1
|
Neupane P, Bartels DM, Thompson WH. Exploring the Unusual Reactivity of the Hydrated Electron with CO 2. J Phys Chem B 2024; 128:567-575. [PMID: 38184793 DOI: 10.1021/acs.jpcb.3c06935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Many questions remain about the reactions of the hydrated electron despite decades of study. Of particular note is that they do not appear to follow the Marcus theory of electron transfer reactions, a feature that is yet to be explained. To investigate these issues, we used ab initio molecular dynamics (AIMD) simulations to investigate one of the better studied reactions, the hydrated electron reduction of CO2. The rate constant for the hydrated electron-CO2 reaction complex to react to form CO2- is for the first time estimated from AIMD simulations. Results at 298 and 373 K show the rate constant is insensitive to temperature, consistent with the low measured activation energy for the reaction, and the implications of this behavior are examined. The sampling provided by the simulations yields insight into the reaction mechanism. The reaction is found to involve both solvent reorganization and changes in the carbon dioxide structure. The latter leads to significant vibrational excitation of the bending and symmetric stretch vibrations in the CO2- product, indicating the reaction is vibrationally nonadiabatic. The former is estimated from the calculation of an approximate collective solvent coordinate and the free energy in this coordinate is determined. These results indicate that AIMD simulations can reasonably estimate hydrated electron reaction activation energies and provide new insight into the mechanism that can help illuminate the features of this unusual chemistry.
Collapse
Affiliation(s)
- Pauf Neupane
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - David M Bartels
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Nicholas KM, Lander C, Shao Y. Computational Evaluation of Potential Molecular Catalysts for Nitrous Oxide Decomposition. Inorg Chem 2022; 61:14591-14605. [PMID: 36067530 DOI: 10.1021/acs.inorgchem.2c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas (GHG) with limited use as a mild anesthetic and underdeveloped reactivity. Nitrous oxide splitting (decomposition) is critical to its mitigation as a GHG. Although heterogeneous catalysts for N2O decomposition have been developed, highly efficient, long-lived solid catalysts are still needed, and the details of the catalytic pathways are not well understood. Reported herein is a computational evaluation of three potential molecular (homogeneous) catalysts for N2O splitting, which could aid in the development of more active and robust catalysts and provide deeper mechanistic insights: one Cu(I)-based, [(CF3O)4Al]Cu (A-1), and two Ru(III)-based, Cl(POR)Ru (B-1) and (NTA)Ru (C-1) (POR = porphyrin, NTA = nitrilotriacetate). The structures and energetic viability of potential intermediates and key transition states are evaluated according to a two-stage reaction pathway: (A) deoxygenation (DO), during which a metal-N2O complex undergoes N-O bond cleavage to produce N2 and a metal-oxo species and (B) (di)oxygen evolution (OER), in which the metal-oxo species dimerizes to a dimetal-peroxo complex, followed by conversion to a metal-dioxygen species from which dioxygen dissociates. For the (F-L)Cu(I) activator (A-1), deoxygenation of N2O is facilitated by an O-bound (F-L)Cu-O-N2 or better by a bimetallic N,O-bonded, (F-L)Cu-NNO-Cu(F-L) complex; the resulting copper-oxyl (F-L)Cu-O is converted exergonically to (F-L)Cu-(η2,η2-O2)-Cu(F-L), which leads to dioxygen species (F-L)Cu(η2-O2), that favorably dissociates O2. Key features of the DO/OER process for (POR)ClRu (B-1) include endergonic N2O coordination, facile N2 evolution from LR'u-N2O-RuL to Cl(POR)RuO, moderate barrier coupling of Cl(POR)RuO to peroxo Cl(POR)Ru(O2)Ru(POR)Cl, and eventual O2 dissociation from Cl(POR)Ru(η1-O2), which is nearly thermoneutral. N2O decomposition promoted by (NTA)Ru(III) (C-1) can proceed with exergonic N2O coordination, facile N2 dissociation from (NTA)Ru-ON2 or (NTA)Ru-N2O-Ru(NTA) to form (NTA)Ru-O; dimerization of the (NTA)Ru-oxo species is facile to produce (NTA)Ru-O-O-Ru(NTA), and subsequent OE from the peroxo species is moderately endergonic. Considering the overall energetics, (F-L)Cu and Cl(POR)Ru derivatives are deemed the best candidates for promoting facile N2O decomposition.
