1
|
Hervé du Penhoat MA, Souchaud A, Rajpal A, Vuilleumier R, Gaigeot MP, Tavernelli I, Fujii K, Yokoya A, Díaz-Tendero S, Politis MF. Ultrafast fragmentation of highly-excited doubly-ionized deoxyribose: role of the liquid water environment. Phys Chem Chem Phys 2024; 26:15693-15704. [PMID: 38766756 DOI: 10.1039/d4cp00489b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ab initio molecular dynamics simulations are used to investigate the fragmentation dynamics following the double ionization of 2-deoxy-D-ribose (DR), a major component in the DNA chain. Different ionization scenarios are considered to provide a complete picture. First focusing on isolated DR2+, fragmentation patterns are determined for the ground electronic state, adding randomly distributed excitation energy to the nuclei. These patterns differ for the two isomers studied. To compare thermal and electronic excitation effects, Ehrenfest dynamics are also performed, allowing to remove the two electrons from selected molecular orbitals. Two intermediate-energy orbitals, localized on the carbon chain, were selected. The dissociation pattern corresponds to the most frequent pattern obtained when adding thermal excitation. On the contrary, targeting the four deepest orbitals, localized on the oxygen atoms, leads to selective ultrafast C-O and/or O-H bond dissociation. To probe the role of environment, a system consisting of a DR molecule embedded in liquid water is then studied. The two electrons are removed from either the DR or the water molecules directly linked to the sugar through hydrogen bonds. Although the dynamics onset is similar to that of isolated DR when removing the same deep orbitals localized on the sugar oxygen atoms, the subsequent fragmentation patterns differ. Sugar damage also occurs following the Coulomb explosion of neighboring H2O2+ molecules due to interaction with the emitted O or H atoms.
Collapse
Affiliation(s)
| | | | - Aashini Rajpal
- IMPMC, Sorbonne Université, UMR CNRS 7590, MNHN, Paris, France.
| | - Rodolphe Vuilleumier
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | | | - Kentaro Fujii
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Akinari Yokoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Sergio Díaz-Tendero
- Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marie-Françoise Politis
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| |
Collapse
|
2
|
Rajpal A, Huart L, Nicolas C, Chevallard C, Guigner JM, Dasilva P, Mercere P, Gervais B, Hervé du Penhoat MA, Renault JP. Superoxide Production under Soft X-ray Irradiation of Liquid Water. J Phys Chem B 2023; 127:4277-4285. [PMID: 37140453 DOI: 10.1021/acs.jpcb.3c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Soft X-rays behave like particles with high linear energy transfer, as they deposit a large amount of their energy in the nanometric range, triggered by inner-shell ionization. In water, this can lead to the formation of a doubly ionized water molecule (H2O2+) and the emission of two secondary electrons (photoelectron and Auger electron). Our focus lies on detecting and quantifying the superoxide (HO2°) production via the direct pathway, i.e., from the reaction between the dissociation product of H2O2+, i.e., the oxygen atom (∼4 fs), and the °OH radicals present in the secondary electron tracks. The HO2° yield for 1620 eV photons, via this reaction pathway, was found to be 0.005 (±0.0007) μmol/J (formed within the ∼ps range). Experiments were also performed to determine the yield of HO2° production via another (indirect) pathway, involving solvated electrons. The indirect HO2° yield, measured experimentally as a function of photon energy (from 1700 to 350 eV), resulted in a steep decrease at around 1280 eV and a minimum close to zero at 800 eV. This behavior in contradiction with the theoretical prediction reveals the complexity hidden in the intratrack reactions.
Collapse
Affiliation(s)
- Aashini Rajpal
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France
- Sorbonne Université, IMPMC, UMR CNRS 7590, IMPMC, 75005 Paris, France
- Synchrotron SOLEIL, Saint Aubin 91190, France
| | - Lucie Huart
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France
- Sorbonne Université, IMPMC, UMR CNRS 7590, IMPMC, 75005 Paris, France
- Synchrotron SOLEIL, Saint Aubin 91190, France
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ali Y, Monini C, Russeil E, Létang JM, Testa E, Maigne L, Beuve M. Estimate of the Biological Dose in Hadrontherapy Using GATE. Cancers (Basel) 2022; 14:1667. [PMID: 35406438 PMCID: PMC8996851 DOI: 10.3390/cancers14071667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
For the evaluation of the biological effects, Monte Carlo toolkits were used to provide an RBE-weighted dose using databases of survival fraction coefficients predicted through biophysical models. Biophysics models, such as the mMKM and NanOx models, have previously been developed to estimate a biological dose. Using the mMKM model, we calculated the saturation corrected dose mean specific energy z1D* (Gy) and the dose at 10% D10 for human salivary gland (HSG) cells using Monte Carlo Track Structure codes LPCHEM and Geant4-DNA, and compared these with data from the literature for monoenergetic ions. These two models were used to create databases of survival fraction coefficients for several ion types (hydrogen, carbon, helium and oxygen) and for energies ranging from 0.1 to 400 MeV/n. We calculated α values as a function of LET with the mMKM and the NanOx models, and compared these with the literature. In order to estimate the biological dose for SOBPs, these databases were used with a Monte Carlo toolkit. We considered GATE, an open-source software based on the GEANT4 Monte Carlo toolkit. We implemented a tool, the BioDoseActor, in GATE, using the mMKM and NanOx databases of cell survival predictions as input, to estimate, at a voxel scale, biological outcomes when treating a patient. We modeled the HIBMC 320 MeV/u carbon-ion beam line. We then tested the BioDoseActor for the estimation of biological dose, the relative biological effectiveness (RBE) and the cell survival fraction for the irradiation of the HSG cell line. We then tested the implementation for the prediction of cell survival fraction, RBE and biological dose for the HIBMC 320 MeV/u carbon-ion beamline. For the cell survival fraction, we obtained satisfying results. Concerning the prediction of the biological dose, a 10% relative difference between mMKM and NanOx was reported.
