1
|
Nogueira-Lima E, Alves T, Etchebehere E. 18F-Fluoride PET/CT-Updates. Semin Nucl Med 2024; 54:951-965. [PMID: 39393951 DOI: 10.1053/j.semnuclmed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Sodium Fluoride-18 production started in the 1940s and was described clinically for the first time in 1962 as a bone-imaging agent. However, its use became dormant with the development of conventional bone scintigraphy, especially due to its low cost. Conventional bone scintigraphy has been the most utilized Nuclear Medicine technique for identifying osteoblastic bone metastases, especially in prostate and breast cancers for decades and is also employed to identify benign bone disease, especially in the orthopedic setting. While bone scintigraphy is highly sensitive, it lacks adequate specificity. With the advent of high-quality 3D Whole-Body Positron Emission Tomography combined with computed tomography (PET/CT), images, Sodium Fluoride-18 imaging with PET/CT (Fluoride PET/CT) re-emerged. This PET/CT bone-imaging agent provides higher sensitivity and specificity to detect bone lesions in both the oncological scenario as well as to identify benign bone and joint disorders. PET/CT bone-imaging provides a precise view of the bone metabolism remodeling processes at a molecular level, throughout the skeleton, and combines anatomical information, enhancing diagnostic specificity and accuracy. This article review will explore the updates on clinical applications of Fluoride PET/CT in oncology and benign conditions encompassing orthopedic, inflammatory and cardiovascular conditions and treatment response assessment.
Collapse
Affiliation(s)
- Ellen Nogueira-Lima
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Thiago Alves
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Elba Etchebehere
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
2
|
Sheppard AJ, Paravastu SS, Farhadi F, Donnelly E, Hartley IR, Gafni RI, Saboury B, Collins MT, Roszko KL. Structural and molecular imaging-based characterization of soft tissue and vascular calcification in hyperphosphatemic familial tumoral calcinosis. J Bone Miner Res 2024; 39:1327-1339. [PMID: 39046425 PMCID: PMC11371904 DOI: 10.1093/jbmr/zjae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
Hyperphosphatemic familial tumoral calcinosis (HFTC) is a rare disorder caused by deficient FGF23 signaling and resultant ectopic calcification. Here, we systematically characterized and quantified macro- and micro-calcification in a HFTC cohort using CT and 18F-sodium fluoride PET/CT (18F-NaF PET/CT). Fourier-transform infrared (FTIR) spectroscopy was performed on 4 phenotypically different calcifications from a patient with HFTC, showing the dominant component to be hydroxyapatite. Eleven patients with HFTC were studied with CT and/or 18F-NaF PET/CT. Qualitative review was done to describe the spectrum of imaging findings on both modalities. CT-based measures of volume (eg, total calcific burden and lesion volume) and density (Hounsfield units) were quantified and compared to PET-based measures of mineralization activity (eg, mean standardized uptake values-SUVs). Microcalcification scores were calculated for the vasculature of 6 patients using 18F-NaF PET/CT and visualized on a standardized vascular atlas. Ectopic calcifications were present in 82% of patients, predominantly near joints and the distal extremities. Considerable heterogeneity was observed in total calcific burden per patient (823.0 ± 670.1 cm3, n = 9) and lesion volume (282.5 ± 414.8 cm3, n = 27). The largest lesions were found at the hips and shoulders. 18F-NaF PET offered the ability to differentiate active vs quiescent calcifications. Calcifications were also noted in multiple anatomic locations, including brain parenchyma (50%). Vascular calcification was seen in the abdominal aorta, carotid, and coronaries in 50%, 73%, and 50%, respectively. 18F-NaF-avid, but CT-negative calcification was seen in a 17-year-old patient, implicating early onset vascular calcification. This first systematic assessment of calcifications in a cohort of patients with HFTC has identified the early onset, prevalence, and extent of calcification. It supports 18F-NaF PET/CT as a clinical tool for distinguishing between active and inactive calcification, informing disease progression, and quantification of ectopic and vascular disease burden.