Collapse
Affiliation(s)
- Kenneth M Nicholas
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chance Lander
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
3
|
Seeing the solvated electron in action: First-principles molecular dynamics of NO3− and N2O reduction. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Deeba R, Chardon-Noblat S, Costentin C. Homogeneous molecular catalysis of the electrochemical reduction of N 2O to N 2: redox vs. chemical catalysis. Chem Sci 2021; 12:12726-12732. [PMID: 34703559 PMCID: PMC8494024 DOI: 10.1039/d1sc03044b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Homogeneous electrochemical catalysis of N2O reduction to N2 is investigated with a series of organic catalysts and rhenium and manganese bipyridyl carbonyl complexes. An activation-driving force correlation is revealed with the organic species characteristic of a redox catalysis involving an outer-sphere electron transfer from the radical anions or dianions of the reduced catalyst to N2O. Taking into account the previously estimated reorganization energy required to form the N2O radical anions leads to an estimation of the N2O/N2O˙− standard potential in acetonitrile electrolyte. The direct reduction of N2O at a glassy carbon electrode follows the same quadratic activation driving force relationship. Our analysis reveals that the catalytic effect of the mediators is due to a smaller reorganization energy of the homogeneous electron transfer than that of the heterogeneous one. The physical effect of “spreading” electrons in the electrolyte is shown to be unfavorable for the homogeneous reduction. Importantly, we show that the reduction of N2O by low valent rhenium and manganese bipyridyl carbonyl complexes is of a chemical nature, with an initial one-electron reduction process associated with a chemical reaction more efficient than the simple outer-sphere electron transfer process. This points to an inner-sphere mechanism possibly involving partial charge transfer from the low valent metal to the binding N2O and emphasizes the differences between chemical and redox catalytic processes. Homogeneous electrochemical catalysis of N2O reduction to N2 is investigated with a series of organic catalysts and rhenium and manganese bipyridyl carbonyl complexes.![]()
Collapse
Affiliation(s)
- Rana Deeba
- Univ Grenoble Alpes, DCM, CNRS 38000 Grenoble France
| | | | - Cyrille Costentin
- Univ Grenoble Alpes, DCM, CNRS 38000 Grenoble France .,Université de Paris 75013 Paris France
| |
Collapse
|
5
|
Denisov SA, Mostafavi M. Presolvated electron reactivity towards CO2 and N2O in water. Phys Chem Chem Phys 2021; 23:5804-5808. [DOI: 10.1039/d1cp00373a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of presolvated electrons with CO2 and N2O was studied in the gas pressure range of 1 to 52 bar.
Collapse
Affiliation(s)
- Sergey A. Denisov
- Insitute de Chimie Physique UMR 8000
- CNRS/Université Paris-Saclay
- Orsay
- France
| | - Mehran Mostafavi
- Insitute de Chimie Physique UMR 8000
- CNRS/Université Paris-Saclay
- Orsay
- France
| |
Collapse
|
6
|
Lisovskaya A, Bartels DM. Reduction of CO2 by hydrated electrons in high temperature water. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Liu Y, Solari E, Scopelliti R, Fadaei Tirani F, Severin K. Lewis Acid-Mediated One-Electron Reduction of Nitrous Oxide. Chemistry 2018; 24:18809-18815. [PMID: 30426605 DOI: 10.1002/chem.201804709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 11/10/2022]
Abstract
The one-electron reduction of nitrous oxide (N2 O) was achieved using strong Lewis acids E(C6 F5 )3 (E=B or Al) in combination with metallocenes. In the case of B(C6 F5 )3 , electron transfer to N2 O required a powerful reducing agent such as Cp*2 Co (Cp*=pentamethylcyclopentadienyl). In the presence of Al(C6 F5 )3 , on the other hand, the reactions could be performed with weaker reducing agents such as Cp*2 Fe or Cp2 Fe (Cp=cyclopentadienyl). The Lewis acid-mediated electron transfer from the metallocene to N2 O resulted in cleavage of the N-O bond, generating N2 and the oxyl radical anion [OE(C6 F5 )3 ]⋅- . The latter is highly reactive and engages in C-H activation reactions. It was possible to trap the radical by addition of the Gomberg dimer, which acts as a source of the trityl radical.
Collapse
Affiliation(s)
- Yizhu Liu
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Farzaneh Fadaei Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
8
|
Sargent L, Sterniczuk M, Bartels DM. Reaction rate of H atoms with N2O in hot water. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2017.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Kazmierczak L, Swiatla-Wojcik D, Wolszczak M. Reaction of the hydrogen atom with nitrous oxide in aqueous solution – pulse radiolysis and theoretical study. RSC Adv 2017. [DOI: 10.1039/c6ra27793d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The UB3LYP/cc-pVTZ computations using three solvent models and pulse radiolysis measurements show predominance of the direct reaction path via [H–ONN]‡ in aqueous solution.