Collapse
Affiliation(s)
- Yasmine Ali
- Institut de Physique des 2 Infinis de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne, France; (Y.A.); (C.M.); (E.T.); (M.B.)
| | - Caterina Monini
- Institut de Physique des 2 Infinis de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne, France; (Y.A.); (C.M.); (E.T.); (M.B.)
| | - Etienne Russeil
- Laboratoire de Physique de Clermont, Université Clermont Auvergne, CNRS/IN2P3, 4 Avenue Blaise Pascal, 63178 Aubière, France;
| | - Jean Michel Létang
- CREATIS, Université Claude Bernard Lyon 1, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, 69373 Lyon, France;
| | - Etienne Testa
- Institut de Physique des 2 Infinis de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne, France; (Y.A.); (C.M.); (E.T.); (M.B.)
| | - Lydia Maigne
- Laboratoire de Physique de Clermont, Université Clermont Auvergne, CNRS/IN2P3, 4 Avenue Blaise Pascal, 63178 Aubière, France;
| | - Michael Beuve
- Institut de Physique des 2 Infinis de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne, France; (Y.A.); (C.M.); (E.T.); (M.B.)
| |
Collapse
|
4
|
Ali Y, Auzel L, Monini C, Kriachok K, Létang JM, Testa E, Maigne L, Beuve M. Monte Carlo simulations of nanodosimetry and radiolytic species production for monoenergetic proton and electron beams: Benchmarking of GEANT4-DNA and LPCHEM codes. Med Phys 2022; 49:3457-3469. [PMID: 35318686 DOI: 10.1002/mp.15609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/17/2022] [Accepted: 02/14/2022] [Indexed: 01/10/2023] Open
Abstract
PURPOSE In hadrontherapy, biophysical models can be used to predict the biological effect received by cancerous tissues and organs at risk. The input data of these models generally consist of information on nano/micro dosimetric quantities and, concerning some models, reactive species produced in water radiolysis. In order to fully account for the radiation stochastic effects, these input data have to be provided by Monte Carlo track structure (MCTS) codes allowing to estimate physical, physico-chemical, and chemical effects of radiation at the molecular scale. The objective of this study is to benchmark two MCTS codes, Geant4-DNA and LPCHEM, that are useful codes for estimating the biological effects of ions during radiation therapy treatments. MATERIAL AND METHODS In this study we considered the simulation of specific energy spectra for monoenergetic proton beams (10 MeV) as well as radiolysis species production for both electron (1 MeV) and proton (10 MeV) beams with Geant4-DNA and LPCHEM codes. Options 2, 4, and 6 of the Geant4-DNA physics lists have been benchmarked against LPCHEM. We compared probability distributions of energy transfer points in cylindrical nanometric targets (10 nm) positioned in a liquid water box. Then, radiochemical species (· OH, e aq - ${\rm{e}}_{{\rm{aq}}}^ - $ , H 3 O + , H 2 O 2 ${{\rm{H}}_3}{{\rm{O}}^ + },{\rm{\;}}{{\rm{H}}_2}{{\rm{O}}_2}$ , H2 , and O H - ) ${\rm{O}}{{\rm{H}}^ - }){\rm{\;}}$ yields simulated between 10-12 and 10-6 s after irradiation are compared. RESULTS Overall, the specific energy spectra and the chemical yields obtained by the two codes are in good agreement considering the uncertainties on experimental data used to calibrate the parameters of the MCTS codes. For 10 MeV proton beams, ionization and excitation processes are the major contributors to the specific energy deposition (larger than 90%) while attachment, solvation, and vibration processes are minor contributors. LPCHEM simulates tracks with slightly more concentrated energy depositions than Geant4-DNA which translates into slightly faster recombination than Geant4-DNA. Relative deviations (CEV ) with respect to the average of evolution rates of the radical yields between 10-12 and 10-6 s remain below 10%. When comparing execution times between the codes, we showed that LPCHEM is faster than Geant4-DNA by a factor of about four for 1000 primary particles in all simulation stages (physical, physico-chemical, and chemical). In multi-thread mode (four threads), Geant4-DNA computing times are reduced but remain slower than LPCHEM by ∼20% up to ∼50%. CONCLUSIONS For the first time, the entire physical, physico-chemical, and chemical models of two track structure Monte Carlo codes have been benchmarked along with an extensive analysis on the effects on the water radiolysis simulation. This study opens up new perspectives in using specific energy distributions and radiolytic species yields from monoenergetic ions in biophysical models integrated to Monte Carlo software.
