1
|
Ankrah AO, Sathekge MM, Dierckx RAJO, Glaudemans AWJM. Radionuclide Imaging of Fungal Infections and Correlation with the Host Defense Response. J Fungi (Basel) 2021; 7:jof7060407. [PMID: 34067410 PMCID: PMC8224611 DOI: 10.3390/jof7060407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
The human response to invading fungi includes a series of events that detect, kill, or clear the fungi. If the metabolic host response is unable to eliminate the fungi, an infection ensues. Some of the host response’s metabolic events to fungi can be imaged with molecules labelled with radionuclides. Several important clinical applications have been found with radiolabelled biomolecules of inflammation. 18F-fluorodeoxyglucose is the tracer that has been most widely investigated in the host defence of fungi. This tracer has added value in the early detection of infection, in staging and visualising dissemination of infection, and in monitoring antifungal treatment. Radiolabelled antimicrobial peptides showed promising results, but large prospective studies in fungal infection are lacking. Other tracers have also been used in imaging events of the host response, such as the migration of white blood cells at sites of infection, nutritional immunity in iron metabolism, and radiolabelled monoclonal antibodies. Many tracers are still at the preclinical stage. Some tracers require further studies before translation into clinical use. The application of therapeutic radionuclides offers a very promising clinical application of these tracers in managing drug-resistant fungi.
Collapse
Affiliation(s)
- Alfred O. Ankrah
- National Centre for Radiotherapy Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, Accra GA-222 7974, Ghana;
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Rudi A. J. O. Dierckx
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Andor W. J. M. Glaudemans
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Correspondence:
| |
Collapse
|
2
|
Imaging Inflammation with Positron Emission Tomography. Biomedicines 2021; 9:biomedicines9020212. [PMID: 33669804 PMCID: PMC7922638 DOI: 10.3390/biomedicines9020212] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
The impact of inflammation on the outcome of many medical conditions such as cardiovascular diseases, neurological disorders, infections, cancer, and autoimmune diseases has been widely acknowledged. However, in contrast to neurological, oncologic, and cardiovascular disorders, imaging plays a minor role in research and management of inflammation. Imaging can provide insights into individual and temporospatial biology and grade of inflammation which can be of diagnostic, therapeutic, and prognostic value. There is therefore an urgent need to evaluate and understand current approaches and potential applications for imaging of inflammation. This review discusses radiotracers for positron emission tomography (PET) that have been used to image inflammation in cardiovascular diseases and other inflammatory conditions with a special emphasis on radiotracers that have already been successfully applied in clinical settings.
Collapse
|
3
|
Abstract
FDG-PET/CT has potential in inflammatory bowel disease. The literature generally presents good sensitivity and specificity in various settings. At present, the most promising roles are assessment of early treatment response and stricture characterization, whereas general use in the initial diagnostic workup should be reserved for equivocal cases for the time being. However, it is challenging to image the moving and physiologically active bowel with FDG, and available literature is far from ideal. Thus, several issues remain unclarified, and further data are needed to make firm conclusions on the role of FDG and PET/CT in inflammatory bowel disease.
Collapse
Affiliation(s)
- Jacob Broder Brodersen
- Department of Gastroenterology, Hospital of Southwest Jutland, Finsensgade 35, Esbjerg Dk-6700, Denmark
| | - Søren Hess
- Department of Radiology and Nuclear Medicine, Hospital of Southwest Jutland, Finsensgade 35, Esbjerg Dk-6700, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
Abstract
Purpose of Review The main goal of the article is to familiarize the reader with commonly and uncommonly used nuclear medicine procedures that can significantly contribute to improved patient care. The article presents examples of specific modality utilization in the chest including assessment of lung ventilation and perfusion, imaging options for broad range of infectious and inflammatory processes, and selected aspects of oncologic imaging. In addition, rapidly developing new techniques utilizing molecular imaging are discussed. Recent Findings The article describes nuclear medicine imaging modalities including gamma camera, SPECT, PET, and hybrid imaging (SPECT/CT, PET/CT, and PET/MR) in the context of established and emerging clinical applications. Areas of potential future development in nuclear medicine are discussed with emphasis on molecular imaging and implementation of new targeted tracers used in diagnostics and therapeutics (theranostics). Summary Nuclear medicine and molecular imaging provide many unique and novel options for the diagnosis and treatment of pulmonary diseases. This article reviews current applications for nuclear medicine and molecular imaging and selected future applications for radiopharmaceuticals and targeted molecular imaging techniques.