Collapse
Affiliation(s)
- Lukasz Kazmierczak
- Institute of Applied Radiation Chemistry
- Faculty of Chemistry
- Lodz University of Technology
- 90-924 Lodz
- Poland
| | - Dorota Swiatla-Wojcik
- Institute of Applied Radiation Chemistry
- Faculty of Chemistry
- Lodz University of Technology
- 90-924 Lodz
- Poland
| | - Marian Wolszczak
- Institute of Applied Radiation Chemistry
- Faculty of Chemistry
- Lodz University of Technology
- 90-924 Lodz
- Poland
| |
Collapse
|
10
|
Sterniczuk M, Yakabuskie PA, Wren JC, Jacob JA, Bartels DM. Low LET radiolysis escape yields for reducing radicals and H2 in pressurized high temperature water. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2015.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Thompson MC, Weber JM. Infrared spectroscopic studies on the cluster size dependence of charge carrier structure in nitrous oxide cluster anions. J Chem Phys 2016; 144:104302. [PMID: 26979688 DOI: 10.1063/1.4943189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report infrared photodissociation spectra of nitrous oxide cluster anions of the form (N2O)(n)O(-) (n = 1-12) and (N2O)n(-) (n = 7-15) in the region 800-1600 cm(-1). The charge carriers in these ions are NNO2(-) and O(-) for (N2O)(n)O(-) clusters with a solvation induced core ion switch, and N2O(-) for (N2O)n(-) clusters. The N-N and N-O stretching vibrations of N2O(-) (solvated by N2O) are reported for the first time, and they are found at (1595 ± 3) cm(-1) and (894 ± 5) cm(-1), respectively. We interpret our infrared spectra by comparison with the existing photoelectron spectroscopy data and with computational data in the framework of density functional theory.
Collapse
Affiliation(s)
- Michael C Thompson
- JILA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, USA
| | - J Mathias Weber
- JILA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, USA
| |
Collapse
|
12
|
Šmídová D, Lengyel J, Pysanenko A, Med J, Slavíček P, Fárník M. Reactivity of Hydrated Electron in Finite Size System: Sodium Pickup on Mixed N2O-Water Nanoparticles. J Phys Chem Lett 2015; 6:2865-2869. [PMID: 26267171 DOI: 10.1021/acs.jpclett.5b01269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigate the reactivity of hydrated electron generated by alkali metal deposition on small water particles with nitrous oxide dopant by means of mass spectrometry and ab initio molecular dynamics simulations. The mixed nitrous oxide/water clusters were generated in a molecular beam and doped with Na atoms in a pickup experiment, and investigated by mass spectrometry using two different ionization schemes: an electron ionization (EI), and UV photoionization after the Na doping (NaPI). The NaPI is a soft-ionization nondestructive method, especially for water clusters provided that a hydrated electron es– is formed in the cluster. The missing signal for the doped clusters indicates that the hydrated electron is not present in the N2O containing clusters. The simulations reveal that the hydrated electron is formed, but it immediately reacts with N2O, forming first N2O– radical anion, later O–, and finally an OH• and OH– pair.
Collapse
Affiliation(s)
- Daniela Šmídová
- †J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
- ‡Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Czech Republic
| | - Jozef Lengyel
- †J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Andriy Pysanenko
- †J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jakub Med
- ‡Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Czech Republic
| | - Petr Slavíček
- ‡Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Czech Republic
| | - Michal Fárník
- †J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
13
|
Kanjana K, Walker JA, Bartels DM. Hydroxymethyl radical self-recombination in high-temperature water. J Phys Chem A 2015; 119:1830-7. [PMID: 25686211 DOI: 10.1021/jp510029p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The self-recombination reaction of (•)CH2OH radicals in neutral aqueous solution has been studied at temperatures up to 300 °C at a pressure of 220 bar using pulse radiolysis and transient absorption. (•)CH2OH species decay by second-order kinetics independent of the applied dose, with a rate constant at 22 °C of 2k = 1.4 ± 0.1 × 10(9) M(-1) s(-1). The recombination follows Arrhenius behavior with the activation energy (E(a)) 12.7 ± 0.9 kJ/mol and pre-exponential factor of 1.9 ± 0.4 × 10(11) M(-1) s(-1). The overall recombination is significantly slower than the diffusion limit at elevated temperature, meaning that both disproportionation and dimerization channels have significant activation barriers. Ab initio calculations support the inference that the dimerization channel has no energy barrier, but has a large negative activation entropy barrier. The disproportionation channel (giving aqueous formaldehyde) almost certainly involves one or more specific water molecules to lower its activation energy relative to the gas phase.
