1
|
Agostini A, Calcinoni A, Petrova AA, Bortolus M, Casazza AP, Carbonera D, Santabarbara S. An unusual triplet population pathway in the Reaction Centre of the Chlorophyll-d binding Photosystem I of A. marina, as revealed by a combination of TR-EPR and ODMR spectroscopies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149515. [PMID: 39349288 DOI: 10.1016/j.bbabio.2024.149515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Photo-induced Chlorophyll (Chl) triplet states in the isolated Photosystem I (PSI) of Acaryochloris marina, that harbours Chl d as its main pigment, were investigated by Optically Detected Magnetic Resonance (ODMR) and Time-Resolved Electron Paramagnetic Resonance (TR-EPR), and as a function of pre-illumination of the sample under reducing redox poising. Fluorescence Detected Magnetic Resonance (FDMR) allowed resolving four Chl d triplet (3Chl d) populations (T1-T4) both in untreated and illuminated samples in the presence of ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The FDMR signals increased following the pre-illumination treatment, particularly for the T3 and T4 populations, which are therefore sensitive to the redox state of PSI cofactors. Microwave-induced Triplet minus Singlet (TmS) spectra were detected in the |D|-|E| resonance window of the T3 and T4 triplets. These showed a broad singlet bleaching centred at 740 nm and also displayed complex spectral structure with several derivative-like features, indicating that both the T3 and T43Chl d populations are associated with the PSI reaction centre (RC) triplet, P3740. Parallel measurements by TR-EPR demonstrated that triplet signals observed under all conditions investigated are dominated by an electron spin polarisation (esp), which is typical of intersystem crossing, differently from what expected for recombination triplet states formed from a radical pair precursor. Moreover, stronger reductant conditions obtained by pre-illumination of the samples in the presence of dithionite and 5-methylphenazinium methyl sulfate (PMS) did not lead to a recombination triplet state esp, but rather to a decrease of the whole signal intensity. The energetics of A. marina PSI and the possible occurrence of distributions of cofactors redox properties are discussed in order to address the unexpected P3740 esp.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Andrea Calcinoni
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy; A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Leninskye Gory 1 building, 40 Moscow, Russia
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy; Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy.
| |
Collapse
|
2
|
Santabarbara S, Agostini A, Petrova AA, Bortolus M, Casazza AP, Carbonera D. Chlorophyll triplet states in thylakoid membranes of Acaryochloris marina. Evidence for a triplet state sitting on the photosystem I primary donor populated by intersystem crossing. PHOTOSYNTHESIS RESEARCH 2024; 159:133-152. [PMID: 37191762 DOI: 10.1007/s11120-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Photo-induced triplet states in the thylakoid membranes isolated from the cyanobacterium Acaryocholoris marina, that harbours Chlorophyll (Chl) d as its main chromophore, have been investigated by Optically Detected Magnetic Resonance (ODMR) and time-resolved Electron Paramagnetic Resonance (TR-EPR). Thylakoids were subjected to treatments aimed at poising the redox state of the terminal electron transfer acceptors and donors of Photosystem II (PSII) and Photosystem I (PSI), respectively. Under ambient redox conditions, four Chl d triplet populations were detectable, identifiable by their characteristic zero field splitting parameters, after deconvolution of the Fluorescence Detected Magnetic Resonance (FDMR) spectra. Illumination in the presence of the redox mediator N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) and sodium ascorbate at room temperature led to a redistribution of the triplet populations, with T3 (|D|= 0.0245 cm-1, |E|= 0.0042 cm-1) becoming dominant and increasing in intensity with respect to untreated samples. A second triplet population (T4, |D|= 0.0248 cm-1, |E|= 0.0040 cm-1) having an intensity ratio of about 1:4 with respect to T3 was also detectable after illumination in the presence of TMPD and ascorbate. The microwave-induced Triplet-minus-Singlet spectrum acquired at the maximum of the |D|-|E| transition (610 MHz) displays a broad minimum at 740 nm, accompanied by a set of complex spectral features that overall resemble, despite showing further fine spectral structure, the previously reported Triplet-minus-Singlet spectrum attributed to the recombination triplet of PSI reaction centre,3 P 740 [Schenderlein M, Çetin M, Barber J, et al. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1777:1400-1408]. However, TR-EPR experiments indicate that this triplet displays an eaeaea electron spin polarisation pattern which is characteristic of triplet sublevels populated by intersystem crossing rather than recombination, for which an aeeaae polarisation pattern is expected instead. It is proposed that the observed triplet, which leads to the bleaching of the P740 singlet state, sits on the PSI reaction centre.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy.