Collapse
Affiliation(s)
- Yasmine Ali
- Institut de Physique des 2 Infinis de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, Villeurbanne, 69622, France
| | - Lucas Auzel
- Laboratoire de Physique de Clermont, Université Clermont Auvergne, CNRS/IN2P3, 4 Avenue Blaise Pascal, Aubière cedex, 63178, France
| | - Caterina Monini
- Institut de Physique des 2 Infinis de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, Villeurbanne, 69622, France
| | - Kateryna Kriachok
- Laboratoire de Physique de Clermont, Université Clermont Auvergne, CNRS/IN2P3, 4 Avenue Blaise Pascal, Aubière cedex, 63178, France
| | - Jean Michel Létang
- CREATIS, Université Claude Bernard Lyon 1, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, Lyon, 69373, France
| | - Etienne Testa
- Institut de Physique des 2 Infinis de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, Villeurbanne, 69622, France
| | - Lydia Maigne
- Laboratoire de Physique de Clermont, Université Clermont Auvergne, CNRS/IN2P3, 4 Avenue Blaise Pascal, Aubière cedex, 63178, France
| | - Michael Beuve
- Institut de Physique des 2 Infinis de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, Villeurbanne, 69622, France
| |
Collapse
|
5
|
Monte Carlo transport of swift protons and light ions in water: The influence of excitation cross sections, relativistic effects, and Auger electron emission in w-values. Phys Med 2021; 88:71-85. [PMID: 34198025 DOI: 10.1016/j.ejmp.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To develop a particle transport code to compute w-values and stopping power of swift ions in liquid water and gases of interest for reference dosimetry in hadrontherapy. To analyze the relevance of inelastic and post-collisional processes considered. METHODS The Monte Carlo code MDM was extended to the case of swift ion impact on liquid water (MDM-Ion). Relativistic corrections in the inelastic cross sections and the post-collisional Auger emission were considered. The effects of introducing different electronic excitation cross sections were also studied. RESULTS The stopping power of swift ions on liquid water, calculated with MDM-Ion, are in excellent agreement with recommended data. The w-values show a strong dependence on the electronic excitation cross sections and on the Auger electron emission. Comparisons with other Monte Carlo codes show the relevance of both the processes considered and of the cross sections employed. W and w-values for swift electron, proton, and carbon ions calculated with the MDM and MDM-Ion codes are in very close agreement with each other and with the 20.8 eV experimental value. CONCLUSION We found that w-values in liquid water are independent of ion charge and energy, as assumed in reference dosimetry for hadrontherapy from sparse experimental results for electron and ion impact on gases. Excitation cross sections and Auger emission included in Monte Carlo codes are critical in w-values calculations. The computation of this physical parameter should be used as a benchmark for micro-dosimetry investigations, to assess the reliability of the cross sections employed.
Collapse
|
6
|
Zakaria AM, Lertnaisat P, Islam MM, Meesungnoen J, Katsumura Y, Jay-Gerin JP. Yield of the Fricke dosimeter irradiated with the recoil α and Li ions of the 10B( n, α) 7Li nuclear reaction: effects of multiple ionization and temperature. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Monte Carlo track chemistry simulations were used to investigate the effects of multiple ionization (MI) of water on the yields (G values) of the ferrous sulfate (Fricke) dosimeter, which was irradiated with low-energy α and lithium ion recoils from the 10B(n,α)7Li nuclear reaction as a function of temperature from 25 to 350 °C. Calculations were performed individually for 1.47 MeV α-particles and 0.84 MeV lithium nuclei with dose-average linear energy transfer (LET) values of ∼196 and 225 keV/µm at 25 °C, respectively. The total yields were obtained by summing the G values for each recoil α and Li ion weighted with its fraction of the total energy absorbed. At room temperature, our G(Fe3+) values calculated under aerated and deaerated conditions only agreed well with the experimental results, provided the MI of water was incorporated in the simulations. This strongly supports the importance of the role of MI of water in the high-LET radiolysis of water. We also simulated the effects of MI of water on G-values for the primary species of the radiolysis of deaerated 0.4 M H2SO4 aqueous solutions by 10B(n,α)7Li recoils. As with the Fricke dosimeter, the best agreement between experiment and simulation was found at 25 °C when the MI of water was included in the simulations. It was also shown that G(Fe3+) decreases slightly as a function of temperature over the range of 25–350 °C. However, at elevated temperatures, no experimental data were available with which to compare our results.
