49:102748. [PMID: 39009253 DOI: 10.1016/j.cpcardiol.2024.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Cardiomegaly is among the disorders categorized by a structural enlargement of the heart by any of the situations including pregnancy, resulting in damage to heart muscles and causing trouble in normal heart functioning. Cardiomegaly can be defined in terms of dilatation with an enlarged heart and decreased left or biventricular contraction. The genetic origin of cardiomegaly is becoming more evident due to extensive genomic research opening up new avenues to ensure the use of precision medicine. Cardiomegaly is usually assessed by using an array of radiological modalities, including computed tomography (CT) scans, chest X-rays, and MRIs. These imaging techniques have provided an important opportunity for the physiology and anatomy of the heart. This review aims to highlight the complexity of cardiomegaly, highlighting the contribution of both ecological and genetic variables to its progression. Moreover, we further highlight the worth of precise clinical diagnosis, which comprises blood biomarkers and electrocardiograms (EKG ECG), demonstrating the significance of distinguishing between numerous basic causes. Finally, the analysis highlights the extensive variation of treatment lines, such as lifestyle modifications, prescription drugs, surgery, and implantable devices, although highlighting the critical need for individualized and personalized care.
Collapse
Affiliation(s)
- Muhammad Khalid Iqbal
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China; Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Alia Ambreen
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Mujahid
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Yusra Zarlashat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Abid
- Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Ayesha Yasin
- Department of Pathology and Forensic Medicine, Dalian Medical University Liaoning Provence, China
| | | | - Raheel Shahzad
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong 16911, Indonesia
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan.
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Khan MA, Khan N, Ullah M, Hamayun S, Makhmudov NI, Mbbs R, Safdar M, Bibi A, Wahab A, Naeem M, Hasan N. 3D printing technology and its revolutionary role in stent implementation in cardiovascular disease. Curr Probl Cardiol 2024; 49:102568. [PMID: 38599562 DOI: 10.1016/j.cpcardiol.2024.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Cardiovascular disease (CVD), exemplified by coronary artery disease (CAD), is a global health concern, escalating in prevalence and burden. The etiology of CAD is intricate, involving different risk factors. CVD remains a significant cause of mortality, driving the need for innovative interventions like percutaneous coronary intervention and vascular stents. These stents aim to minimize restenosis, thrombosis, and neointimal hyperplasia while providing mechanical support. Notably, the challenges of achieving ideal stent characteristics persist. An emerging avenue to address this involves enhancing the mechanical performance of polymeric bioresorbable stents using additive manufacturing techniques And Three-dimensional (3D) printing, encompassing various manufacturing technologies, has transcended its initial concept to become a tangible reality in the medical field. The technology's evolution presents a significant opportunity for pharmaceutical and medical industries, enabling the creation of targeted drugs and swift production of medical implants. It revolutionizes medical procedures, transforming the strategies of doctors and surgeons. Patient-specific 3D-printed anatomical models are now pivotal in precision medicine and personalized treatment approaches. Despite its ongoing development, additive manufacturing in healthcare is already integrated into various medical applications, offering substantial benefits to a sector under pressure for performance and cost reduction. In this review primarily emphasizes stent technology, different types of stents, highlighting its application with some potential complications. Here we also address their benefits, potential issues, effectiveness, indications, and contraindications. In future it can potentially reduce complications and help in improving patients' outcomes. 3DP technology offers the promise to customize solutions for complex CVD conditions and help or fostering a new era of precision medicine in cardiology.
Collapse
Affiliation(s)
- Muhammad Amir Khan
- Department of Foreign Medical Education, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Niyamat Khan
- Department of Foreign Medical Education, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 Beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Punjab 04485, Pakistan
| | - Nurullo Ismoilovich Makhmudov
- Department of Hospital Therapy, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Raziya Mbbs
- Department of Foreign Medical Education, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Ayisha Bibi
- Department of Pharmacy, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Kohat 26000, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Kohat 26000, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar 90245, Republic of Indonesia.
