1
|
Yu CC, Seki T, Chiang KY, Tang F, Sun S, Bonn M, Nagata Y. Polarization-Dependent Heterodyne-Detected Sum-Frequency Generation Spectroscopy as a Tool to Explore Surface Molecular Orientation and Ångström-Scale Depth Profiling. J Phys Chem B 2022; 126:6113-6124. [PMID: 35849538 PMCID: PMC9421650 DOI: 10.1021/acs.jpcb.2c02178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Sum-frequency generation (SFG) spectroscopy provides a unique optical probe for interfacial molecules with interface-specificity and molecular specificity. SFG measurements can be further carried out at different polarization combinations, but the target of the polarization-dependent SFG is conventionally limited to investigating the molecular orientation. Here, we explore the possibility of polarization-dependent SFG (PD-SFG) measurements with heterodyne detection (HD-PD-SFG). We stress that HD-PD-SFG enables accurate determination of the peak amplitude, a key factor of the PD-SFG data. Subsequently, we outline that HD-PD-SFG can be used not only for estimating the molecular orientation but also for investigating the interfacial dielectric profile and studying the depth profile of molecules. We further illustrate the variety of combined simulation and PD-SFG studies.
Collapse
Affiliation(s)
- Chun-Chieh Yu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Takakazu Seki
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kuo-Yang Chiang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fujie Tang
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Shumei Sun
- Department
of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
2
|
Detection of surface structural changes during adsorption events using two-trace two-dimensional (2T2D) correlation spectroscopy. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Yang WC, Busson B, Hore DK. Determining nonlinear optical coefficients of metals by multiple angle of incidence heterodyne-detected sum-frequency generation spectroscopy. J Chem Phys 2020; 152:084708. [DOI: 10.1063/1.5133673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wei-Chen Yang
- Department of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
| | - Bertrand Busson
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Dennis K. Hore
- Department of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
- Department of Computer Science, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
4
|
Liu J, Li X, Hou J, Li X, Lu Z. The Influence of Sodium Iodide Salt on the Interfacial Properties of Aqueous Methanol Solution by a Combined Molecular Simulation and Sum Frequency Generation Vibrational Spectroscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7050-7059. [PMID: 31055930 DOI: 10.1021/acs.langmuir.8b03847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the influence of salt ions on the microscopic properties of liquid interfaces is of both fundamental and practical importance. A large number of previous experimental and theoretical investigations have explored the salt effects on the surfaces of either pure water or neat organic liquid. However, how the salt ions affect the interfacial structures of water/organic liquid mixtures has rarely been studied. Here, the molecular dynamics (MD) simulations and sum frequency generation vibrational spectroscopy (SFG-VS) were carried out to investigate the influence of sodium iodide (NaI) on the air/liquid interfaces of the methanol-water mixtures. The SFG-VS spectral intensities were discovered to increase with the addition of 3 M NaI, while the center frequencies of the C-H stretching vibrations at high methanol concentrations showed a ∼2 cm-1 blue shift compared with those obtained before adding NaI. The MD results indicated that Na+ and I- can only affect Part I (near the bulk phase) but not Part II (near the gas phase) of the interfacial region. It was also found that the average orientations of interfacial methyl groups were constant and not effectively disturbed by the changes of methanol concentrations or the addition of NaI. It is therefore concluded that the changes of the SFG-VS intensities upon the addition of NaI salts were mainly caused by the increasing number of interfacial methanol molecules. Further analysis showed that the existence of NaI affects the surface tensions more for the interfaces with higher bulk methanol concentrations, which is in agreement with the SFG-VS results. It is noteworthy that the maximum number density of methanol molecules with the net nonzero orientations is reached near the Gibbs dividing surface, the reasons of which are worth further investigating.
