1
|
Dadgar M, Verstraete A, Maebe J, D'Asseler Y, Vandenberghe S. Assessing the deep learning based image quality enhancements for the BGO based GE omni legend PET/CT. EJNMMI Phys 2024; 11:86. [PMID: 39412633 PMCID: PMC11484998 DOI: 10.1186/s40658-024-00688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND This study investigates the integration of Artificial Intelligence (AI) in compensating the lack of time-of-flight (TOF) of the GE Omni Legend PET/CT, which utilizes BGO scintillation crystals. METHODS The current study evaluates the image quality of the GE Omni Legend PET/CT using a NEMA IQ phantom. It investigates the impact on imaging performance of various deep learning precision levels (low, medium, high) across different data acquisition durations. Quantitative analysis was performed using metrics such as contrast recovery coefficient (CRC), background variability (BV), and contrast to noise Ratio (CNR). Additionally, patient images reconstructed with various deep learning precision levels are presented to illustrate the impact on image quality. RESULTS The deep learning approach significantly reduced background variability, particularly for the smallest region of interest. We observed improvements in background variability of 11.8 % , 17.2 % , and 14.3 % for low, medium, and high precision deep learning, respectively. The results also indicate a significant improvement in larger spheres when considering both background variability and contrast recovery coefficient. The high precision deep learning approach proved advantageous for short scans and exhibited potential in improving detectability of small lesions. The exemplary patient study shows that the noise was suppressed for all deep learning cases, but low precision deep learning also reduced the lesion contrast (about -30 % ), while high precision deep learning increased the contrast (about 10 % ). CONCLUSION This study conducted a thorough evaluation of deep learning algorithms in the GE Omni Legend PET/CT scanner, demonstrating that these methods enhance image quality, with notable improvements in CRC and CNR, thereby optimizing lesion detectability and offering opportunities to reduce image acquisition time.
Collapse
Affiliation(s)
- Meysam Dadgar
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium.
| | - Amaryllis Verstraete
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| | - Jens Maebe
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| | - Yves D'Asseler
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| |
Collapse
|
2
|
Variability of radiotherapy volume delineation: PSMA PET/MRI and MRI based clinical target volume and lymph node target volume for high-risk prostate cancer. Cancer Imaging 2023; 23:1. [PMID: 36600283 DOI: 10.1186/s40644-022-00518-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
PURPOSE A comparative retrospective study to assess the impact of PSMA Ligand PET/MRI ([68 Ga]-Ga-PSMA-11 and [18F]-F-PSMA-1007 PET/MRI) as a new method of target delineation compared to conventional imaging on whole-pelvis radiotherapy for high-risk prostate cancer (PCa). PATIENTS AND METHODS Forty-nine patients with primary high-risk PCa completed the whole-pelvis radiotherapy plan based on PSMA PET/MRI and MRI. The primary endpoint compared the size and overlap of clinical target volume (CTV) and nodal gross tumour volume (GTVn) based on PSMA PET/MRI and MRI. The diagnostic performance of two methods for pelvic lymph node metastasis (PLNM) was evaluated. RESULTS In the radiotherapy planning for high-risk PCa patients, there was a significant correlation between MRI-CTV and PET/MRI-CTV (P = 0.005), as well as between MRI-GTVn and PET/MRI-GTVn (P < 0.001). There are non-significant differences in the CTV and GTVn based on MRI and PET/MRI images (P = 0.660, P = 0.650, respectively). The conformity index (CI), lesion coverage factor (LCF) and Dice similarity coefficient (DSC) of CTVs were 0.999, 0.953 and 0.954. The CI, LCF and DSC of GTVns were 0.927, 0.284, and 0.32. Based on pathological lymph node analysis of 463 lymph nodes from 37 patients, the sensitivity, specificity of PET/MRI in the diagnosis of PLNM were 77.78% and 99.76%, respectively, which were higher than those of MRI (P = 0.011). Eight high-risk PCa patients who finished PSMA PET/MRI changed their N or M stage. CONCLUSION The CTV delineated based on PET/MRI and MRI differ little. The GTVn delineated based on PET/MRI encompasses metastatic pelvic lymph nodes more accurately than MRI and avoids covering pelvic lymph nodes without metastasis. We emphasize the utility of PET/MRI fusion images in GTVn delineation in whole pelvic radiotherapy for PCa. The use of PSMA PET/MRI aids in the realization of more individual and precise radiotherapy for PCa.