Collapse
Affiliation(s)
- Abdullah Muhammad Zakaria
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001, 12ème Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Phantira Lertnaisat
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Muhammad Mainul Islam
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001, 12ème Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Baxter Healthcare Corporation, 89 Centre Street South, Alliston, ON L9R 1W7, Canada
| | - Jintana Meesungnoen
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001, 12ème Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Yosuke Katsumura
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Nuclear Professional School, School of Engineering, The University of Tokyo, Shirakata-shirane 2-22, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan
| | - Jean-Paul Jay-Gerin
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001, 12ème Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
7
|
Zakaria AM, Colangelo NW, Meesungnoen J, Azzam EI, Plourde MÉ, Jay-Gerin JP. Ultra-High Dose-Rate, Pulsed (FLASH) Radiotherapy with Carbon Ions: Generation of Early, Transient, Highly Oxygenated Conditions in the Tumor Environment. Radiat Res 2021; 194:587-593. [PMID: 32853343 DOI: 10.1667/rade-19-00015.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/26/2020] [Indexed: 01/10/2023]
Abstract
It is well known that molecular oxygen is a product of the radiolysis of water with high-linear energy transfer (LET) radiation, which is distinct from low-LET radiation wherein O2 radiolytic yield is negligible. Since O2 is a powerful radiosensitizer, this fact is of practical relevance in cancer therapy with energetic heavy ions, such as carbon ions. It has recently been discovered that large doses of ionizing radiation delivered to tumors at very high dose rates (i.e., in a few milliseconds) have remarkable benefits in sparing healthy tissue while preserving anti-tumor activity compared to radiotherapy delivered at conventional, lower dose rates. This new method is called "FLASH radiotherapy" and has been tested using low-LET radiation (i.e., electrons and photons) in various pre-clinical studies and recently in a human patient. Although the exact mechanism(s) underlying FLASH are still unclear, it has been suggested that radiation delivered at high dose rates spares normal tissue via oxygen depletion. In addition, heavy-ion radiation achieves tumor control with reduced normal tissue toxicity due to its favorable physical depth-dose profile and increased radiobiological effectiveness in the Bragg peak region. To date, however, biological research with energetic heavy ions delivered at ultra-high dose rates has not been performed and it is not known whether heavy ions are suitable for FLASH radiotherapy. Here we present the additive or even synergistic advantages of integrating the FLASH dose rates into carbon-ion therapy. These benefits result from the ability of heavy ions at high LET to generate an oxygenated microenvironment around their track due to the occurrence of multiple (mainly double) ionization of water. This oxygen is abundant immediately in the tumor region where the LET of the carbon ions is very high, near the end of the carbon-ion path (i.e., in the Bragg peak region). In contrast, in the "plateau" region of the depth-dose distribution of ions (i.e., in the normal tissue region), in which the LET is significantly lower, this generation of molecular oxygen is insignificant. Under FLASH irradiation, it is shown that this early generation of O2 extends evenly over the entire irradiated tumor volume, with concentrations estimated to be several orders of magnitude higher than the oxygen levels present in hypoxic tumor cells. Theoretically, these results indicate that FLASH radiotherapy using carbon ions would have a markedly improved therapeutic ratio with greater toxicity in the tumor due to the generation of oxygen at the spread-out Bragg peak.
Collapse
Affiliation(s)
- Abdullah Muhammad Zakaria
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Nicholas W Colangelo
- Rutgers Biomedical and Health Sciences, New Jersey Medical School, Department of Radiology, Newark, New Jersey
| | - Jintana Meesungnoen
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Edouard I Azzam
- Rutgers Biomedical and Health Sciences, New Jersey Medical School, Department of Radiology, Newark, New Jersey
| | - Marc-Émile Plourde
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-Paul Jay-Gerin
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
8
|
Belkić D. Single charge exchange in collisions of energetic nuclei with biomolecules of interest to ion therapy. Z Med Phys 2020; 31:122-144. [PMID: 32928641 DOI: 10.1016/j.zemedi.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 11/26/2022]
Abstract
This study is on the theory of single electron capture by fast nuclei from a variety of molecular targets of biological significance with high relevance to ion therapy of deep-seated tumors. The adopted theoretical framework is that of the first principles of quantum physics. As such, no free, adjustable parameters are used. This is in sharp contrast to the associated existing cross section input data to Monte Carlo simulations that all abound with empirical/phenomenological formulae. The present theory has the well-established track of its predictive power. This means that the computed cross sections can confidently be used in the cases for which no experimental data exist. These cross sections are from the full continuum distorted wave method (CDW). We first compute atomic cross sections in the independent electron model and then generate the corresponding molecular cross sections. The latter follow from the former within the independent atom model accompanied by the Bragg additivity rule. The investigated atomic targets are from the backbone of DNA and/or RNA molecules. These are atomic hydrogen, carbon, nitrogen and oxygen (H, C, N, O). Neon is also added to this sequence of targets as an isoelectronic atomic counterpart of water vapor, methane and ammonia molecules. The studied molecular targets are H2O (water vapor), CO (carbon-monoxide), CO2 (carbon-dioxide), CH4 (methane), C2H4 (ethylene), C2H6 (ethane), C4H10 (butane) as well as the DNA/RNA nucleobases C4H4N2O2 (uracil), C5H5N5 (adenine), C5H5N5O (guanine), C5H6N2O2 (thymine) and C4H5N3O (cytosine). The obtained total cross sections for any electronic target shell are compared with the available experimental data and overall favorable agreement is recorded at intermediate and high impact energies, which is the validity domain of the CDW method.