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy.
| | - Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy
- A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1 Building 40, Moscow, Russia, 119992
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy.
| |
Collapse
|
3
|
Hamaguchi T, Kawakami K, Shinzawa-Itoh K, Inoue-Kashino N, Itoh S, Ifuku K, Yamashita E, Maeda K, Yonekura K, Kashino Y. Structure of the far-red light utilizing photosystem I of Acaryochloris marina. Nat Commun 2021; 12:2333. [PMID: 33879791 PMCID: PMC8058080 DOI: 10.1038/s41467-021-22502-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
Acaryochloris marina is one of the cyanobacterial species that can use far-red light to drive photochemical reactions for oxygenic photosynthesis. Here, we report the structure of A. marina photosystem I (PSI) reaction center, determined by cryo-electron microscopy at 2.58 Å resolution. The structure reveals an arrangement of electron carriers and light-harvesting pigments distinct from other type I reaction centers. The paired chlorophyll, or special pair (also referred to as P740 in this case), is a dimer of chlorophyll d and its epimer chlorophyll d'. The primary electron acceptor is pheophytin a, a metal-less chlorin. We show the architecture of this PSI reaction center is composed of 11 subunits and we identify key components that help explain how the low energy yield from far-red light is efficiently utilized for driving oxygenic photosynthesis.
Collapse
Affiliation(s)
- Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan
| | - Keisuke Kawakami
- Research Center for Artificial Photosynthesis (ReCAP), Osaka City University, Sumiyoshi-ku, Osaka, Japan.
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
| | | | | | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kentaro Ifuku
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Eiki Yamashita
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kou Maeda
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Japan.
| | - Yasuhiro Kashino
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan.
| |
Collapse
|
4
|
Badshah SL, Mabkhot Y, Al-Showiman SS. Photosynthesis at the far-red region of the spectrum in Acaryochloris marina. Biol Res 2017; 50:16. [PMID: 28526061 PMCID: PMC5438491 DOI: 10.1186/s40659-017-0120-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/05/2017] [Indexed: 11/21/2022] Open
Abstract
Acaryochloris marina is an oxygenic cyanobacterium that utilizes far-red light for photosynthesis. It has an expanded genome, which helps in its adaptability to the environment, where it can survive on low energy photons. Its major light absorbing pigment is chlorophyll d and it has α-carotene as a major carotenoid. Light harvesting antenna includes the external phycobilin binding proteins, which are hexameric rods made of phycocyanin and allophycocyanins, while the small integral membrane bound chlorophyll binding proteins are also present. There is specific chlorophyll a molecule in both the reaction center of Photosystem I (PSI) and PSII, but majority of the reaction center consists of chlorophyll d. The composition of the PSII reaction center is debatable especially the role and position of chlorophyll a in it. Here we discuss the photosystems of this bacterium and its related biology.
Collapse
Affiliation(s)
- Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan.
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakhtunkhwa, Pakistan.
| | - Yahia Mabkhot
- Department of Chemistry, College of Science, King Saud University, Riyad, Saudi Arabia.
| | - Salim S Al-Showiman
- Department of Chemistry, College of Science, King Saud University, Riyad, Saudi Arabia.
| |
Collapse
|
5
|
Santabarbara S, Bailleul B, Redding K, Barber J, Rappaport F, Telfer A. Kinetics of phyllosemiquinone oxidation in the Photosystem I reaction centre of Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:328-35. [DOI: 10.1016/j.bbabio.2011.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 11/28/2022]
|
6
|
Schenderlein M, Çetin M, Barber J, Telfer A, Schlodder E. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium, Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1400-8. [DOI: 10.1016/j.bbabio.2008.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/16/2008] [Accepted: 08/14/2008] [Indexed: 11/28/2022]
|
7
|
Ohashi S, Miyashita H, Okada N, Iemura T, Watanabe T, Kobayashi M. Unique photosystems in Acaryochloris marina. PHOTOSYNTHESIS RESEARCH 2008; 98:141-149. [PMID: 18985431 DOI: 10.1007/s11120-008-9383-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/10/2008] [Indexed: 05/27/2023]
Abstract
A short overview is given on the discovery of the chlorophyll d-dominated cyanobacterium Acaryochloris marina and the minor pigments that function as key components therein. In photosystem I, chlorophyll d', chlorophyll a, and phylloquinone function as the primary electron donor, the primary electron acceptor and the secondary electron acceptor, respectively. In photosystem II, pheophytin a serves as the primary electron acceptor. The oxidation potential of chlorophyll d was higher than that of chlorophyll a in vitro, while the oxidation potential of P740 was almost the same as that of P700. These results help us to broaden our view on the questions about the unique photosystems in Acaryochloris marina.