Collapse
|
3
|
The Added Value of [18F]Choline PET/CT in Low-Risk Prostate Cancer Staging: A Case Report. Life (Basel) 2022; 12:life12111728. [DOI: 10.3390/life12111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
In the management of prostate cancer (PCa), correct staging is crucial in order to assess the right therapeutic approach. [18F]Choline PET/CT has been shown to provide more accurate staging information than conventional imaging approaches. The aim of this paper is to provide a real practice demonstration of the impact of [18F]Choline PET/CT on low-risk prostate cancer staging and clinical management. We report a 64-year-old man with biochemical PCa recurrence diagnosis after transurethral resection of the prostate. The patient, after the detection of an increased level of PSA, underwent multi-parametric prostate magnetic resonance imaging (mpMRI) that did not show evidence of disease. The patient was admitted to perform [18F]Choline PET/CT that showed a macroscopic prostate recurrence. Patient underwent photon external beam radiation therapy (EBRT) treatment, and [18F]Choline PET/CT was also used to define treatment volumes. At 3- and 6-month clinical follow-up evaluations, no late toxicity was detected and a significant reduction in PSA value was shown. Therefore, our case highlights the potential usefulness of [18F]Choline PET/CT for the staging of low-risk prostate cancer and its impact on the management and quality of life of such patients. The presented case should urge the scientific community to enhance larger and multicentric studies, assessing more extensively the potential impact of [18F]Choline PET/CT in this clinical scenario.
Collapse
|
4
|
Nguyen NC, Vercher-Conejero J, Faulhaber P. Tumor volume delineation: A pilot study comparing a digital positron-emission tomography prototype with an analog positron-emission tomography system. World J Nucl Med 2019; 18:45-51. [PMID: 30774546 PMCID: PMC6357708 DOI: 10.4103/wjnm.wjnm_22_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We evaluated the potential differences of a digital positron-emission tomography (PET) prototype equipped with photon-counting detectors (D-PET, Philips Healthcare, Cleveland, Ohio, USA) in tumor volume delineation compared with the analog Gemini TF PET system (A-PET, Philips). Eleven oncologic patients first underwent clinical fluorodeoxyglucose (FDG) PET/computed tomography (CT) on A-PET. The D-PET ring was then inserted between the PET and CT scanner of A-PET and the patient was scanned for the second time. Two interpreters reviewed the two sets of PET/CT images for image quality and diagnostic confidence. FDG avid lesions were evaluated for volume measured at 35% and 50% of maximum standard uptake value (SUV) thresholds (35% SUV, 50% SUV), and for SUV gradient as a measure of lesion sharpness. Bland–Altman plots were used to assess the agreement between the two PET scans. Qualitative lesion conspicuity, sharpness, and diagnostic confidence were greater at D-PET than that of A-PET with favorable inter-rater agreements. Median lesion size of the 24 measured lesions was 1.6 cm. The lesion volume at D-PET was smaller at both 35% SUV and 50% SUV thresholds compared with that of A-PET, with a mean difference of − 3680.0 mm3 at 35% SUV and − 835.3 mm3 at 50% SUV. SUV gradient was greater at D-PET than at A-PET by 49.2% (95% confidence interval: 34.1%–60.8%). Given the smaller volume definition, coupled with improved conspicuity and sharpness, digital PET may be more robust and accurate in tumor rendering compared with analog PET not only for radiotherapy planning but also in prognostication and systemic treatment monitoring.