Collapse
Affiliation(s)
- Kotchaphan Kanjana
- Notre Dame Radiation Laboratory and Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556 United States
| | | | | |
Collapse
|
14
|
Meesungnoen J, Sanguanmith S, Jay-Gerin JP. Yields of H2 and hydrated electrons in low-LET radiolysis of water determined by Monte Carlo track chemistry simulations using phenol/N2O aqueous solutions up to 350 °C. RSC Adv 2015. [DOI: 10.1039/c5ra15801j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The effect of temperature on the yields of H2 and hydrated electrons in the low linear energy transfer radiolysis of water has been modeled by Monte Carlo track chemistry simulations using phenol/N2O aqueous solutions from 25 up to 350 °C.
Collapse
Affiliation(s)
- Jintana Meesungnoen
- Département de Médecine Nucléaire et Radiobiologie
- Faculté de Médecine et des Sciences de la Santé
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Sunuchakan Sanguanmith
- Département de Médecine Nucléaire et Radiobiologie
- Faculté de Médecine et des Sciences de la Santé
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Jean-Paul Jay-Gerin
- Département de Médecine Nucléaire et Radiobiologie
- Faculté de Médecine et des Sciences de la Santé
- Université de Sherbrooke
- Sherbrooke
- Canada
| |
Collapse
|
15
|
Gupta S, Celestre R, Petzold CJ, Chance MR, Ralston C. Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:690-9. [PMID: 24971962 PMCID: PMC4073957 DOI: 10.1107/s1600577514007000] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/29/2014] [Indexed: 05/05/2023]
Abstract
X-ray footprinting (XF) is an important structural biology tool used to determine macromolecular conformations and dynamics of both nucleic acids and proteins in solution on a wide range of timescales. With the impending shut-down of the National Synchrotron Light Source, it is ever more important that this tool continues to be developed at other synchrotron facilities to accommodate XF users. Toward this end, a collaborative XF program has been initiated at the Advanced Light Source using the white-light bending-magnet beamlines 5.3.1 and 3.2.1. Accessibility of the microsecond time regime for protein footprinting is demonstrated at beamline 5.3.1 using the high flux density provided by a focusing mirror in combination with a micro-capillary flow cell. It is further reported that, by saturating samples with nitrous oxide, the radiolytic labeling efficiency is increased and the imprints of bound versus bulk water can be distinguished. These results both demonstrate the suitability of the Advanced Light Source as a second home for the XF experiment, and pave the way for obtaining high-quality structural data on complex protein samples and dynamics information on the microsecond timescale.
Collapse
Affiliation(s)
- Sayan Gupta
- Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Richard Celestre
- Experimental Systems, Advanced Light Source Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Christopher J. Petzold
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Corie Ralston
- Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Musat RM, Kondoh T, Yoshida Y, Takahashi K. Twin-peaks absorption spectra of excess electron in ionic liquids. Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2014.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Cormier PJ, Alcorn C, Legate G, Ghandi K. Muon radiolysis affected by density inhomogeneity in near-critical fluids. Radiat Res 2014; 181:396-406. [PMID: 24641627 DOI: 10.1667/rr13516.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this article we show the significant tunability of radiation chemistry in supercritical ethane and to a lesser extent in near critical CO2. The information was obtained by studies of muonium (Mu = μ(+)e(-)), which is formed by the thermalization of positive muons in different materials. The studies of the proportions of three fractions of muon polarization, PMu, diamagnetic PD and lost fraction, PL provided the information on radiolysis processes involved in muon thermalization. Our studies include three different supercritical fluids, water, ethane and carbon dioxide. A combination of mobile electrons and other radiolysis products such as (•)C2H5 contribute to interesting behavior at densities ∼40% above the critical point in ethane. In carbon dioxide, an increase in electron mobility contributes to the lost fraction. The hydrated electron in water is responsible for the lost fraction and decreases the muonium fraction.