Collapse
MESH Headings
- Humans
- Calcinosis/diagnostic imaging
- Calcinosis/pathology
- Calcinosis/genetics
- Female
- Male
- Hyperphosphatemia/diagnostic imaging
- Hyperphosphatemia/pathology
- Hyperphosphatemia/complications
- Hyperphosphatemia/genetics
- Adult
- Positron Emission Tomography Computed Tomography
- Vascular Calcification/diagnostic imaging
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Middle Aged
- Fibroblast Growth Factor-23
- Adolescent
- Child
- Molecular Imaging/methods
- Hyperostosis, Cortical, Congenital/diagnostic imaging
- Hyperostosis, Cortical, Congenital/genetics
- Hyperostosis, Cortical, Congenital/pathology
- Hyperostosis, Cortical, Congenital/complications
- Hyperostosis, Cortical, Congenital/metabolism
- Sodium Fluoride
- Young Adult
Collapse
Affiliation(s)
- Aaron J Sheppard
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA 71103, United States
| | - Sriram S Paravastu
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, United States
- University of Missouri - Kansas City School of Medicine, Kansas City, MO 64108, United States
| | - Faraz Farhadi
- Department of Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892, United States
- Geisel School of Medicine, Dartmouth, Hanover, NH 03755, United States
- Institute of Nuclear Medicine, Bethesda, MD 20892, United States
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Iris R Hartley
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, United States
| | - Rachel I Gafni
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, United States
| | - Babak Saboury
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, United States
- Institute of Nuclear Medicine, Bethesda, MD 20892, United States
| | - Michael T Collins
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, United States
| | - Kelly L Roszko
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, United States
| |
Collapse
|
3
|
Chen M, Gerges M, Raynor WY, Park PSU, Nguyen E, Chan DH, Gholamrezanezhad A. State of the Art Imaging of Osteoporosis. Semin Nucl Med 2024; 54:415-426. [PMID: 38087745 DOI: 10.1053/j.semnuclmed.2023.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 05/18/2024]
Abstract
Osteoporosis is a common disease, particularly prevalent in geriatric populations, which causes significant worldwide morbidity due to increased bone fragility and fracture risk. Currently, the gold-standard modality for diagnosis and evaluation of osteoporosis progression and treatment relies on dual-energy x-ray absorptiometry (DXA), which measures bone mineral density (BMD) and calculates a score based upon standard deviation of measured BMD from the mean. However, other imaging modalities can also be used to evaluate osteoporosis. Here, we review historical as well as current research into development of new imaging modalities that can provide more nuanced or opportunistic analyses of bone quality, turnover, and density that can be helpful in triaging severity and determining treatment success in osteoporosis. We discuss the use of opportunistic computed tomography (CT) scans, as well as the use of quantitative CT to help determine fracture risk and perform more detailed bone quality analysis than would be allowed by DXA . Within magnetic resonance imaging (MRI), new developments include the use of advanced MRI techniques such as quantitative susceptibility mapping (QSM), magnetic resonance spectroscopy, and chemical shift encoding-based water-fat MRI (CSE-MRI) to enable clinicians improved assessment of nonmineralized bone compartments as well as a way to longitudinally assess bone quality without the repeated exposure to ionizing radiation. Within ultrasound, development of quantitative ultrasound shows promise particularly in future low-cost, broadly available screening tools. We focus primarily on historical and recent developments within radiotracer use as applicable to osteoporosis, particularly in the use of hybrid methods such as NaF-PET/CT, wherein patients with osteoporosis show reduced uptake of radiotracers such as NaF. Use of radiotracers may provide clinicians with even earlier detection windows for osteoporosis than would traditional biomarkers. Given the metabolic nature of this disease, current investigation into the role molecular imaging can play in the prediction of this disease as well as in replacing invasive diagnostic procedures shows particular promise.