Collapse
Affiliation(s)
- Nghi C Nguyen
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jose Vercher-Conejero
- Department of Radiology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Peter Faulhaber
- Department of Radiology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
5
|
Greater reduction in mid-treatment FDG-PET volume may be associated with worse survival in non-small cell lung cancer. Radiother Oncol 2018; 132:241-249. [PMID: 30389239 DOI: 10.1016/j.radonc.2018.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE This study tested the hypotheses that 1) changes in mid-treatment fluorodeoxyglucose (FDG)-positron emission tomography (PET) parameters are predictive of overall survival (OS) and 2) mid-treatment FDG-PET-adapted treatment has the potential to improve survival in patients with non-small cell lung cancer (NSCLC). MATERIAL AND METHODS Patients with stage I-III NSCLC requiring daily fractionated radiation were eligible. FDG-PET-CT scans were obtained prior to and mid-treatment with radiotherapy at 40-50 Gy. The normalized maximum standardized uptake value (NSUVmax), normalized mean SUV (NSUVmean), PET-metabolic tumor volume (MTV), total lesion glycolysis (TLG), and computed tomography-based gross tumor volume (CT-GTV) were consistently measured for all patients. The primary study endpoint was OS. RESULTS The study is comprised of 102 patients who received 3-dimensional conformal radiotherapy, among whom 30 patients who received mid-treatment PET-adapted dose escalation radiotherapy. All PET-CT parameters decreased significantly (P < 0.001) mid-treatment, with greater reductions in FDG-volumetric parameters compared to FDG-activity factors. Mid-treatment changes in MTV (P = 0.053) and TLG (P = 0.021) were associated with OS, while changes in NSUVmax, NSUVmean, and CT-GTV were not (all Ps>0.1). Patients receiving conventional radiation (60-70 Gy) with MTV reductions greater than the mean had a median survival of 14 months, compared to those with MTV reductions less than the mean who had a median survival of 22 months. By contrast, patients receiving mid-treatment PET-adapted radiation with MTV reductions greater than the mean had a median survival of 33 months, compared to those with MTV reductions less than the mean who had a median survival of 19 months. Overall, PET-adapted treatment resulted in a 19% better 5-year survival than conventional radiation. CONCLUSION Changes in mid-treatment PET-volumetric parameters were significantly associated with survival in NSCLC. A greater reduction in the mid-treatment MTV was associated with worse survival in patients treated with standard radiation, but with better survival in patients who received mid-treatment PET-adapted treatment.
Collapse
|
6
|
Radiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges. Int J Radiat Oncol Biol Phys 2018; 102:1117-1142. [PMID: 30064704 DOI: 10.1016/j.ijrobp.2018.05.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Abstract
Radiomics is a recent area of research in precision medicine and is based on the extraction of a large variety of features from medical images. In the field of radiation oncology, comprehensive image analysis is crucial to personalization of treatments. A better characterization of local heterogeneity and the shape of the tumor, depicting individual cancer aggressiveness, could guide dose planning and suggest volumes in which a higher dose is needed for better tumor control. In addition, noninvasive imaging features that could predict treatment outcome from baseline scans could help the radiation oncologist to determine the best treatment strategies and to stratify patients as at low risk or high risk of recurrence. Nuclear medicine molecular imaging reflects information regarding biological processes in the tumor thanks to a wide range of radiotracers. Many studies involving 18F-fluorodeoxyglucose positron emission tomography suggest an added value of radiomics compared with the use of conventional PET metrics such as standardized uptake value for both tumor diagnosis and prediction of recurrence or treatment outcome. However, these promising results should not hide technical difficulties that still currently prevent the approach from being widely studied or clinically used. These difficulties mostly pertain to the variability of the imaging features as a function of the acquisition device and protocol, the robustness of the models with respect to that variability, and the interpretation of the radiomic models. Addressing the impact of the variability in acquisition and reconstruction protocols is needed, as is harmonizing the radiomic feature calculation methods, to ensure the reproducibility of studies in a multicenter context and their implementation in a clinical workflow. In this review, we explain the potential impact of positron emission tomography radiomics for radiation therapy and underline the various aspects that need to be carefully addressed to make the most of this promising approach.