Collapse
Affiliation(s)
- Dževad Belkić
- Karolinska Institute, Department of Oncology-Pathology, P.O. Box 260, SE-171 76 Stockholm, Sweden; Karolinska University Hospital, Radiation Physics and Nuclear Medicine, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
9
|
Huart L, Nicolas C, Kaddissy JA, Guigner JM, Touati A, Politis MF, Mercere P, Gervais B, Renault JP, Hervé du Penhoat MA. Soft X-ray Radiation and Monte Carlo Simulations: Good Tools to Describe the Radiation Chemistry of Sub-keV Electrons. J Phys Chem A 2020; 124:1896-1902. [PMID: 32118425 DOI: 10.1021/acs.jpca.9b10539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The description of the biological effects of ionizing radiation requires a good knowledge of the dose deposition processes at both the cellular and molecular scales. However, experimental studies on the energy deposition specificity of sub-keV electrons, produced by most radiations, including high-energy photons and heavy ions, are scarce. Soft X-rays (0.2-2 keV) are here used to probe the physical and physico-chemical events occurring upon exposure of liquid water to sub-keV electrons. Liquid water samples were irradiated with a monochromatic photon beam at the SOLEIL synchrotron. Hydroxyl radical quantification was conducted through HO• scavenging using benzoate to form fluorescent hydroxybenzoate. The yields of HO• radicals exhibit a minimum around 1.5 keV, in good agreement with indirect observation. Moreover, they are relatively independent of the benzoate concentration in the range investigated, which corresponds to scavenging times of 170 ns to 170 ps. These results provide evidence that sub-keV electrons behave as high linear energy transfer particles, since they are able to deposit tens to hundreds of electronvolts in nanometric volumes.
Collapse
Affiliation(s)
- Lucie Huart
- IMPMC, Sorbonne Université, UMR CNRS 7590, MNHN, Paris 75252, France.,Synchrotron SOLEIL, Saint Aubin 91190, France.,Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France
| | | | | | | | - Alain Touati
- IMPMC, Sorbonne Université, UMR CNRS 7590, MNHN, Paris 75252, France
| | - Marie-Françoise Politis
- LAMBE UMR 8587, Université d'Evry val d'Essonne, CNRS, CEA, Université Paris-Saclay, Evry 91025, France
| | | | | | | | | |
Collapse
|
10
|
Monini C, Cunha M, Chollier L, Testa E, Beuve M. Determination of the Effective Local Lethal Function for the NanOx Model. Radiat Res 2020; 193:331-340. [PMID: 32017667 DOI: 10.1667/rr15463.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
NanOx is a biophysical model recently developed in the context of hadrontherapy to predict the cell survival probability from ionizing radiation. It postulates that this may be factorized into two independent terms describing the cell response to two classes of biological events that occur in the sequence of an irradiation: the local lethal events that occur at nanometric scale and can by themselves induce cell death, and the non-local lethal events that lead to cell death by an effect of accumulation and/or interaction at a larger scale. Here we address how local lethal events are modeled in terms of the inactivation of undifferentiated nanometric targets via an "effective local lethal function F", which characterizes the response of each cell line to the spectra of "restricted specific energy". F is initially determined as a linear combination of basis functions. Then, a parametric expression is used to reproduce the function's main features, a threshold and a saturation, while at the same time reducing the number of free parameters. This strategy was applied to three cell lines in response to ions of different type and energy, which allows for benchmarking of the α(LET) curves predicted with both effective local lethal functions against the experimental data.
Collapse
Affiliation(s)
- Caterina Monini
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Micaela Cunha
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Laurie Chollier
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Etienne Testa
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Michael Beuve
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| |
Collapse
|
11
|
|
12
|
Li WB, Belchior A, Beuve M, Chen YZ, Di Maria S, Friedland W, Gervais B, Heide B, Hocine N, Ipatov A, Klapproth AP, Li CY, Li JL, Multhoff G, Poignant F, Qiu R, Rabus H, Rudek B, Schuemann J, Stangl S, Testa E, Villagrasa C, Xie WZ, Zhang YB. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Phys Med 2020; 69:147-163. [PMID: 31918367 DOI: 10.1016/j.ejmp.2019.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 11/29/2019] [Accepted: 12/15/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Targeted radiation therapy has seen an increased interest in the past decade. In vitro and in vivo experiments showed enhanced radiation doses due to gold nanoparticles (GNPs) to tumors in mice and demonstrated a high potential for clinical application. However, finding a functionalized molecular formulation for actively targeting GNPs in tumor cells is challenging. Furthermore, the enhanced energy deposition by secondary electrons around GNPs, particularly by short-ranged Auger electrons is difficult to measure. Computational models, such as Monte Carlo (MC) radiation transport codes, have been used to estimate the physical quantities and effects of GNPs. However, as these codes differ from one to another, the reliability of physical and dosimetric quantities needs to be established at cellular and molecular levels, so that the subsequent biological effects can be assessed quantitatively. METHODS In this work, irradiation of single GNPs of 50 nm and 100 nm diameter by X-ray spectra generated by 50 and 100 peak kilovoltages was simulated for a defined geometry setup, by applying multiple MC codes in the EURADOS framework. RESULTS The mean dose enhancement ratio of the first 10 nm-thick water shell around a 100 nm GNP ranges from 400 for 100 kVp X-rays to 600 for 50 kVp X-rays with large uncertainty factors up to 2.3. CONCLUSIONS It is concluded that the absolute dose enhancement effects have large uncertainties and need an inter-code intercomparison for a high quality assurance; relative properties may be a better measure until more experimental data is available to constrain the models.