Collapse
Affiliation(s)
- P J Cormier
- Mount Allison University, New Brunswick, Canada
| | | | | | | |
Collapse
|
18
|
Meesungnoen J, Guzonas D, Jay-Gerin JP. Radiolysis of supercritical water at 400 °C and liquid-like densities near 0.5 g/cm3 — A Monte Carlo calculation. CAN J CHEM 2010. [DOI: 10.1139/v10-055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Monte Carlo simulations are used to calculate the primary radical yields [Formula: see text], g(•OH), the sum [[Formula: see text] + g(•OH) + g(H•)], and the ratio g(H•)/[Formula: see text] in the low linear energy transfer (LET) radiolysis of supercritical water (SCW) at 400 °C in the high-density, liquid-like region near ∼0.5 g/cm3. Using all the currently available information on the reactivities and diffusion coefficients of the radiation-induced species under these conditions, and assuming the aqueous medium to be a “continuum”, a good accord is found between our calculations and the available experimental data. In particular, our computed [Formula: see text] yields at 60 ps and 1 ns compare very well with recently reported direct time-dependent [Formula: see text] yield measurements in SCW (D2O) at 400 °C and 0.570 g/cm3 using picosecond pulse radiolysis experiments.
Collapse
Affiliation(s)
- Jintana Meesungnoen
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Reactor Chemistry and Corrosion Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON K0J 1J0, Canada
| | - David Guzonas
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Reactor Chemistry and Corrosion Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Jean-Paul Jay-Gerin
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Reactor Chemistry and Corrosion Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON K0J 1J0, Canada
| |
Collapse
|
19
|
Hare PM, Price EA, Stanisky CM, Janik I, Bartels DM. Solvated Electron Extinction Coefficient and Oscillator Strength in High Temperature Water. J Phys Chem A 2010; 114:1766-75. [DOI: 10.1021/jp909789b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick M. Hare
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556
| | - Erica A. Price
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556
| | | | - Ireneusz Janik
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556
| | - David M. Bartels
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
20
|
Tay KA, Boutin A. Hydrated Electron Diffusion: The Importance of Hydrogen-Bond Dynamics. J Phys Chem B 2009; 113:11943-9. [DOI: 10.1021/jp810538f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kafui A. Tay
- Laboratoire de Chimie Physique, Université de Paris-Sud XI, 91405 Orsay Cedex, France
| | - Anne Boutin
- Laboratoire de Chimie Physique, Université de Paris-Sud XI, 91405 Orsay Cedex, France
| |
Collapse
|
21
|
Edwards EJ, Wilson PPH, Anderson MH, Mezyk SP, Pimblott SM, Bartels DM. An apparatus for the study of high temperature water radiolysis in a nuclear reactor: calibration of dose in a mixed neutron/gamma radiation field. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2007; 78:124101. [PMID: 18163737 DOI: 10.1063/1.2814167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The cooling water of nuclear reactors undergoes radiolytic decomposition induced by gamma, fast electron, and neutron radiation in the core. To model the process, recombination reaction rates and radiolytic yields for the water radical fragments need to be measured at high temperature and pressure. Yields for the action of neutron radiation are particularly hard to determine independently because of the beta/gamma field also present in any reactor. In this paper we report the design of an apparatus intended to measure neutron radiolysis yields as a function of temperature and pressure. A new methodology for separation of neutron and beta/gamma radiolysis yields in a mixed radiation field is proposed and demonstrated.
Collapse
Affiliation(s)
- Eric J Edwards
- Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
22
|
Marin TW, Takahashi K, Jonah CD, Chemerisov SD, Bartels DM. Recombination of the Hydrated Electron at High Temperature and Pressure in Hydrogenated Alkaline Water. J Phys Chem A 2007; 111:11540-51. [DOI: 10.1021/jp074581r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Timothy W. Marin
- Chemistry Department, Benedictine University, Lisle, Illinois 60532
| | - Kenji Takahashi
- Department of Chemistry and Chemical Engineering, Kanazawa University, Kanazawa 920-8667, Japan
| | - Charles D. Jonah
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
| | | | | |
Collapse
|
23
|
Janik D, Janik I, Bartels DM. Neutron and β/γ Radiolysis of Water up to Supercritical Conditions. 1. β/γ Yields for H2, H• Atom, and Hydrated Electron. J Phys Chem A 2007; 111:7777-86. [PMID: 17645317 DOI: 10.1021/jp071751r] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Yields for H2, H(.) atom, and hydrated electron production in beta/gamma radiolysis of water have been measured from room temperature up to 400 degrees C on a 250 bar isobar, and also as a function of pressure (density) at 380 and 400 degrees C. Radiolysis was carried out using a beam of 2-3 MeV electrons from a van de Graaff accelerator, and detection was by mass spectrometer analysis of gases sparged from the irradiated water. N2O was used as a specific scavenger for hydrated electrons giving N2 as product. Ethanol-d(6) was used to scavenge H(.) atoms, giving HD as a stable product. It is found that the hydrated electron yield decreases and the H(.) atom yield increases dramatically at lower densities in supercritical water, and the overall escape yield increases. The yield of molecular H2 increases with temperature and does not tend toward zero at low density, indicating that it is formed promptly rather than in spur recombination. A minimum in both the radical and H2 yields is observed around 0.4 kg/dm(3) density in supercritical water.
