1
|
Verfaillie G, Rutten J, D'Asseler Y, Bacher K. Accuracy of patient-specific CT organ doses from Monte Carlo simulations: influence of CT-based voxel models. Phys Eng Sci Med 2024; 47:989-1000. [PMID: 38634980 PMCID: PMC11408396 DOI: 10.1007/s13246-024-01422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Monte Carlo simulations using patient CT images as input are the gold standard to perform patient-specific dosimetry. However, in standard clinical practice patient's CT images are limited to the reconstructed CT scan range. In this study, organ dose calculations were performed with ImpactMC for chest and cardiac CT using whole-body and anatomy-specific voxel models to estimate the accuracy of CT organ doses based on the latter model. When the 3D patient model is limited to the CT scan range, CT organ doses from Monte Carlo simulations are the most accurate for organs entirely in the field of view. For these organs only the radiation dose related to scatter from the rest of the body is not incorporated. For organs lying partially outside the field of view organ doses are overestimated by not accounting for the non-irradiated tissue mass. This overestimation depends strongly on the amount of the organ volume located outside the field of view. To get a more accurate estimation of the radiation dose to these organs, the ICRP reference organ masses and densities could form a solution. Except for the breast, good agreement in dose was found for most organs. Voxel models generated from clinical CT examinations do not include the overscan in the z-direction. The availability of whole-body voxel models allowed to study this influence as well. As expected, overscan induces slightly higher organ doses.
Collapse
Affiliation(s)
- Gwenny Verfaillie
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium.
| | - Jeff Rutten
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Yves D'Asseler
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Klaus Bacher
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Rajagopal A, Natsuaki Y, Wangerin K, Hamdi M, An H, Sunderland JJ, Laforest R, Kinahan PE, Larson PEZ, Hope TA. Synthetic PET via Domain Translation of 3-D MRI. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2023; 7:333-343. [PMID: 37396797 PMCID: PMC10311993 DOI: 10.1109/trpms.2022.3223275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Historically, patient datasets have been used to develop and validate various reconstruction algorithms for PET/MRI and PET/CT. To enable such algorithm development, without the need for acquiring hundreds of patient exams, in this article we demonstrate a deep learning technique to generate synthetic but realistic whole-body PET sinograms from abundantly available whole-body MRI. Specifically, we use a dataset of 56 18F-FDG-PET/MRI exams to train a 3-D residual UNet to predict physiologic PET uptake from whole-body T1-weighted MRI. In training, we implemented a balanced loss function to generate realistic uptake across a large dynamic range and computed losses along tomographic lines of response to mimic the PET acquisition. The predicted PET images are forward projected to produce synthetic PET (sPET) time-of-flight (ToF) sinograms that can be used with vendor-provided PET reconstruction algorithms, including using CT-based attenuation correction (CTAC) and MR-based attenuation correction (MRAC). The resulting synthetic data recapitulates physiologic 18F-FDG uptake, e.g., high uptake localized to the brain and bladder, as well as uptake in liver, kidneys, heart, and muscle. To simulate abnormalities with high uptake, we also insert synthetic lesions. We demonstrate that this sPET data can be used interchangeably with real PET data for the PET quantification task of comparing CTAC and MRAC methods, achieving ≤ 7.6% error in mean-SUV compared to using real data. These results together show that the proposed sPET data pipeline can be reasonably used for development, evaluation, and validation of PET/MRI reconstruction methods.
Collapse
Affiliation(s)
- Abhejit Rajagopal
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA 94158 USA
| | - Yutaka Natsuaki
- Department of Radiation Oncology, University of New Mexico, Albuquerque, NM 87131 USA
| | | | - Mahdjoub Hamdi
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Hongyu An
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - John J Sunderland
- Department of Radiology, The University of Iowa, Iowa City, IA 52242 USA
| | - Richard Laforest
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Paul E Kinahan
- Department of Radiology, University of Washington, Seattle, WA 98195 USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA 94158 USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
3
|
Polycarpou I, Soultanidis G, Tsoumpas C. Synergistic motion compensation strategies for positron emission tomography when acquired simultaneously with magnetic resonance imaging. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200207. [PMID: 34218675 PMCID: PMC8255946 DOI: 10.1098/rsta.2020.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 05/04/2023]
Abstract
Subject motion in positron emission tomography (PET) is a key factor that degrades image resolution and quality, limiting its potential capabilities. Correcting for it is complicated due to the lack of sufficient measured PET data from each position. This poses a significant barrier in calculating the amount of motion occurring during a scan. Motion correction can be implemented at different stages of data processing either during or after image reconstruction, and once applied accurately can substantially improve image quality and information accuracy. With the development of integrated PET-MRI (magnetic resonance imaging) scanners, internal organ motion can be measured concurrently with both PET and MRI. In this review paper, we explore the synergistic use of PET and MRI data to correct for any motion that affects the PET images. Different types of motion that can occur during PET-MRI acquisitions are presented and the associated motion detection, estimation and correction methods are reviewed. Finally, some highlights from recent literature in selected human and animal imaging applications are presented and the importance of motion correction for accurate kinetic modelling in dynamic PET-MRI is emphasized. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