| |
Collapse
|
4
|
Alshihri AA, Khan SU, Alissa M, Alnoud MAH, Shams Ul Hassan S, Alghamdi SA, Mushtaq RY, Albariqi AH, Almhitheef AI, Anthony S, Sheirdil RA, Murshed A. Nano guardians of the heart: A comprehensive investigation into the impact of silver nanoparticles on cardiovascular physiology. Curr Probl Cardiol 2024; 49:102542. [PMID: 38527698 DOI: 10.1016/j.cpcardiol.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Globally, cardiovascular diseases (CVDs) constitute the leading cause of death at the moment. More effective treatments to combat CVDs are urgently required. Recent advances in nanotechnology have opened the door to new avenues for cardiovascular health treatment. Silver nanotechnology's inherent therapeutic powers and wide-ranging applications have made it the center of focus in recent years. This review aims to analyze the chemical, physical, and biological processes ofproducing AgNPs and determine their potential utility as theranostics. Despite significant advances, the precise mechanism by which AgNPs function in numerous biological systems remains a mystery. We hope that at the end of this review, you will better understand how AgNPs affect the cardiovascular system from the research done thus far. This endeavor thoroughly investigates the possible toxicological effects and risks associated with exposure to AgNPs. The findings shed light on novel applications of these versatile nanomaterials and point the way toward future research directions. Due to a shortage of relevant research, we will limit our attention to AgNPs as they pertain to CVDs. Future research can use this opportunity to investigate the many medical uses of AgNPs. Given their global prevalence, we fully endorse academics' efforts to prioritize nanotechnological techniques in pursuing risk factor targeting for cardiovascular diseases. The critical need for innovative solutions to this widespread health problem is underscored by the fact that this technique may help with the early diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Abdulaziz A Alshihri
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mohammed A H Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112; USA
| | - Syed Shams Ul Hassan
- Department of Natural product chemistry, School of Pharmacy, Shanghai Jiao Tong Unviversity, Shanghai, China
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ahmed H Albariqi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Stefan Anthony
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China.
| | | | - Abduh Murshed
- Department of Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, 524000, Zhanjiang, China
| |
Collapse
|
5
|
Abid J, Khalil FMA, Saeed S, Khan SU, Iqbal I, Khan SU, Anthony S, Shahzad R, Koerniati S, Naz F. Nano revolution in cardiovascular health: Nanoparticles (NPs) as tiny titans for diagnosis and therapeutics. Curr Probl Cardiol 2024; 49:102466. [PMID: 38369205 DOI: 10.1016/j.cpcardiol.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Cardiovascular diseases (CVDs) are known as life-threatening illnessescaused by severe abnormalities in the cardiovascular system. They are a leading cause of mortality and morbidity worldwide.Nanotechnology integrated substantialinnovations in cardiovascular diagnostic and therapeutic at the nanoscale. This in-depth analysis explores cutting-edge methods for diagnosing CVDs, including nanotechnological interventions and crucial components for identifying risk factors, developing treatment plans, and monitoring patients' progress with chronic CVDs.Intensive research has gone into making nano-carriers that can image and treat patients. To improve the efficiency of treating CVDs, the presentreview sheds light on a decision-tree-based solution by investigating recent and innovative approaches in CVD diagnosis by utilizing nanoparticles (NPs). Treatment choices for chronic diseases like CVD, whose etiology might take decades to manifest, are very condition-specific and disease-stage-based. Moreover, thisreview alsobenchmarks the changing landscape of employing NPs for targeted and better drug administration while examining the limitations of various NPs in CVD diagnosis, including cost, space, time, and complexity. To better understand and treatment of cardiovascular diseases, the conversation moves on to the nano-cardiovascular possibilities for medical research.We also focus on recent developments in nanoparticle applications, the ways they might be helpful, and the medical fields where they may find future use. Finally, this reviewadds to the continuing conversation on improved diagnosis and treatment approaches for cardiovascular disorders by discussing the obstacles and highlighting the revolutionary effects of nanotechnology.
Collapse
Affiliation(s)
- Junaid Abid
- Department of Food Science and Technology, University of Haripur, Pakistan; State Key Laboratory of Food nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, College of Science and Arts, Department of Biology, MohayilAsirAbha, 61421, Saudi Arabia
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, QLD, 4111, Australia
| | - Shahid Ullah Khan
- Women Medical and Dental College, Khyber Medical University, Khyber Pakhtunkhwa, Pakistan; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Imran Iqbal
- Department of PLR, Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Stefan Anthony
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China.