Collapse
Affiliation(s)
- W B Li
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - A Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - M Beuve
- Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3 UMR 5822, Villeurbanne, France
| | - Y Z Chen
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - S Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - W Friedland
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - B Gervais
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, UMR 6252, BP 5133, F-14070 Caen Cedex 05, France
| | - B Heide
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - N Hocine
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - A Ipatov
- Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
| | - A P Klapproth
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - C Y Li
- Department of Engineering Physics, Tsinghua University, Beijing, China; Nuctech Company Limited, Beijing, China
| | - J L Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - G Multhoff
- TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - F Poignant
- Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3 UMR 5822, Villeurbanne, France
| | - R Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - H Rabus
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - B Rudek
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany; Massachusetts General Hospital & Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| | - J Schuemann
- Massachusetts General Hospital & Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| | - S Stangl
- TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - E Testa
- Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3 UMR 5822, Villeurbanne, France
| | - C Villagrasa
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - W Z Xie
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Y B Zhang
- Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
13
|
Baldacchino G, Brun E, Denden I, Bouhadoun S, Roux R, Khodja H, Sicard-Roselli C. Importance of radiolytic reactions during high-LET irradiation modalities: LET effect, role of O2 and radiosensitization by nanoparticles. Cancer Nanotechnol 2019. [DOI: 10.1186/s12645-019-0047-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Chan CH, Poignant F, Beuve M, Dumont E, Loffreda D. A Water Solvation Shell Can Transform Gold Metastable Nanoparticles in the Fluxional Regime. J Phys Chem Lett 2019; 10:1092-1098. [PMID: 30707843 DOI: 10.1021/acs.jpclett.8b03822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Solvated gold nanoparticles have been modeled in the fluxional regime by density functional theory including dispersion forces for an extensive set of conventional morphologies. The study of isolated adsorption of one water molecule shows that the most stable adsorption forms are similar (corners and edges) regardless of the nanoparticle shape and size, although the adsorption strength differs significantly (0.15 eV). When a complete and explicit water solvation shell interacts with gold nanoclusters, metastable in vacuum and presenting a predominance of (100) square facets (ino-decahedra Au55 and Au147), these nanoparticles are found unstable and transform into the closest morphologies exhibiting mainly (111) triangular facets and symmetries. The corresponding adsorption strength per water molecule becomes independent of shape and size and is enhanced by the formation of two hydrogen bonds on average. For applications in radiotherapy, this study suggests that the shapes of small gold nanoparticles should be homogenized by interacting with the biological environment.
Collapse
Affiliation(s)
- Chen-Hui Chan
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1 , Laboratoire de Chimie, F-69342 Lyon , France
| | - Floriane Poignant
- Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, PHABIO, Villeurbanne 69322 , France
| | - Michaël Beuve
- Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, PHABIO, Villeurbanne 69322 , France
| | - Elise Dumont
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1 , Laboratoire de Chimie, F-69342 Lyon , France
| | - David Loffreda
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1 , Laboratoire de Chimie, F-69342 Lyon , France
| |
Collapse
|
15
|
Hervé du Penhoat MA, Moraga NRG, Gaigeot MP, Vuilleumier R, Tavernelli I, Politis MF. Proton Collision on Deoxyribose Originating from Doubly Ionized Water Molecule Dissociation. J Phys Chem A 2018; 122:5311-5320. [PMID: 29846073 DOI: 10.1021/acs.jpca.8b04787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we studied the fragmentation dynamics of 2-deoxy-d-ribose (DR) in solution that arises from the double ionization of a water molecule in its primary hydration shell. This process was modeled in the framework of ab initio molecular dynamics. The charge unbalanced in the solvent molecules produces a Coulomb explosion with the consequent release of protons with kinetic energy in the few electronvolts range, which collide with the surrounding molecules in solution inducing further chemical reactions. In particular, we observe proton collisions with the solute molecule DR, which leads to a complete ring opening. In DNA, damage to the DR moiety may lead to DNA strand breaking. This mechanism can be understood as one of the possible steps in the radiation-induced fragmentation of DNA chains.