Collapse
|
7
|
Calais J, Cao M, Nickols NG. The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer. J Nucl Med 2018; 59:557-567. [PMID: 29301928 PMCID: PMC6910632 DOI: 10.2967/jnumed.117.196444] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy and radical prostatectomy are the definitive treatment options for patients with localized prostate cancer. A rising level of prostate-specific antigen after radical prostatectomy indicates prostate cancer recurrence, and these patients may still be cured with salvage radiotherapy. To maximize chance for cure, the irradiated volumes should completely encompass the extent of disease. Therefore, accurate estimation of the location of disease is critical for radiotherapy planning in both the definitive and the salvage settings. Current first-line imaging for prostate cancer has limited sensitivity for detection of disease both at initial staging and at biochemical recurrence. Integration of PET into routine evaluation of prostate cancer patients may improve both staging accuracy and radiotherapy planning. 18F-FDG PET/CT is now routinely used in radiation planning for several cancer types. However, 18F-FDG PET/CT has low sensitivity for prostate cancer. Additional PET probes evaluated in prostate cancer include 18F-sodium fluoride, 11C-acetate, 11C- or 18F-choline, 18F-fluciclovine, and 68Ga- or 18F-labeled ligands that bind prostate-specific membrane antigen (PSMA). PSMA ligands appear to be the most sensitive and specific but have not yet received Food and Drug Administration New Drug Application approval for use in the United States. Retrospective and prospective investigations suggest a potential major impact of PET/CT on prostate radiation treatment planning. Prospective trials randomizing patients to routine radiotherapy planning versus PET/CT-aided planning may show meaningful clinical outcomes. Prospective clinical trials evaluating the addition of 18F-fluciclovine PET/CT for planning of salvage radiotherapy with clinical endpoints are under way. Prospective trials evaluating the clinical impact of PSMA PET/CT on prostate radiation planning are indicated.
Collapse
Affiliation(s)
- Jeremie Calais
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Minsong Cao
- Department of Radiation Oncology, UCLA, Los Angeles, California; and
| | - Nicholas G Nickols
- Department of Radiation Oncology, UCLA, Los Angeles, California; and
- Department of Radiation Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
8
|
|
9
|
Lai AYT, Perucho JAU, Xu X, Hui ES, Lee EYP. Concordance of FDG PET/CT metabolic tumour volume versus DW-MRI functional tumour volume with T2-weighted anatomical tumour volume in cervical cancer. BMC Cancer 2017; 17:825. [PMID: 29207964 PMCID: PMC5718076 DOI: 10.1186/s12885-017-3800-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 11/20/2017] [Indexed: 12/29/2022] Open
Abstract
Background 18F–fluoro-deoxyglucose positron emission tomography with computed tomography (FDG PET/CT) has been employed to define radiotherapy targets using a threshold based on the standardised uptake value (SUV), and has been described for use in cervical cancer. The aim of this study was to evaluate the concordance between the metabolic tumour volume (MTV) measured on FDG PET/CT and the anatomical tumour volume (ATV) measured on T2-weighted magnetic resonance imaging (T2W-MRI); and compared with the functional tumour volume (FTV) measured on diffusion-weighted MRI (DW-MRI) in cervical cancer, taking the T2W-ATV as gold standard. Methods Consecutive newly diagnosed cervical cancer patients who underwent FDG PET/CT and DW-MRI were retrospectively reviewed from June 2013 to July 2017. Volumes of interest was inserted to the focal hypermetabolic activity corresponding to the cervical tumour on FDG PET/CT with automated tumour contouring and manual adjustment, based on SUV 20%–80% thresholds of the maximum SUV (SUVmax) to define the MTV20–80, with intervals of 5%. Tumour areas were manually delineated on T2W-MRI and multiplied by slice thickness to calculate the ATV. FTV were derived by manually delineating tumour area on ADC map, multiplied by the slice thickness to determine the FTV(manual). Diffusion restricted areas was extracted from b0 and ADC map using K-means clustering to determine the FTV(semi-automated). The ATVs, FTVs and the MTVs at different thresholds were compared using the mean and correlated using Pearson’s product-moment correlation. Results Twenty-nine patients were evaluated (median age 52 years). Paired difference of mean between ATV and MTV was the closest and not statistically significant at MTV30 (−2.9cm3, −5.2%, p = 0.301). This was less than the differences between ATV and FTV(semi-automated) (25.0cm3, 45.1%, p < 0.001) and FTV(manual) (11.2cm3, 20.1%, p = 0.001). The correlation of MTV30 with ATV was excellent (r = 0.968, p < 0.001) and better than that of the FTVs. Conclusions Our study demonstrated that MTV30 was the only parameter investigated with no statistically significant difference with ATV, had the least absolute difference from ATV, and showed excellent positive correlation with ATV, suggesting its superiority as a functional imaging modality when compared with DW-MRI and supporting its use as a surrogate for ATV for radiotherapy tumour contouring.