Collapse
Affiliation(s)
- Jianchuan Liu
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xia Li
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jian Hou
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xun Li
- School of linguistics and literature , UESTC , Chengdu 611731 , China
| | - Zhou Lu
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
5
|
Li X, Roiaz M, Pramhaas V, Rameshan C, Rupprechter G. Polarization-Dependent SFG Spectroscopy of Near Ambient Pressure CO Adsorption on Pt(111) and Pd(111) Revisited. Top Catal 2018; 61:751-762. [PMID: 29950796 PMCID: PMC6010505 DOI: 10.1007/s11244-018-0949-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polarization-dependent sum frequency generation (SFG) vibrational spectroscopy was employed to examine CO overlayers on Pt(111) and Pd(111) single crystal surfaces at room temperature. Utilizing different polarization combinations (SSP and PPP) of the visible and SFG light allows to determine the molecular orientation (tilt angle) of interface molecules but the analysis of the measured \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$I_{\text{ppp}}/I_{\text{ssp}}$$\end{document}Ippp/Issp is involved and requires a proper optical interface model. For CO/Pt(111), the hyperpolarizability ratio \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {R={\beta _{aac}}/{\beta _{ccc}}={\beta _{bbc}}/{\beta _{ccc}}} \right)$$\end{document}R=βaac/βccc=βbbc/βccc is not exactly known and varying R in the range 0.1–0.5 yields tilt angles of 40°–0°, respectively. Based on the known perpendicular adsorption of CO on Pt, an exact R-value of 0.49 was determined. Polarization-dependent SFG spectra in the pressure range 10−4 to 36 mbar did not indicate any change of the tilt angle of adsorbed CO. Modeling also indicated a strong dependence of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${I_{{\text{ppp}}}}/{I_{{\text{ssp}}}}$$\end{document}Ippp/Issp on the incidence angles of visible and IR laser beams. Complementing previous low temperature/low pressure data, room temperature CO adsorption on Pd(111) was examined from 10−6 to 250 mbar. The absolute PPP and SSP spectral intensities on Pt and Pd were simulated, as well as the expected \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${I_{{\text{ppp}}}}/{I_{{\text{ssp}}}}$$\end{document}Ippp/Issp ratios. Although CO on Pt and Pd should exhibit similar intensities (at high CO coverage), the higher \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${I_{{\text{ppp}}}}/{I_{{\text{ssp}}}}$$\end{document}Ippp/Issp ratio for Pd (48 vs. 27 on Pt) renders the detection of adsorbed CO in SSP spectra difficult. The presence or absence of CO species in SSP spectra can thus not simply be correlated to tilted or perpendicular CO molecules, respectively. Careful modeling, including not only molecular and interface properties, but also the experimental configuration (incidence angles), is certainly required even for seemingly simple adsorbate–substrate systems.
Collapse
Affiliation(s)
- Xia Li
- Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
| | - Matteo Roiaz
- Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
| | - Verena Pramhaas
- Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
| | | | | |
Collapse
|
6
|
Chase HM, Chen S, Fu L, Upshur MA, Rudshteyn B, Thomson RJ, Wang HF, Batista VS, Geiger FM. Orientations of nonlocal vibrational modes from combined experimental and theoretical sum frequency spectroscopy. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Saito K, Peng Q, Qiao L, Wang L, Joutsuka T, Ishiyama T, Ye S, Morita A. Theoretical and experimental examination of SFG polarization analysis at acetonitrile–water solution surfaces. Phys Chem Chem Phys 2017; 19:8941-8961. [DOI: 10.1039/c6cp08856b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polarization analysis of SFG spectroscopy is thoroughly examined in collaboration of SFG measurements and MD simulations.