Collapse
|
5
|
Wang X, Huo L. Non-18F-Fluorodeoxyglucos PET Tracers in Pediatric Disease. PET Clin 2020; 15:241-251. [DOI: 10.1016/j.cpet.2020.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Song TA, Chowdhury SR, Yang F, Dutta J. Super-Resolution PET Imaging Using Convolutional Neural Networks. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2020; 6:518-528. [PMID: 32055649 PMCID: PMC7017584 DOI: 10.1109/tci.2020.2964229] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Positron emission tomography (PET) suffers from severe resolution limitations which reduce its quantitative accuracy. In this paper, we present a super-resolution (SR) imaging technique for PET based on convolutional neural networks (CNNs). To facilitate the resolution recovery process, we incorporate high-resolution (HR) anatomical information based on magnetic resonance (MR) imaging. We introduce the spatial location information of the input image patches as additional CNN inputs to accommodate the spatially-variant nature of the blur kernels in PET. We compared the performance of shallow (3-layer) and very deep (20-layer) CNNs with various combinations of the following inputs: low-resolution (LR) PET, radial locations, axial locations, and HR MR. To validate the CNN architectures, we performed both realistic simulation studies using the BrainWeb digital phantom and clinical studies using neuroimaging datasets. For both simulation and clinical studies, the LR PET images were based on the Siemens HR+ scanner. Two different scenarios were examined in simulation: one where the target HR image is the ground-truth phantom image and another where the target HR image is based on the Siemens HRRT scanner - a high-resolution dedicated brain PET scanner. The latter scenario was also examined using clinical neuroimaging datasets. A number of factors affected relative performance of the different CNN designs examined, including network depth, target image quality, and the resemblance between the target and anatomical images. In general, however, all deep CNNs outperformed classical penalized deconvolution and partial volume correction techniques by large margins both qualitatively (e.g., edge and contrast recovery) and quantitatively (as indicated by three metrics: peak signal-to-noise-ratio, structural similarity index, and contrast-to-noise ratio).
Collapse
Affiliation(s)
- Tzu-An Song
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854 USA and co-affiliated with Massachusetts General Hospital, Boston, MA, 02114
| | - Samadrita Roy Chowdhury
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854 USA and co-affiliated with Massachusetts General Hospital, Boston, MA, 02114
| | - Fan Yang
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854 USA and co-affiliated with Massachusetts General Hospital, Boston, MA, 02114
| | - Joyita Dutta
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854 USA and co-affiliated with Massachusetts General Hospital, Boston, MA, 02114
| |
Collapse
|
7
|
An update on the unparalleled impact of FDG-PET imaging on the day-to-day practice of medicine with emphasis on management of infectious/inflammatory disorders. Eur J Nucl Med Mol Imaging 2019; 47:18-27. [DOI: 10.1007/s00259-019-04490-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
|
8
|
Diagnostic Performance of 18F-FDG PET/CT in Infectious and Inflammatory Diseases according to Published Meta-Analyses. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:3018349. [PMID: 31427907 PMCID: PMC6683817 DOI: 10.1155/2019/3018349] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/04/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022]
Abstract
Purpose To date, several meta-analyses have reported data about the diagnostic performance of 18F-FDG PET/CT in infectious and inflammatory diseases. This article aims to summarize the published evidence-based data about the diagnostic performance of 18F-FDG PET/CT in this setting. Methods A comprehensive computer literature search of meta-analyses published in PubMed/MEDLINE and Cochrane library database from January 2009 through December 2018 and regarding the diagnostic performance of 18F-FDG PET/CT in infectious and inflammatory diseases was carried out. This combination of key words was used: (i) “PET” OR “positron emission tomography” OR “FDG” OR “fluorodeoxyglucose” AND (ii) meta-analysis. Only records on inflammatory or infectious diseases were selected. Results The diagnostic performance of 18F-FDG PET/CT in detecting inflammatory and infectious diseases has been summarized taking into account 36 meta-analyses published in the literature. Evidence-based data demonstrated good diagnostic performance of 18F-FDG PET/CT for several inflammatory and infectious diseases, in particular cardiovascular infectious and inflammatory diseases and some musculoskeletal infections. Conclusions Evidence-based data about the diagnostic performance of 18F-FDG PET/CT in infectious and inflammatory diseases are increasing, with good diagnostic performance of this imaging method for some indications. More prospective multicenter studies and cost-effective analyses are warranted.