Collapse
Affiliation(s)
- Michelle Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Maria Gerges
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | - William Y Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA; Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Peter Sang Uk Park
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Edward Nguyen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - David H Chan
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| |
Collapse
|
4
|
Sheppard AJ, Paravastu SS, Wojnowski NM, Osamor CC, Farhadi F, Collins MT, Saboury B. Emerging Role of 18F-NaF PET/Computed Tomographic Imaging in Osteoporosis: A Potential Upgrade to the Osteoporosis Toolbox. PET Clin 2023; 18:1-20. [PMID: 36442958 PMCID: PMC9773817 DOI: 10.1016/j.cpet.2022.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Osteoporosis is a metabolic bone disorder that leads to a decline in bone microarchitecture, predisposing individuals to catastrophic fractures. The current standard of care relies on detecting bone structural change; however, these methods largely miss the complex biologic forces that drive these structural changes and response to treatment. This review introduces sodium fluoride (18F-NaF) positron emission tomography/computed tomography (PET/CT) as a powerful tool to quantify bone metabolism. Here, we discuss the methods of 18F-NaF PET/CT, with a special focus on dynamic scans to quantify parameters relevant to bone health, and how these markers are relevant to osteoporosis.
Collapse
Affiliation(s)
- Aaron J. Sheppard
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA
| | - Sriram S. Paravastu
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA
| | - Natalia M. Wojnowski
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA;,Northwestern University Feinberg School of Medicine, 420 East Superior Street, Chicago, IL 60611, USA
| | - Charles C. Osamor
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA
| | - Faraz Farhadi
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-4320, USA;,Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH 03755, USA
| | - Michael T. Collins
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 228, Bethesda, MD 20892-4320, USA
| | - Babak Saboury
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-4320, USA;,Corresponding author. 10 Center Drive, Bethesda, MD 20892.
| |
Collapse
|
5
|
Koa B, Raynor WY, Park PSU, Borja AJ, Singhal S, Kuang A, Zhang V, Werner TJ, Alavi A, Revheim ME. Feasibility of Global Assessment of Bone Metastases in Prostate Cancer with 18F-Sodium Fluoride-PET/Computed Tomography. PET Clin 2022; 17:631-640. [DOI: 10.1016/j.cpet.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Total-body PET. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Lu CH, Chen YA, Ke CC, Chiu SJ, Jeng FS, Chen CC, Hsieh YJ, Yang BH, Chang CW, Wang FS, Liu RS. Multiplexed Molecular Imaging Strategy Integrated with RNA Sequencing in the Assessment of the Therapeutic Effect of Wharton's Jelly Mesenchymal Stem Cell-Derived Extracellular Vesicles for Osteoporosis. Int J Nanomedicine 2021; 16:7813-7830. [PMID: 34880610 PMCID: PMC8646890 DOI: 10.2147/ijn.s335757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Osteoporosis is a result of an imbalance in bone remodeling. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been considered as a potentially promising treatment for osteoporosis. However, the therapeutic effect, genetic alterations, and in vivo behavior of exogenous EVs for osteoporosis in mice models remain poorly understood. Methods A multiplexed molecular imaging strategy was constructed by micro-positron emission tomography (µPET)/computed tomography (CT), µCT, and optical imaging modality which reflected the osteoblastic activity, microstructure, and in vivo behavior of EVs, respectively. RNA sequencing was used to analyze the cargo of EVs, and the bone tissues of ovariectomized (OVX) mice post EV treatment. Results The result of [18F]NaF µPET showed an increase in osteoblastic activity in the distal femur of EV-treated mice, and the bone structural parameters derived from µCT were also improved. In terms of in vivo behavior of exogenous EVs, fluorescent dye-labeled EVs could target the distal femur of mice, whereas the uptakes of bone tissues were not significantly different between OVX mice and healthy mice. RNA sequencing demonstrated upregulation of ECM-related genes, which might associate with the PI3K/AKT signaling pathway, in line with the results of microRNA analysis showing that mir-21, mir-29, mir-221, and let-7a were enriched in Wharton’s jelly-MSC-EVs and correlated to the BMP and PI3K/AKT signaling pathways. Conclusion The therapeutic effect of exogenous WJ-MSC-EVs in the treatment of osteoporosis was successfully assessed by a multiplexed molecular imaging strategy. The RNA sequencing demonstrated the possible molecular targets in the regulation of bone remodeling. The results highlight the novelty of diagnostic and therapeutic strategies of EV-based treatment for osteoporosis.