Collapse
Affiliation(s)
- Kengo Saito
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Aoba-ku
- Japan
| | - Qiling Peng
- Institute for Catalysis
- Hokkaido University
- Kita-ku
- Japan
| | - Lin Qiao
- Institute for Catalysis
- Hokkaido University
- Kita-ku
- Japan
| | - Lin Wang
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Aoba-ku
- Japan
| | - Tatsuya Joutsuka
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Aoba-ku
- Japan
| | - Tatsuya Ishiyama
- Department of Applied Chemistry
- Graduate School of Science and Engineering
- University of Toyama
- Toyama 930-8555
- Japan
| | - Shen Ye
- Institute for Catalysis
- Hokkaido University
- Kita-ku
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| | - Akihiro Morita
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Aoba-ku
- Japan
| |
Collapse
|
8
|
Zhang LB, Fang H, Chen SL, Zhu XF, Gan W. Orientation Angle of Molecules at Hexadecane-Water Interface Studied with Total Internal Reflection Second Harmonic Generation. CHINESE J CHEM PHYS 2016. [DOI: 10.1063/1674-0068/29/cjcp1605111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
|
10
|
Feng RR, Guo Y, Wang HF. Reorientation of the “free OH” group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy. J Chem Phys 2014; 141:18C507. [PMID: 25399172 DOI: 10.1063/1.4895561] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ran-Ran Feng
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Fei Wang
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
11
|
Unique determination of the –CN group tilt angle in Langmuir monolayers using sum-frequency polarization null angle and phase. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.07.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
O'Brien DB, Massari AM. Simulated vibrational sum frequency generation from a multilayer thin film system with two active interfaces. J Chem Phys 2013; 138:154708. [DOI: 10.1063/1.4799921] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Quast AD, Curtis AD, Horn BA, Goates SR, Patterson JE. Role of Nonresonant Sum-Frequency Generation in the Investigation of Model Liquid Chromatography Systems. Anal Chem 2012; 84:1862-70. [DOI: 10.1021/ac2032035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arthur D. Quast
- Department of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| | - Alexander D. Curtis
- Department of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| | - Brent A. Horn
- Department of Criminal Justice, Weber State University, Ogden, Utah 84408, United States
| | - Steven R. Goates
- Department of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| | - James E. Patterson
- Department of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| |
Collapse
|
14
|
Lee KK, Park KH, Park S, Jeon SJ, Cho M. Polarization-Angle-Scanning 2DIR Spectroscopy of Coupled Anharmonic Oscillators: A Polarization Null Angle Method. J Phys Chem B 2010; 115:5456-64. [DOI: 10.1021/jp1102274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kyung-Koo Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 136-701, Korea
| | - Kwang-Hee Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 136-701, Korea
| | - Sungnam Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 136-701, Korea
- Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| | - Seung-Joon Jeon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 136-701, Korea
| | - Minhaeng Cho
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 136-701, Korea
- Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| |
Collapse
|
15
|
Shultz MJ, Bisson P, Groenzin H, Li I. Multiplexed polarization spectroscopy: Measuring surface hyperpolarizability orientation. J Chem Phys 2010; 133:054702. [DOI: 10.1063/1.3463449] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
16
|
Wei F, Xu YY, Guo Y, Liu SL, Wang HF. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach. CHINESE J CHEM PHYS 2009. [DOI: 10.1088/1674-0068/22/06/592-600] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Wu D, Deng GH, Guo Y, Wang HF. Observation of the Interference between the Intramolecular IR−Visible and Visible−IR Processes in the Doubly Resonant Sum Frequency Generation Vibrational Spectroscopy of Rhodamine 6G Adsorbed at the Air/Water Interface. J Phys Chem A 2009; 113:6058-63. [DOI: 10.1021/jp901655j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dan Wu
- Beijing National Laboratory for Molecular Sciences & State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, the Chinese Academy of Sciences, ZhongGuanCun, Beijing, China 100190
| | - Gang-Hua Deng
- Beijing National Laboratory for Molecular Sciences & State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, the Chinese Academy of Sciences, ZhongGuanCun, Beijing, China 100190
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences & State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, the Chinese Academy of Sciences, ZhongGuanCun, Beijing, China 100190
| | - Hong-fei Wang
- Beijing National Laboratory for Molecular Sciences & State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, the Chinese Academy of Sciences, ZhongGuanCun, Beijing, China 100190
| |
Collapse
|
18
|