Collapse
|
9
|
PET Radiopharmaceuticals for Specific Bacteria Imaging: A Systematic Review. J Clin Med 2019; 8:jcm8020197. [PMID: 30736324 PMCID: PMC6406348 DOI: 10.3390/jcm8020197] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Bacterial infections are still one of the main factors associated with mortality worldwide. Many radiopharmaceuticals were developed for bacterial imaging, both with single photon emission computed tomography (SPECT) and positron emission tomography (PET) isotopes. This review focuses on PET radiopharmaceuticals, performing a systematic literature review of published studies between 2005 and 2018. Methods: A systematic review of published studies between 2005 and 2018 was performed. A team of reviewers independently screened for eligible studies. Because of differences between studies, we pooled the data where possible, otherwise, we described separately. Quality of evidence was assessed by Quality Assessment of Diagnostic Accuracy Studies (QUADAS) approach. Results: Eligible papers included 35 published studies. Because of the heterogeneity of animal models and bacterial strains, we classified studies in relation to the type of bacterium: Gram-positive, Gram-negative, Gram-positive and negative, others. Conclusions: Results highlighted the availability of many promising PET radiopharmaceuticals for bacterial imaging, despite some bias related to animal selection and index test, but few have been translated to human subjects. Results showed a lack of standardized infection models and experimental settings.
Collapse
|
10
|
Caspersen KB, Giannoutsou N, Gerke O, Alavi A, Høilund-Carlsen PF, Hess S. Clinical value of 18F-FDG-PET/CT in suspected serious disease with special emphasis on occult cancer. Ann Nucl Med 2018; 33:184-192. [PMID: 30569441 DOI: 10.1007/s12149-018-01322-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Suspected serious disease (SSD) is a disease designation often given to patients with one or more non-specific symptoms of severe disease that could be due to cancer; the optimal diagnostic strategy is largely left to the clinician's discretion. Being a sensitive non-invasive whole-body imaging modality 18F-FDG-PET/CT may have a potential role in this cancer-prevalent group of patients to confirm or refute suspected malignancy. We aimed to investigate the diagnostic value of 18F-FDG-PET/CT in SSD using long-term follow-up as reference. METHODS We retrospectively studied results obtained in all SSD patients referred for 18F-FDG-PET/CT at a single institution in 2010-2011 retrieving the following clinical data in all patients: journal entries, examinations, and evaluations made from 6 months before the scan and until the latest recorded entry. A true positive PET scan was a positive scan with a subsequently biopsy-confirmed diagnosis of cancer in the same target organ, whereas a false positive scan had no subsequent cancer diagnosis. A true negative PET scan was a negative scan without a cancer diagnosis during follow-up, whereas a false negative PET scan was one with a subsequently confirmed cancer diagnosis. RESULTS Ninety-three patients, aged 67 years (range 25-89) were included and followed for up to 7.3 years (median 6). Of these, 21 [22.6% (95% CI 15.3-32.1)] turned out to have cancer. With 18F-FDG-PET/CT, the sensitivity was 81.0% (95% CI 60.0-92.3), specificity 76.4% (95% CI 65.4-84.7), positive predictive value 50% (95% CI 34.1-65.9), and negative predictive value 93.2% (95% CI 83.8-97.3). Five patients with negative scans were subsequently diagnosed with cancer. CONCLUSION Cancer prevalence is substantial among patients with SSD. 18F-FDG-PET/CT is a promising option in this setting, in particular because a high negative predictive value equals a low incidence of cancer during follow-up. Further studies are needed to establish the role of 18F-FDG-PET/CT in SSD.