Collapse
Affiliation(s)
| | | | - Marie-Pierre Gaigeot
- LAMBE UMR8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement , Université d'Evry val d'Essonne, Université Paris-Saclay, CEA, CNRS , Blvd F. Mitterrand , 91025 Evry , France
| | - Rodolphe Vuilleumier
- PASTEUR, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Ivano Tavernelli
- IBM Research-Zurich , Säumerstrasse 4 , 8803 Rüschlikon , Switzerland
| | - Marie-Fraņcoise Politis
- LAMBE UMR8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement , Université d'Evry val d'Essonne, Université Paris-Saclay, CEA, CNRS , Blvd F. Mitterrand , 91025 Evry , France
| |
Collapse
|
16
|
Study of the Influence of NanOx Parameters. Cancers (Basel) 2018; 10:cancers10040087. [PMID: 29561819 PMCID: PMC5923342 DOI: 10.3390/cancers10040087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 11/17/2022] Open
Abstract
NanOx is a new biophysical model that aims at predicting the biological effect of ions in the context of hadron therapy. It integrates the fully-stochastic nature of ionizing radiation both at micrometric and nanometric scales and also takes into account the production and diffusion of reactive chemical species. In order to further characterize the new framework, we discuss the meaning and relevance of most of the NanOx parameters by evaluating their influence on the linear-quadratic coefficient α and on the dose deposited to achieve 10% or 1% of cell survival, D10% or D1%, as a function of LET. We perform a theoretical study in which variations in the input parameters are propagated into the model predictions for HSG, V79 and CHO-K1 cells irradiated by monoenergetic protons and carbon ions. We conclude that, in the current version of NanOx, the modeling of a specific cell line relies on five parameters, which have to be adjusted to several experimental measurements: the average cellular nuclear radius, the linear-quadratic coefficients describing photon irradiations and the α values associated with two carbon ions of intermediate and high-LET values. This may have interesting implications toward a clinical application of the new biophysical model.
Collapse
|
17
|
Bassez MP. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy. ORIGINS LIFE EVOL B 2017; 47:453-480. [PMID: 28361301 DOI: 10.1007/s11084-017-9534-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/02/2017] [Indexed: 10/19/2022]
Abstract
In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.
Collapse
Affiliation(s)
- Marie-Paule Bassez
- Institut de Technologie, Université de Strasbourg, 72 route du Rhin, 67400, Illkirch, France.
| |
Collapse
|
18
|
Poignant F, Gervais B, Ipatov A, Monini C, Cunha M, Lartaud P, Bacle T, Testa E, Beuve M. Abstract ID: 182 Biophysical modelisation of gold nanoparticles radiosensitizing effects. Phys Med 2017. [DOI: 10.1016/j.ejmp.2017.09.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
19
|
|
20
|
Cunha M, Monini C, Testa E, Beuve M. NanOx, a new model to predict cell survival in the context of particle therapy. Phys Med Biol 2016; 62:1248-1268. [PMID: 27995904 DOI: 10.1088/1361-6560/aa54c9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Particle therapy is increasingly attractive for the treatment of tumors and the number of facilities offering it is rising worldwide. Due to the well-known enhanced effectiveness of ions, it is of utmost importance to plan treatments with great care to ensure tumor killing and healthy tissues sparing. Hence, the accurate quantification of the relative biological effectiveness (RBE) of ions, used in the calculation of the biological dose, is critical. Nevertheless, the RBE is a complex function of many parameters and its determination requires modeling. The approaches currently used have allowed particle therapy to thrive, but still show some shortcomings. We present herein a short description of a new theoretical framework, NanOx, to calculate cell survival in the context of particle therapy. It gathers principles from existing approaches, while addressing some of their weaknesses. NanOx is a multiscale model that takes the stochastic nature of radiation at nanometric and micrometric scales fully into account, integrating also the chemical aspects of radiation-matter interaction. The latter are included in the model by means of a chemical specific energy, determined from the production of reactive chemical species induced by irradiation. Such a production represents the accumulation of oxidative stress and sublethal damage in the cell, potentially generating non-local lethal events in NanOx. The complementary local lethal events occur in a very localized region and can, alone, lead to cell death. Both these classes of events contribute to cell death. The comparison between experimental data and model predictions for the V79 cell line show a good agreement. In particular, the dependence of the typical shoulders of cell survival curves on linear energy transfer are well described, but also the effectiveness of different ions, including the overkill effect. These results required the adjustment of a number of parameters compatible with the application of the model in a clinical scenario thereby showing the potential of NanOx. Said parameters are discussed in detail in this paper.
Collapse
Affiliation(s)
- M Cunha
- Université de Lyon, F-69622, Lyon, France. Université de Lyon 1, Villeurbanne, France. CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, France
| | | | | | | |
Collapse
|
21
|
Review of Geant4-DNA applications for micro and nanoscale simulations. Phys Med 2016; 32:1187-1200. [PMID: 27659007 DOI: 10.1016/j.ejmp.2016.09.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/01/2016] [Accepted: 09/09/2016] [Indexed: 11/24/2022] Open
Abstract
Emerging radiotherapy treatments including targeted particle therapy, hadron therapy or radiosensitisation of cells by high-Z nanoparticles demand the theoretical determination of radiation track structure at the nanoscale. This is essential in order to evaluate radiation damage at the cellular and DNA level. Since 2007, Geant4 offers physics models to describe particle interactions in liquid water at the nanometre level through the Geant4-DNA Package. This package currently provides a complete set of models describing the event-by-event electromagnetic interactions of particles with liquid water, as well as developments for the modelling of water radiolysis. Since its release, Geant4-DNA has been adopted as an investigational tool in kV and MV external beam radiotherapy, hadron therapies using protons and heavy ions, targeted therapies and radiobiology studies. It has been benchmarked with respect to other track structure Monte Carlo codes and, where available, against reference experimental measurements. While Geant4-DNA physics models and radiolysis modelling functionalities have already been described in detail in the literature, this review paper summarises and discusses a selection of representative papers with the aim of providing an overview of a) geometrical descriptions of biological targets down to the DNA size, and b) the full spectrum of current micro- and nano-scale applications of Geant4-DNA.