Zheng DS, Wang Y, Liu AA, Wang HF. Microscopic molecular optics theory of surface second harmonic generation and sum-frequency generation spectroscopy based on the discrete dipole lattice model. INT REV PHYS CHEM 2008. [DOI: 10.1080/01442350802343981] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Feng J, Wu D, Wen J, Liu SL, Wang HF. Vibrational Spectra and Adsorption of Trisiloxane Superspreading Surfactant at Air/Water Interface Studied with Sum Frequency Generation Vibrational Spectroscopy. CHINESE J CHEM PHYS 2008. [DOI: 10.1088/1674-0068/21/04/314-323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Groenzin H, Li I, Shultz MJ. Sum-frequency generation: Polarization surface spectroscopy analysis of the vibrational surface modes on the basal face of ice Ih. J Chem Phys 2008; 128:214510. [DOI: 10.1063/1.2920489] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
21
|
Li Q, Hua R, Cheah IJ, Chou KC. Surface Structure Relaxation of Poly(methyl methacrylate). J Phys Chem B 2007; 112:694-7. [DOI: 10.1021/jp072147j] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qifeng Li
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Rui Hua
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Ignatius J. Cheah
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Keng C. Chou
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
22
|
Wang Y, Cui ZF, Wang HF. Experimental Observables and Macroscopic Susceptibility/Microscopic Polarizability Tensors for Third and Fourth-Order Nonlinear Spectroscopy of Ordered Molecular System. CHINESE J CHEM PHYS 2007. [DOI: 10.1088/1674-0068/20/04/449-460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Zhang WK, Zheng DS, Xu YY, Bian HT, Guo Y, Wang HF. Reconsideration of second-harmonic generation from isotropic liquid interface: broken Kleinman symmetry of neat air/water interface from dipolar contribution. J Chem Phys 2007; 123:224713. [PMID: 16375501 DOI: 10.1063/1.2136875] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It has been generally accepted that there are significant quadrupolar and bulk contributions to the second-harmonic generation (SHG) reflected from the neat air/water interface, as well as common liquid interfaces. Because there has been no general methodology to determine the quadrupolar and bulk contributions to the SHG signal from a liquid interface, this conclusion was reached based on the following two experimental phenomena: the breaking of the macroscopic Kleinman symmetry and the significant temperature dependence of the SHG signal from the neat air/water interface. However, because the sum frequency generation vibrational spectroscopy (SFG-VS) measurement of the neat air/water interface observed no apparent temperature dependence, the temperature dependence in the SHG measurement has been reexamined and proven to be an experimental artifact. Here we present a complete microscopic analysis of the susceptibility tensors of the air/water interface, and show that dipolar contribution alone can be used to address the issue of the breaking of the macroscopic Kleinman symmetry at the neat air/water interface. Using this analysis, the orientation of the water molecules at the interface can be obtained, and it is consistent with the measurement from SFG-VS. Therefore, the key rationales to conclude significantly quadrupolar and bulk contributions to the SHG signal of the neat air/water interface can no longer be considered as valid as before. This new understanding of the air/water interface can shed light on our understanding of the nonlinear optical responses from other molecular interfaces as well.
Collapse
Affiliation(s)
- Wen-kai Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
24
|
Wu H, Zhang WK, Gan W, Cui ZF, Wang HF. An empirical approach to the bond additivity model in quantitative interpretation of sum frequency generation vibrational spectra. J Chem Phys 2006; 125:133203. [PMID: 17029450 DOI: 10.1063/1.2352746] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Knowledge of the ratios between different polarizability betai'j'k' tensor elements of a chemical group in a molecule is crucial for quantitative interpretation and polarization analysis of its sum frequency generation vibrational spectroscopy (SFG-VS) spectrum at interface. The bond additivity model (BAM) or the hyperpolarizability derivative model along with experimentally obtained Raman depolarization ratios has been widely used to obtain such tensor ratios for the CH3, CH2, and CH groups. Successfully, such treatment can quantitatively reproduce the intensity polarization dependence in SFG-VS spectra for the symmetric (SS) and asymmetric (AS) stretching modes of CH3 and CH2 groups, respectively. However, the relative intensities between the SS and AS modes usually do not agree with each other within this model even for some of the simplest molecular systems, such as the air/methanol interface. This fact certainly has cast uncertainties on the effectiveness and conclusions based on the BAM. One of such examples is that the AS mode of CH3 group has never been observed in SFG-VS spectra from the air/methanol interface, while this AS mode is usually very strong for SFG-VS spectra from the air/ethanol interface, other short chain alcohol, as well as long chain surfactants. In order to answer these questions, an empirical approach from known Raman and IR spectra is used to make corrections to the BAM. With the corrected ratios between the betai'j'k' tensor elements of the SS and AS modes, all features in the SFG-VS spectra of the air/methanol and air/ethanol interfaces can be quantitatively interpreted. This empirical approach not only provides new understandings of the effectiveness and limitations of the bond additivity model but also provides a practical way for its application in SFG-VS studies of molecular interfaces.