Collapse
Affiliation(s)
- Cheng-Hsiu Lu
- Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Core Facility for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-An Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Chien-Chih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sain-Jhih Chiu
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Fong-Shya Jeng
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Chao-Cheng Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bang-Hung Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Wei Chang
- PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Feng-Sheng Wang
- Core Facility for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ren-Shyan Liu
- Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Nuclear Medicine, Cheng Hsin Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
18F-Sodium Fluoride PET as a Diagnostic Modality for Metabolic, Autoimmune, and Osteogenic Bone Disorders: Cellular Mechanisms and Clinical Applications. Int J Mol Sci 2021; 22:ijms22126504. [PMID: 34204387 PMCID: PMC8234710 DOI: 10.3390/ijms22126504] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 01/31/2023] Open
Abstract
In a healthy body, homeostatic actions of osteoclasts and osteoblasts maintain the integrity of the skeletal system. When cellular activities of osteoclasts and osteoblasts become abnormal, pathological bone conditions, such as osteoporosis, can occur. Traditional imaging modalities, such as radiographs, are insensitive to the early cellular changes that precede gross pathological findings, often leading to delayed disease diagnoses and suboptimal therapeutic strategies. 18F-sodium fluoride (18F-NaF)-positron emission tomography (PET) is an emerging imaging modality with the potential for early diagnosis and monitoring of bone diseases through the detection of subtle metabolic changes. Specifically, the dissociated 18F- is incorporated into hydroxyapatite, and its uptake reflects osteoblastic activity and bone perfusion, allowing for the quantification of bone turnover. While 18F-NaF-PET has traditionally been used to detect metastatic bone disease, recent literature corroborates the use of 18F-NaF-PET in benign osseous conditions as well. In this review, we discuss the cellular mechanisms of 18F-NaF-PET and examine recent findings on its clinical application in diverse metabolic, autoimmune, and osteogenic bone disorders.
Collapse
|
9
|
Raynor WY, Borja AJ, Hancin EC, Werner TJ, Alavi A, Revheim ME. Novel Musculoskeletal and Orthopedic Applications of 18F-Sodium Fluoride PET. PET Clin 2021; 16:295-311. [PMID: 33589389 DOI: 10.1016/j.cpet.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PET imaging with 18F-sodium fluoride (NaF), combined with computed tomography or magnetic resonance, is a sensitive method of assessing bone turnover. Although NaF-PET is gaining popularity in detecting prostate cancer metastases to bone marrow, osseous changes represent secondary effects of cancer cell growth. PET tracers more appropriate for assessing prostate cancer metastases directly portray malignant activity and include 18F-fluciclovine and prostatic specific membrane antigen ligands. Recent studies investigating NaF-PET suggest utility in the assessment of benign musculoskeletal disorders. Emerging applications in assessing traumatic injuries, joint disease, back pain, orthopedic complications, and metabolic bone disease are discussed.
Collapse
Affiliation(s)
- William Y Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA
| | - Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Emily C Hancin
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Mona-Elisabeth Revheim
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Division of Radiology and Nuclear Medicine, Oslo University Hospital, Sognsvannsveien 20, Oslo 0372, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Problemveien 7, Oslo 0315, Norway.
| |
Collapse
|