Collapse
Affiliation(s)
- Kamilla Bredlund Caspersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Abass Alavi
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Søren Hess
- Department of Radiology and Nuclear Medicine, Hospital of Southwest Jutland, Finsensgade 35, 6700, Esbjerg, Denmark. .,Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
11
|
Al-Zaghal A, Raynor WY, Seraj SM, Werner TJ, Alavi A. FDG-PET imaging to detect and characterize underlying causes of fever of unknown origin: an unavoidable path for the foreseeable future. Eur J Nucl Med Mol Imaging 2018; 46:2-7. [DOI: 10.1007/s00259-018-4164-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Kasalak Ö, Overbosch J, Glaudemans AWJM, Boellaard R, Jutte PC, Kwee TC. Primary tumor volume measurements in Ewing sarcoma: MRI inter- and intraobserver variability and comparison with FDG-PET. Acta Oncol 2018; 57:534-540. [PMID: 29117758 DOI: 10.1080/0284186x.2017.1398411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Primary tumor volume is as an important and independent prognostic factor in Ewing sarcoma. However, the observer variability of magnetic resonance imaging (MRI)-based primary tumor volume measurements in newly diagnosed Ewing sarcoma has never been investigated. Furthermore, it is unclear how MRI-based volume measurements compare to 18F-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET)-based volume measurements. This study aimed to determine the observer variability of simplified MRI-based primary tumor volume measurements in newly diagnosed treatment-naive Ewing sarcoma and to compare them to the actual primary tumor volume at MRI and the FDG-PET-based metabolically active tumor volume (MATV). MATERIAL AND METHODS Twenty-nine newly diagnosed Ewing sarcoma patients with pretreatment MRI (of whom 11 also underwent FDG-PET) were included. Both exact and dichotomized (according to the proposed threshold of 200 mL) primary tumor volume measurements were analyzed. RESULTS Mean inter- and intraobserver differences of MRI-based simplified tumor volume ± limits of agreement varied between 15-42 ± 155-204 mL and between 9-16 ± 64-250 mL, respectively. Inter- and intraobserver agreements of dichotomized MRI-based simplified tumor volume measurements was very good (κ = 0.827-1.000). Mean difference between simplified and actual tumor volumes at MRI ± limits of agreement was 60 ± 381 mL. Agreement between dichotomized simplified and actual tumor volumes at MRI was very good (κ = 0.839). Mean difference between MRI-based simplified tumor volume and MATV ± limits of agreement was 181 ± 549 mL and almost significantly different (p = .0581). Agreement between dichotomized MRI-based simplified tumor volume and MATV was moderate (κ = 0.560). CONCLUSIONS Exact MRI-based simplified primary tumor volume measurements in Ewing sarcoma suffer from considerable observer variability, but observer agreement of dichotomized measurements (≤200 mL vs. >200 mL) is very good and generally matches MRI-based actual volume measurements. MRI-based primary tumor volume measurements poorly-moderately agree with and tend to be higher than the MATV.
Collapse
Affiliation(s)
- Ömer Kasalak
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jelle Overbosch
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andor W. J. M. Glaudemans
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald Boellaard
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul C. Jutte
- Departments of Orthopedics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Thomas C. Kwee
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
18F-Fluorodeoxyglucose positron emission tomography and infectious diseases: current applications and future perspectives. Curr Opin Infect Dis 2018; 30:192-200. [PMID: 28079630 DOI: 10.1097/qco.0000000000000354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW 18F-Fluorodeoxyglucose positron emission tomography/computed tomography is a well-established technique for diagnosis and management of a number of neoplastic conditions. However, in recent years the body of literature regarding its potential role in infectious diseases has progressively increased, with promising results. RECENT FINDINGS So far 18F-fluorodeoxyglucose positron emission tomography/computed tomography has a well-established role and is recommended by guidelines only in a few settings, such as prosthetic valve endocarditis, vascular device infections, and chronic osteomyelitis. However, even the lack of large, prospective randomized trials, an increasing number of small series and case reports suggest a potential role in the diagnosis, disease staging, and monitoring of treatment response of several other infective conditions. SUMMARY In this article, we summarize the available evidence and potential future applications of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in the diagnosis and management of infectious diseases.
Collapse
|