| | - Raheel Shahzad
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong 16911, Indonesia
| | - Sri Koerniati
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia
| | - Farkhanda Naz
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China
| |
Collapse
|
6
|
Jiang X, Alnoud MAH, Ali H, Ali I, Hussain T, Khan MU, Khan SU, Khan MS, Khan SU, Ur Rehman K, Safhi AY, Alissa M. Heartfelt living: Deciphering the link between lifestyle choices and cardiovascular vitality. Curr Probl Cardiol 2024; 49:102397. [PMID: 38232921 DOI: 10.1016/j.cpcardiol.2024.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/19/2024]
Abstract
Cardiovascular diseases (CVDs) are still leading to a significant number of deaths worldwide despite the remarkable advancements in medical technology and pharmacology. Managing patients with established CVDs is a challenge for healthcare providers as it requires reducing the chances of recurring cardiovascular events. On the other hand, changing one's way of life can also significantly impact this area, reducing the likelihood of cardiovascular disease and death through their unique advantages. Consequently, it is advisable for healthcare providers to regularly advise their patients with coronary issues to participate in organized physical exercise and improve their overall physical activity. Additionally, patients should adhere to a diet that promotes heart health, cease smoking, avoid exposure to secondhand smoke, and address any psychosocial stressors that may heighten the risk of cardiovascular problems. These lifestyle therapies, whether used alongside drug therapy or on their own in patients who may have difficulty tolerating medications, face financial barriers, or experience ineffectiveness, can substantially reduce cardiovascular mortality and the likelihood of recurring cardiac events. Despite the considerable advancements in creating interventions, it is still necessary to determine the optimal intensity, duration, and delivery method for these interventions. Furthermore, it is crucial to carry out further investigations incorporating extended monitoring and assessment of clinical outcomes to get a more comprehensive comprehension of the efficacy of these therapies. Presenting the findings within the framework of "lifestyle medicine," this review seeks to offer a thorough synopsis of the most recent scientific investigations into the potential of behavioral modifications to lower cardiovascular disease risk.
Collapse
Affiliation(s)
- Xiaorui Jiang
- Ezhou Central Hospital, Hubei Province 436000, China
| | - Mohammed A H Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Talib Hussain
- Women Dental College Abbottabad, Khyber Pakhtunkhwa 22020, Pakistan
| | - Munir Ullah Khan
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027 China
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Shehzad Khan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin City, Hong Kong Special Administrative Region of China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, Khyber Pakhtunkhwa 22080, Pakistan
| | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
7
|
Khan SU, Huang Y, Ali H, Ali I, Ahmad S, Khan SU, Hussain T, Ullah M, Lu K. Single-cell RNA Sequencing (scRNA-seq): Advances and Challenges for Cardiovascular Diseases (CVDs). Curr Probl Cardiol 2024; 49:102202. [PMID: 37967800 DOI: 10.1016/j.cpcardiol.2023.102202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Implementing Single-cell RNA sequencing (scRNA-seq) has significantly enhanced our comprehension of cardiovascular diseases (CVDs), providing new opportunities to strengthen the prevention of CVDs progression. Cardiovascular diseases continue to be the primary cause of death worldwide. Improving treatment strategies and patient risk assessment requires a deeper understanding of the fundamental mechanisms underlying these disorders. The advanced and widespread use of Single-cell RNA sequencing enables a comprehensive investigation of the complex cellular makeup of the heart, surpassing essential descriptive aspects. This enhances our understanding of disease causes and directs functional research. The significant advancement in understanding cellular phenotypes has enhanced the study of fundamental cardiovascular science. scRNA-seq enables the identification of discrete cellular subgroups, unveiling previously unknown cell types in the heart and vascular systems that may have relevance to different disease pathologies. Moreover, scRNA-seq has revealed significant heterogeneity in phenotypes among distinct cell subtypes. Finally, we will examine current and upcoming scRNA-seq studies about various aspects of the cardiovascular system, assessing their potential impact on our understanding of the cardiovascular system and offering insight into how these technologies may revolutionise the diagnosis and treatment of cardiac conditions.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan
| | - Yuqing Huang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad-44000
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans 70112 LA, USA
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Talib Hussain
- Women Dental College Abbottabad, KPK, 22020, Pakistan
| | - Muneeb Ullah
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
8
|
Khan AR, Alnoud MAH, Ali H, Ali I, Ahmad S, Ul Hassan SS, Shaikh AL, Hussain T, Khan MU, Khan SU, Khan MS, Khan SU. Beyond the beat: A pioneering investigation into exercise modalities for alleviating diabetic cardiomyopathy and enhancing cardiac health. Curr Probl Cardiol 2024; 49:102222. [PMID: 38000567 DOI: 10.1016/j.cpcardiol.2023.102222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Patients with preexisting cardiovascular disease or those at high risk for developing the condition are often offered exercise as a form of therapy. Patients with cancer who are at an increased risk for cardiovascular issues are increasingly encouraged to participate in exercise-based, interdisciplinary programs due to the positive correlation between these interventions and clinical outcomes following myocardial infarction. Diabetic cardiomyopathy (DC) is a cardiac disorder that arises due to disruptions in the homeostasis of individuals with diabetes. One of the primary reasons for mortality in individuals with diabetes is the presence of cardiac structural damage and functional abnormalities, which are the primary pathological features of DC. The aetiology of dilated cardiomyopathy is multifaceted and encompasses a range of processes, including metabolic abnormalities, impaired mitochondrial function, dysregulation of calcium ion homeostasis, excessive cardiomyocyte death, and fibrosis. In recent years, many empirical investigations have demonstrated that exercise training substantially impacts the prevention and management of diabetes. Exercise has been found to positively impact the recovery of diabetes and improve several metabolic problem characteristics associated with DC. One potential benefit of exercise is its ability to increase systolic activity, which can enhance cardiometabolic and facilitate the repair of structural damage to the heart caused by DC, leading to a direct improvement in cardiac health. In contrast, exercise has the potential to indirectly mitigate the pathological progression of DC through its ability to decrease circulating levels of sugar and fat while concurrently enhancing insulin sensitivity. A more comprehensive understanding of the molecular mechanism via exercise facilitates the restoration of DC disease must be understood. Our goal in this review was to provide helpful information and clues for developing new therapeutic techniques for motion alleviation DC by examining the molecular mechanisms involved.