Collapse
Affiliation(s)
- Irene Polycarpou
- Department of Health Sciences, European University of Cyprus, Nicosia, Cyprus
| | - Georgios Soultanidis
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charalampos Tsoumpas
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Imaging Science Department, University of Leeds, West Yorkshire, UK
- Invicro, London, UK
| |
Collapse
|
4
|
Polycarpou I, Soultanidis G, Tsoumpas C. Synthesis of Realistic Simultaneous Positron Emission Tomography and Magnetic Resonance Imaging Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:703-711. [PMID: 29533892 DOI: 10.1109/tmi.2017.2768130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The investigation of the performance of different positron emission tomography (PET) reconstruction and motion compensation methods requires accurate and realistic representation of the anatomy and motion trajectories as observed in real subjects during acquisitions. The generation of well-controlled clinical datasets is difficult due to the many different clinical protocols, scanner specifications, patient sizes, and physiological variations. Alternatively, computational phantoms can be used to generate large data sets for different disease states, providing a ground truth. Several studies use registration of dynamic images to derive voxel deformations to create moving computational phantoms. These phantoms together with simulation software generate raw data. This paper proposes a method for the synthesis of dynamic PET data using a fast analytic method. This is achieved by incorporating realistic models of respiratory motion into a numerical phantom to generate datasets with continuous and variable motion with magnetic resonance imaging (MRI)-derived motion modeling and high resolution MRI images. In this paper, data sets for two different clinical traces are presented, 18F-FDG and 68Ga-PSMA. This approach incorporates realistic models of respiratory motion to generate temporally and spatially correlated MRI and PET data sets, as those expected to be obtained from simultaneous PET-MRI acquisitions.
Collapse
|
5
|
Abstract
Multimodal imaging has led to a more detailed exploration of different physiologic processes with integrated PET/MR imaging being the most recent entry. Although the clinical need is still questioned, it is well recognized that it represents one of the most active and promising fields of medical imaging research in terms of software and hardware. The hardware developments have moved from small detector components to high-performance PET inserts and new concepts in full systems. Conversely, the software focuses on the efficient performance of necessary corrections without the use of CT data. The most recent developments in both directions are reviewed.
Collapse
Affiliation(s)
- Charalampos Tsoumpas
- Division of Biomedical Imaging, Faculty of Medicine and Health, University of Leeds, 8.001a, Worsley Building, Clarendon Way, Leeds LS2 9JT, UK
| | - Dimitris Visvikis
- LaTIM UMR 1101, INSERM, University of Brest, Bat 1, 1er etage, 5 avenue Foch, Brest 29609, France
| | - George Loudos
- Department of Biomedical Engineering, Technological Educational Institute of Athens, Ag. Spiridonos 28, Egaleo, Athens 12210, Greece.
| |
Collapse
|
6
|
Kotasidis FA, Tsoumpas C, Polycarpou I, Zaidi H. A 5D computational phantom for pharmacokinetic simulation studies in dynamic emission tomography. Comput Med Imaging Graph 2014; 38:764-73. [DOI: 10.1016/j.compmedimag.2014.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/22/2014] [Accepted: 06/27/2014] [Indexed: 02/05/2023]
|
7
|
Tsoumpas C, Polycarpou I, Thielemans K, Buerger C, King AP, Schaeffter T, Marsden PK. The effect of regularization in motion compensated PET image reconstruction: a realistic numerical 4D simulation study. Phys Med Biol 2013; 58:1759-73. [PMID: 23442264 DOI: 10.1088/0031-9155/58/6/1759] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Following continuous improvement in PET spatial resolution, respiratory motion correction has become an important task. Two of the most common approaches that utilize all detected PET events to motion-correct PET data are the reconstruct-transform-average method (RTA) and motion-compensated image reconstruction (MCIR). In RTA, separate images are reconstructed for each respiratory frame, subsequently transformed to one reference frame and finally averaged to produce a motion-corrected image. In MCIR, the projection data from all frames are reconstructed by including motion information in the system matrix so that a motion-corrected image is reconstructed directly. Previous theoretical analyses have explained why MCIR is expected to outperform RTA. It has been suggested that MCIR creates less noise than RTA because the images for each separate respiratory frame will be severely affected by noise. However, recent investigations have shown that in the unregularized case RTA images can have fewer noise artefacts, while MCIR images are more quantitatively accurate but have the common salt-and-pepper noise. In this paper, we perform a realistic numerical 4D simulation study to compare the advantages gained by including regularization within reconstruction for RTA and MCIR, in particular using the median-root-prior incorporated in the ordered subsets maximum a posteriori one-step-late algorithm. In this investigation we have demonstrated that MCIR with proper regularization parameters reconstructs lesions with less bias and root mean square error and similar CNR and standard deviation to regularized RTA. This finding is reproducible for a variety of noise levels (25, 50, 100 million counts), lesion sizes (8 mm, 14 mm diameter) and iterations. Nevertheless, regularized RTA can also be a practical solution for motion compensation as a proper level of regularization reduces both bias and mean square error.
Collapse
Affiliation(s)
- C Tsoumpas
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | | | | | | | | | | | | |
Collapse
|