Collapse
|
22
|
Tavakoli H, Baghbanan AA. Measuring hydrogen peroxide due to water radiolysis using a modified horseradish peroxidase based biosensor as an alternative dosimetry method. Bioelectrochemistry 2015; 104:79-84. [DOI: 10.1016/j.bioelechem.2015.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 11/29/2022]
|
23
|
A diffusion-free and linear-energy-transfer-independent nanocomposite Fricke gel dosimeter. Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2013.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Bäckström G, Galassi ME, Tilly N, Ahnesjö A, Fernández-Varea JM. Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale. Med Phys 2013; 40:064101. [DOI: 10.1118/1.4803464] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Rivarola RD, Galassi ME, Fainstein PD, Champion C. Computation of Distorted Wave Cross Sections for High-Energy Inelastic Collisions of Heavy Ions with Water Molecules. ADVANCES IN QUANTUM CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-396455-7.00009-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Rodriguez-Lafrasse C, Balosso J. [From the carbon track to therapeutic efficiency of hadrontherapy]. Cancer Radiother 2012; 16:16-24. [PMID: 22285783 DOI: 10.1016/j.canrad.2011.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/18/2011] [Accepted: 06/16/2011] [Indexed: 01/28/2023]
Abstract
Carbon ions, thanks to their relative biological effectiveness much higher than that of photons and protons and their ballistic characteristics similar to those of protons, can effectively treat radioresistant tumours. The reasons for this increased efficiency are found in the microdosimetric and radiobiological features of ions. The energy deposit or linear energy transfer increases along the range and reaches a very high level at the end producing the Bragg peak, where the linear energy transfer is about hundred times higher than that of photons. These massive energy deposits create multiple DNA lesions that are difficult to repair. DNA repair is associated with longer blockage of the cell cycle and more frequent chromosomal aberrations that are lethal to cells. The types of cell death are identical to those triggered in response to photon irradiation, but the response is earlier and more important at equivalent physical dose. Radiobiological differences between carbon ions and photons have been studied for some years and many aspects remain to be explored. In general, these phenomena tend to reduce the differences of radiosensitivity among different tissues. It is therefore in situation where tumours are relatively radioresistant compared to healthy tissue, that carbon ions must be used and not in the opposite situations where the fractionation of low linear energy transfer radiation is sufficient to provide the necessary differential effect to cure the tumour.
Collapse
Affiliation(s)
- C Rodriguez-Lafrasse
- Radiobiologie cellulaire et moléculaire, EMR3738, faculté de médecine Lyon-Sud, université Lyon-1, 165, chemin du Grand-Revoyet, BP 12, 69921 Oullins cedex, France.
| | | |
Collapse
|
27
|
Champion C, Galassi ME, Weck PF, Fojón O, Hanssen J, Rivarola RD. Quantum-Mechanical Contributions to Numerical Simulations of Charged Particle Transport at the DNA Scale. RADIATION DAMAGE IN BIOMOLECULAR SYSTEMS 2012. [DOI: 10.1007/978-94-007-2564-5_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
28
|
Colliaux A, Gervais B, Rodriguez-Lafrasse C, Beuve M. O2and glutathione effects on water radiolysis:a simulation study. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/261/1/012007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Beuve M. Formalization and Theoretical Analysis of the Local Effect Model. Radiat Res 2009; 172:394-402. [DOI: 10.1667/rr1544.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Taguchi M, Kimura A, Watanabe R, Hirota K. Estimation of yields of hydroxyl radicals in water under various energy heavy ions. Radiat Res 2009; 171:254-63. [PMID: 19267552 DOI: 10.1667/rr1445.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This article reports the determination of yields of OH (hydroxyl) radicals in water irradiated with helium, carbon, neon and argon ions ranging from 2 to 18 MeV/nucleon. The yields of the OH radicals depend on the atomic number and energy of the incident ion and the reaction time just after the irradiation based on the track structure theory. The yields of the OH radicals estimated by analyzing the yields of the irradiation products from phenol were at almost 0 to 3.1 per 100 eV absorbed energy on a time scale from 0.75 to 300 ns and were lower than the corresponding ones after exposure to low-LET radiation. The yields of OH radicals decreased with decreasing specific energy for each ion, with increasing atomic number of each ion at a similar specific energy, and with the average reaction time after irradiation. In addition, Monte Carlo simulations were conducted and compared with the OH radical yields obtained experimentally.
Collapse
Affiliation(s)
- Mitsumasa Taguchi
- Organic Pollutant Removal Technology Group, Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma, 370-1292, Japan.
| | | | | | | |
Collapse
|
31
|
|
32
|
Adoui L, Legendre S, Tarisien M, Cassimi A, Galassi ME, Giglio E, Gervais B. High LET highly charged ion-induced ionization and fragmentation of water molecules and clusters. ACTA ACUST UNITED AC 2007. [DOI: 10.1088/1742-6596/88/1/012023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Numerical simulation of multiple ionization and high LET effects in liquid water radiolysis. Radiat Phys Chem Oxf Engl 1993 2006. [DOI: 10.1016/j.radphyschem.2005.09.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|