Collapse
Affiliation(s)
- Ahsan Riaz Khan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Mohammed A H Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans 70112 LA, USA
| | - Syed Shams Ul Hassan
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| | | | - Talib Hussain
- Women Dental College Abbottabad, KPK, 22020, Pakistan
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Shehzad Khan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin city, (HKSAR), Hong Kong
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
9
|
Khan SU, Khan SU, Suleman M, Khan MU, Alsuhaibani AM, Refat MS, Hussain T, Ud Din MA, Saeed S. The Multifunctional TRPC6 Protein: Significance in the Field of Cardiovascular Studies. Curr Probl Cardiol 2024; 49:102112. [PMID: 37774899 DOI: 10.1016/j.cpcardiol.2023.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Cardiovascular disease is the leading cause of death, medical complications, and healthcare costs. Although recent advances have been in treating cardiovascular disorders linked with a reduced ejection fraction, acutely decompensate cardiac failure remains a significant medical problem. The transient receptor potential cation channel (TRPC6) family responds to neurohormonal and mechanical stress, playing critical roles in cardiovascular diseases. Therefore, TRP C6 channels have great promise as therapeutic targets. Numerous studies have investigated the roles of TRP C6 channels in pain neurons, highlighting their significance in cardiovascular research. The TRPC6 protein exhibits a broad distribution in various organs and tissues, including the brain, nerves, heart, blood vessels, lungs, kidneys, gastrointestinal tract, and other bodily structures. Its activation can be triggered by alterations in osmotic pressure, mechanical stimulation, and diacylglycerol. Consequently, TRPC6 plays a significant role in the pathophysiological mechanisms underlying diverse diseases within living organisms. A recent study has indicated a strong correlation between the disorder known as TRPC6 and the development of cardiovascular diseases. Consequently, investigations into the association between TRPC6 and cardiovascular diseases have gained significant attention in the scientific community. This review explores the most recent developments in the recognition and characterization of TRPC6. Additionally, it considers the field's prospects while examining how TRPC6 might be altered and its clinical applications.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, Pakistan.
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Munir Ullah Khan
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Zhejiang University, Hangzhou, China
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Talib Hussain
- Women Dental College, Khyber Medical University, Abbottabad, Pakistan
| | - Muhammad Azhar Ud Din
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
10
|
Khan SU, Saeed S, Sheikh AN, Arbi FM, Shahzad A, Faryal U, Lu K. Crafting a Blueprint for MicroRNA in Cardiovascular Diseases (CVDs). Curr Probl Cardiol 2023; 48:102010. [PMID: 37544621 DOI: 10.1016/j.cpcardiol.2023.102010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Cardiovascular diseases (CVDs) encompass a range of disorders, from congenital heart malformation, cardiac valve, peripheral artery, coronary artery, cardiac muscle diseases, and arrhythmias, ultimately leading to heart failure. Despite therapeutic advancements, CVDs remain the primary cause of global mortality, highlighting the need for a thorough knowledge of CVDs at the level of molecular structure. Gene and microRNA (miRNA) expression variations significantly influence cellular pathways, impacting an organism's physiology. MiRNAs, in particular, serve as regulators of gene expression, playing critical roles in essential cellular pathways and influencing the development of various diseases, including CVD. A wealth of evidence supports the involvement of miRNAs in CVD progression. These findings highlight the potential of miRNAs as valuable diagnostic biomarkers and open new avenues for their therapeutic application in CVDs. This study focuses on the latest advancements in identifying and characterizing microRNAs, exploring their manipulation and clinical application, and discussing future perspectives.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Ayesha Nazir Sheikh
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, 76080, Pakistan
| | - Fawad Mueen Arbi
- Quaid-e-Azam Medical College, Bahawalpur, Punjab, 63100, Pakistan
| | - Ali Shahzad
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Uzma Faryal
- Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|