Collapse
Affiliation(s)
- Dorota Janik
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
24
|
Janik I, Bartels DM, Marin TW, Jonah CD. Reaction of O2 with the Hydrogen Atom in Water up to 350 °C. J Phys Chem A 2006; 111:79-88. [PMID: 17201391 DOI: 10.1021/jp065140v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The reaction of the H* atom with O2, giving the hydroperoxyl HO2* radical, has been investigated in pressurized water up to 350 degrees C using pulse radiolysis and deep-UV transient absorption spectroscopy. The reaction rate behavior is highly non-Arrhenius, with near diffusion-limited behavior at room temperature, increasing to a near constant limiting value of approximately 5 x 10(10) M(-1) s(-1) above 250 degrees C. The high-temperature rate constant is in near-perfect agreement with experimental extrapolations and ab initio calculations of the gas-phase high-pressure limiting rate. As part of the study, reaction of the OH* radical with H2 has been reevaluated at 350 degrees C, giving a rate constant of (6.0 +/- 0.5) x 10(8) M(-1) s(-1). The mechanism of the H* atom reaction with the HO2* radical is also investigated and discussed.
Collapse
Affiliation(s)
- Ireneusz Janik
- Notre Dame Radiation Laboratory, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
25
|
Sims H. Yields of radiolysis products from γ-irradiated supercritical water—A re-analysis data by W.G. Burns and W.R. Marsh. Radiat Phys Chem Oxf Engl 1993 2006. [DOI: 10.1016/j.radphyschem.2006.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Oviedo J, Sanz JF. N2O Decomposition on TiO2 (110) from Dynamic First-Principles Calculations. J Phys Chem B 2005; 109:16223-6. [PMID: 16853062 DOI: 10.1021/jp053652o] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have carried out a systematic study of N(2)O dissociation on a TiO(2) (110) surface by means of plane-wave pseudopotential density-functional theory calculations. We have made use of both static and dynamic calculations in order to elucidate N(2)O decomposition mechanisms. We find that dissociation is not favorable on the stoichiometric surface. On the other hand, the presence of oxygen bridging vacancies make the N(2)O decomposition possible. The role of the defective surface is to provide electrons to the adsorbed molecule. We find two channels for decomposition, depending on whether the molecule is adsorbed with the O or the N end of the molecule on a vacancy. The first case is energetically downhill and proceeds spontaneously, leading to N(2) ejection from the surface and vacancy oxidation. The second case relies on the formation of an intermediate bridging configuration of the adsorbed molecule and is hindered by a small energy barrier. In this case, molecule breaking produces N(2) in the gas phase and leaves oxygen adatoms on the surface. We relate our results to recent experimental findings.
Collapse
|
27
|
Marin TW, Jonah CD, Bartels DM. Reaction of Hydrogen Atoms with Hydroxide Ions in High-Temperature and High-Pressure Water. J Phys Chem A 2005; 109:1843-8. [PMID: 16833515 DOI: 10.1021/jp046737i] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The rate constant for the reaction of hydrogen atoms (H(*)) with hydroxide ions (OH(-)) in aqueous solution has been measured from 100 to 300 degrees C by direct measurement of the hydrated electron ((e(-))(aq)) product growth rate. In combining these measurements with previous results, the reaction is observed to display Arrhenius behavior in two separate temperature regions, 3-100 and 100-330 degrees C, where the data above 100 degrees C show an obvious decrease in activation energy from 38.2 +/- 0.6 to 25.4 +/- 0.8 kJ mol(-1). The value of the rate constant is smaller than that estimated previously in the 200-300 degrees C range. The very unusual activation energy behavior of the forward and backward reactions is discussed in the context of transition state theory.
Collapse
Affiliation(s)
- Timothy W Marin
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | | |
Collapse
|