Collapse
Affiliation(s)
- Hui Wu
- Department of Physics, Anhui Normal University, Wuhu, Anhui Province, 241000, China
| | | | | | | | | |
Collapse
|
25
|
Zhang WK, Wang HF, Zheng DS. Quantitative measurement and interpretation of optical second harmonic generation from molecular interfaces. Phys Chem Chem Phys 2006; 8:4041-52. [PMID: 17028693 DOI: 10.1039/b608005g] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Second harmonic generation (SHG) has been proven a uniquely effective technique in the investigation of molecular structure and conformations, as well as dynamics of molecular interfaces. The ability to apply SHG to molecular interface studies depends on the ability to abstract quantitative information from the measurable quantities in the actual SHG experiments. In this review, we try to assess recent developments in the SHG experimental methodologies towards quantitative analysis of the nonlinear optical properties of the achiral molecular interfaces with rotational isotropy along the interface normal. These developments include the methodology for orientational analysis of the SHG experimental data, the experimental approaches for more accurate SHG measurements, and a novel treatment of the symmetry properties of the molecular polarizability tensors in association with the experimentally measurable quantities. In the end, the recent developments on the problem of surface versus bulk contribution in SHG surface studies is discussed. These developments can put SHG on a more solid foundation for molecular interface studies, and to pave the way for better understanding and application of SHG surface studies in general.
Collapse
Affiliation(s)
- Wen-kai Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun, Beijing, China100080
| | | | | |
Collapse
|
26
|
Wu H, Zhang WK, Gan W, Cui ZF, Wang HF. Quantitative Interpretation of Polarization SFG Vibrational Spectra of Air/Methanol Interface. CHINESE J CHEM PHYS 2006. [DOI: 10.1360/cjcp2006.19(3).187.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Gan W, Wu D, Zhang Z, Feng RR, Wang HF. Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface. J Chem Phys 2006; 124:114705. [PMID: 16555908 DOI: 10.1063/1.2179794] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Here we report a detailed study on spectroscopy, structure, and orientational distribution, as well as orientational motion, of water molecules at the air/water interface, investigated with sum frequency generation vibrational spectroscopy (SFG-VS). Quantitative polarization and experimental configuration analyses of the SFG data in different polarizations with four sets of experimental configurations can shed new light on our present understanding of the air/water interface. Firstly, we concluded that the orientational motion of the interfacial water molecules can only be in a limited angular range, instead of rapidly varying over a broad angular range in the vibrational relaxation time as suggested previously. Secondly, because different vibrational modes of different molecular species at the interface has different symmetry properties, polarization and symmetry analyses of the SFG-VS spectral features can help the assignment of the SFG-VS spectra peaks to different interfacial species. These analyses concluded that the narrow 3693 cm(-1) and broad 3550 cm(-1) peaks belong to C(infinityv) symmetry, while the broad 3250 and 3450 cm(-1) peaks belong to the symmetric stretching modes with C2v symmetry. Thus, the 3693 cm(-1) peak is assigned to the free OH, the 3550 cm(-1) peak is assigned to the singly hydrogen-bonded OH stretching mode, and the 3250 and 3450 cm(-1) peaks are assigned to interfacial water molecules as two hydrogen donors for hydrogen bonding (with C2v symmetry), respectively. Thirdly, analysis of the SFG-VS spectra concluded that the singly hydrogen-bonded water molecules at the air/water interface have their dipole vector directed almost parallel to the interface and is with a very narrow orientational distribution. The doubly hydrogen-bonded donor water molecules have their dipole vector pointing away from the liquid phase.
Collapse
Affiliation(s)
- Wei Gan
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | |
Collapse
|
28
|
Gan W, Wu D, Zhang Z, Guo Y, Wang HF. Orientation and Motion of Water Molecules at Air/Water Interface. CHINESE J CHEM PHYS 2006. [DOI: 10.1360/cjcp2006.19(1).20.5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Chen H, Gan W, Wu BH, Wu D, Zhang Z, Wang HF. Determination of the two methyl group orientations at vapor/acetone interface with polarization null angle method in SFG vibrational spectroscopy. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.04.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Wang * HF, Gan † ‡ W, Lu † ‡ § R, Rao † ‡ ¶ Y, Wu † BH. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). INT REV PHYS CHEM 2005. [DOI: 10.1080/01442350500225894] [Citation(s) in RCA: 508] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|