Collapse
Affiliation(s)
- Alta Y T Lai
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong Special Administrative Region, China
| | - Jose A U Perucho
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, 102 Pokfulam Road, High West, Hong Kong Special Administrative Region, China
| | - Xiaopei Xu
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, 102 Pokfulam Road, High West, Hong Kong Special Administrative Region, China
| | - Edward S Hui
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, 102 Pokfulam Road, High West, Hong Kong Special Administrative Region, China
| | - Elaine Y P Lee
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, 102 Pokfulam Road, High West, Hong Kong Special Administrative Region, China.
| |
Collapse
|
10
|
Lin A, Bezjak A. Clinical and research priorities for combined modality therapy in stage III NSCLC. Lung Cancer Manag 2016; 5:43-50. [PMID: 30643548 DOI: 10.2217/lmt-2015-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/01/2016] [Indexed: 11/21/2022] Open
Abstract
Stage III NSCLC comprises of a heterogeneous group of patients with regard to stage, extent of disease and prognosis. Disease presentation can often be complex in clinical practice, and the challenges are not well-defined in clinical trials or practice guidelines. In order to improve the therapeutic ratio of treatment, one needs to either increase the benefit of treatment or reduce toxicities, or both. Priorities in radiation therapy include dose escalation, imaging advances, improved target delineation, reduced planning target volume margin, intensity-modulated radiotherapy, image-guided radiotherapy, motion management and the use of cytoprotectants. Priorities in systemic therapy include the incorporation of molecularly targeted and immune-modulatory agents.
Collapse
Affiliation(s)
- Angela Lin
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Bezjak
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Jeong S, Lee JH, Chung MJ, Lee SW, Lee JW, Kang DG, Kim SH. Analysis of Geometric Shifts and Proper Setup-Margin in Prostate Cancer Patients Treated With Pelvic Intensity-Modulated Radiotherapy Using Endorectal Ballooning and Daily Enema for Prostate Immobilization. Medicine (Baltimore) 2016; 95:e2387. [PMID: 26765418 PMCID: PMC4718244 DOI: 10.1097/md.0000000000002387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We evaluate geometric shifts of daily setup for evaluating the appropriateness of treatment and determining proper margins for the planning target volume (PTV) in prostate cancer patients.We analyzed 1200 sets of pretreatment megavoltage-CT scans that were acquired from 40 patients with intermediate to high-risk prostate cancer. They received whole pelvic intensity-modulated radiotherapy (IMRT). They underwent daily endorectal ballooning and enema to limit intrapelvic organ movement. The mean and standard deviation (SD) of daily translational shifts in right-to-left (X), anterior-to-posterior (Y), and superior-to-inferior (Z) were evaluated for systemic and random error.The mean ± SD of systemic error (Σ) in X, Y, Z, and roll was 2.21 ± 3.42 mm, -0.67 ± 2.27 mm, 1.05 ± 2.87 mm, and -0.43 ± 0.89°, respectively. The mean ± SD of random error (δ) was 1.95 ± 1.60 mm in X, 1.02 ± 0.50 mm in Y, 1.01 ± 0.48 mm in Z, and 0.37 ± 0.15° in roll. The calculated proper PTV margins that cover >95% of the target on average were 8.20 (X), 5.25 (Y), and 6.45 (Z) mm. Mean systemic geometrical shifts of IMRT were not statistically different in all transitional and three-dimensional shifts from early to late weeks. There was no grade 3 or higher gastrointestinal or genitourianry toxicity.The whole pelvic IMRT technique is a feasible and effective modality that limits intrapelvic organ motion and reduces setup uncertainties. Proper margins for the PTV can be determined by using geometric shifts data.
Collapse
Affiliation(s)
- Songmi Jeong
- From the Department of Radiation Oncology, St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon (SJ, JHL, MJC, SWL, DGK, SHK); and Department of Radiation Oncology, Kyungpook National University Hospital, Daegu, Korea (JWL)
| | | | | | | | | | | | | |
Collapse
|