Collapse
Affiliation(s)
- Shunsuke Ohashi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Tomo T, Kato Y, Suzuki T, Akimoto S, Okubo T, Noguchi T, Hasegawa K, Tsuchiya T, Tanaka K, Fukuya M, Dohmae N, Watanabe T, Mimuro M. Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017. J Biol Chem 2008; 283:18198-209. [PMID: 18458090 DOI: 10.1074/jbc.m801805200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photochemically active photosystem (PS) I complexes were purified from the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina MBIC 11017, and several of their properties were characterized. PS I complexes consist of 11 subunits, including PsaK1 and PsaK2; a new small subunit was identified and named Psa27. The new subunit might replace the function of PsaI that is absent in A. marina. The amounts of pigments per one molecule of Chl d' were 97.0 +/- 11.0 Chl d, 1.9 +/- 0.5 Chl a, 25.2 +/- 2.4 alpha-carotene, and two phylloquinone molecules. The light-induced Fourier transform infrared difference spectroscopy and light-induced difference absorption spectra reconfirmed that the primary electron donor of PS I (P740) was the Chl d dimer. In addition to P740, the difference spectrum contained an additional band at 728 nm. The redox potentials of P740 were estimated to be 439 mV by spectroelectrochemistry; this value was comparable with the potential of P700 in other cyanobacteria and higher plants. This suggests that the overall energetics of the PS I reaction were adjusted to the electron acceptor side to utilize the lower light energy gained by P740. The distribution of charge in P740 was estimated by a density functional theory calculation, and a partial localization of charge was predicted to P1 Chl (special pair Chl on PsaA). Based on differences in the protein matrix and optical properties of P740, construction of the PS I core in A. marina was discussed.
Collapse
Affiliation(s)
- Tatsuya Tomo
- Department of Technology and Ecology, Hall of Global Environmental Research, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hastings G, Wang R. Vibrational mode frequency calculations of chlorophyll-d for assessing (P740(+)-P740) FTIR difference spectra obtained using photosystem I particles from Acaryochloris marina. PHOTOSYNTHESIS RESEARCH 2008; 95:55-62. [PMID: 17710563 DOI: 10.1007/s11120-007-9228-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/16/2007] [Indexed: 05/16/2023]
Abstract
Acaryochloris marina is an oxygen-evolving organism that utilizes chlorophyll-d for light induced photochemistry. In photosystem I particles from Acaryochloris marina, the primary electron donor is called P740, and it is thought that P740 consist of two chlorophyll-d molecules. (P740(+)-P740) FTIR difference spectra have been produced, and vibrational features that are specific to chlorophyll-d (and not chlorophyll-a) were observed, supporting the idea that P740 consists chlorophyll-d molecules. Although bands in the (P740(+)-P740) FTIR difference spectra were assigned specifically to chlorophyll-d, how these bands shifted, and how their intensities changed, upon cation formation was never considered. Without this information it is difficult to draw unambiguous conclusions from the FTIR difference spectra. To gain a more detailed understanding of cation induced shifting of bands associated with vibrational modes of P740 we have used density functional theory to calculate the vibrational properties of a chlorophyll-d model in the neutral, cation and anion states. These calculations are shown to be of considerable use in interpreting bands in (P740(+)-P740) FTIR difference spectra. Our calculations predict that the 3(1) formyl C-H mode of chlorophyll-d upshifts/downshifts upon cation/anion formation, respectively. The mode intensity also decreases/increases upon cation/anion formation, respectively. The cation induced bandshift of the 3(1) formyl C-H mode of chlorophyll-d is also strongly dependant on the dielectric environment of the chlorophyll-d molecules. With this new knowledge we reassess the interpretation of bands that were assigned to 3(1) formyl C-H modes of chlorophyll-d in (P740(+)-P740) FTIR difference spectra. Considering our calculations in combination with (P740(+)-P740) FTIR DS we find that the most likely conclusions are that P740 is a dimeric Chl-d species, in an environment of low effective dielectric constant ( approximately 2-8). In the P740(+) state, charge is asymmetrically distributed over the two Chl-d pigments in a roughly 60:40 ratio.
Collapse
Affiliation(s)
- Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA.
| | | |
Collapse
|
10
|
Itoh S, Mino H, Itoh K, Shigenaga T, Uzumaki T, Iwaki M. Function of Chlorophyll d in Reaction Centers of Photosystems I and II of the Oxygenic Photosynthesis of Acaryochloris marina. Biochemistry 2007; 46:12473-81. [DOI: 10.1021/bi7008085] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shigeru Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Hiroyuki Mino
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Kunihiro Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Takatoshi Shigenaga
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Tatsuya Uzumaki
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Masayo Iwaki
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
11
|
An electron paramagnetic resonance investigation of the electron transfer reactions in the chlorophyll d containing photosystem I of Acaryochloris marina. FEBS Lett 2007; 581:1567-71. [PMID: 17382323 DOI: 10.1016/j.febslet.2007.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/19/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy reveals functional and structural similarities between the reaction centres of the chlorophyll d-binding photosystem I (PS I) and chlorophyll a-binding PS I. Continuous wave EPR spectrometry at 12K identifies iron-sulphur centres as terminal electron acceptors of chlorophyll d-binding PS I. A transient light-induced electron spin echo (ESE) signal indicates the presence of a quinone as the secondary electron acceptor (Q) between P(740)(+) and the iron-sulphur centres. The distance between P(740)(+) and Q(-) was estimated within point-dipole approximation as 25.23+/-0.05A, by the analysis of the electron spin echo envelope modulation.
Collapse
|
12
|
Tomo T, Suzuki T, Hirano E, Tsuchiya T, Miyashita H, Dohmae N, Mimuro M. Reversible absorption change of chlorophyll d in solutions. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.03.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|