1
|
PCET to bound-superoxide by NADH and NADHX in aqueous-acid media: a kinetic inspection. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Ichzan AM, Hwang SH, Cho H, Fang CS, Park S, Kim G, Kim J, Nandhakumar P, Yu B, Jon S, Kim KS, Yang H. Solid-phase recombinase polymerase amplification using an extremely low concentration of a solution primer for sensitive electrochemical detection of hepatitis B viral DNA. Biosens Bioelectron 2021; 179:113065. [PMID: 33578116 DOI: 10.1016/j.bios.2021.113065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Recombinase polymerase amplification (RPA) is considered one of the best amplification methods for realizing a miniaturized diagnostic instrument; however, it is notably challenging to obtain low detection limits in solid-phase RPA. To overcome these difficulties, we combined solid-phase RPA with electrochemical detection and used a new concentration combination of three primers (surface-bound forward primer, solution reverse primer, and an extremely low concentration of solution forward primer). When solid-phase RPA was performed on an indium tin oxide (ITO) electrode modified with a surface-bound forward primer in a solution containing a biotin-terminated solution reverse primer, an extremely low concentration of a solution forward primer, and a template DNA or genomic DNA for a target gene of hepatitis B virus (HBV), amplification occurred mainly in solution until all the solution forward primers were consumed. Subsequently, DNA amplicons produced in solution participated in solid-phase amplification involving surface-bound forward primer and solution reverse primer. Afterward, neutravidin-conjugated DT-diaphorase (DT-D) was attached to a biotin-terminated DNA amplicon on the ITO electrode. Finally, chronocoulometric charges were measured using electrochemical-enzymatic redox cycling involving the ITO electrode, 1,4-naphthoquinone, DT-D, and reduced β-nicotinamide adenine dinucleotide. The detection limit for HBV was measured using microfabricated electrodes and was found to be approximately 0.1 fM. This proposed method demonstrated better amplification efficiency for HBV genomic DNA than solid-phase RPA without using additional solution primer and asymmetric solid-phase RPA.
Collapse
Affiliation(s)
- Andi Muhammad Ichzan
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505, Republic of Korea
| | - Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Chiew San Fang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Seonhwa Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Gyeongho Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Jihyeon Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Ponnusamy Nandhakumar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Byeongjun Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea.
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
4
|
Shin B, Shin H, Kang C. Enhanced Electrocatalytic Activity for the NADH Oxidation with Oxidatively Treated Carbon Nanotubes Incorporated on a Redox Polymer Modified Electrode. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.12.4211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
IBIS CEMIL, DENIZ NAHIDEGULSAH. Synthesis, characterization of N-, S-, O-substituted naphtho- and benzoquinones and a structural study. J CHEM SCI 2012. [DOI: 10.1007/s12039-012-0252-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Behan RK, Lippard SJ. The aging-associated enzyme CLK-1 is a member of the carboxylate-bridged diiron family of proteins. Biochemistry 2010; 49:9679-81. [PMID: 20923139 DOI: 10.1021/bi101475z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aging-associated enzyme CLK-1 is proposed to be a member of the carboxylate-bridged diiron family of proteins. To evaluate this hypothesis and characterize the protein, we expressed soluble mouse CLK-1 (MCLK1) in Escherichia coli as a heterologous host. Using Mössbauer and EPR spectroscopy, we established that MCLK1 indeed belongs to this protein family. Biochemical analyses of the in vitro activity of MCLK1 with quinone substrates revealed that NADH can serve directly as a reductant for catalytic activation of dioxygen and substrate oxidation by the enzyme, with no requirement for an additional reductase protein component. The direct reaction of NADH with a diiron-containing oxidase enzyme has not previously been encountered for any member of the protein superfamily.
Collapse
Affiliation(s)
- Rachel K Behan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
8
|
Campiglia P, Aquino C, Bertamino A, De Simone N, Sala M, Castellano S, Santoriello M, Grieco P, Novellino E, Gomez-Monterrey IM. Unprecedented synthesis of a novel amino quinone ring system via oxidative decarboxylation of quinone-based α,α-amino esters. Org Biomol Chem 2010; 8:622-7. [DOI: 10.1039/b918898c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Expression of esophageal cancer related gene 4 (ECRG4), a novel tumor suppressor gene, in esophageal cancer and its inhibitory effect on the tumor growth in vitro and in vivo. Int J Cancer 2009. [PMID: 19521989 DOI: 10.1016/j.snb.2007.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ECRG4 gene was initially identified and cloned in our laboratory from human normal esophageal epithelium (GenBank accession no. AF325503). We revealed the expression of ECRG4 protein was downregulated in 68.5% (89/130) ESCC samples using tissue microarray. The low ECRG4 protein expression was significantly associated with regional lymph node metastasis, primary tumor size, and tumor stage in ESCC (p < 0.05). ECRG4 mRNA expression was downregulated in ESCC due to the hypermethylation in the gene promoter. The treatment with 5-aza-2'-deoxycytidine, which is a DNA methyltransferase inhibitor restored ECRG4 mRNA expression in ESCC cells. The result indicated that promoter hypermethylation may be 1 main mechanism leading to the silencing of ECRG4. The high expression of ECRG4 in patients with ESCC was associated with longer survival compared with those with low ECRG4 expression by Kaplan-Meier survival analysis (p < 0.05). ECRG4 protein was an independent prognostic factor for ESCC by multivariable Cox proportional hazards regression analysis (p < 0.05). The restoration of ECRG4 expression in ESCC cells inhibited cell proliferation, colony formation, anchorage-independent growth, cell cycle progression and tumor growth in vivo (p < 0.05). The transfection of ECRG4 gene in ESCC cells inhibited the expression of NF-kappaB and nuclear translocation, in addition to the expression of COX-2, a NF-kappaB target gene, was attenuated. Taken together, ECRG4 is a novel candidate tumor suppressor gene in ESCC, and ECRG4 protein is a candidate prognostic marker for ESCC.
Collapse
|
10
|
Bareket L, Rephaeli A, Berkovitch G, Nudelman A, Rishpon J. Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer prodrugs. Bioelectrochemistry 2009; 77:94-9. [PMID: 19643682 DOI: 10.1016/j.bioelechem.2009.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/24/2009] [Accepted: 06/30/2009] [Indexed: 11/18/2022]
Abstract
This paper reports the development of an electrochemical biosensor for the detection of formaldehyde in aqueous solution, based on the coupling of the enzyme formaldehyde dehydrogenase and a carbon nanotubes (CNT)-modified screen-printed electrode (SPE). We monitored the amperometric response to formaldehyde released from U251 human glioblastoma cells situated in the biosensor chamber in response to treatment with various anticancer prodrugs of formaldehyde and butyric acid. The current response was higher for prodrugs that release two molecules of formaldehyde (AN-193) than for prodrugs that release only one molecule of formaldehyde (AN-1, AN-7). Homologous prodrugs that release one (AN-88) or two (AN-191) molecules of acetaldehyde, showed no signal. The sensor is rapid, sensitive, selective, inexpensive and disposable, as well as simple to manufacture and operate.
Collapse
Affiliation(s)
- Lilach Bareket
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Israel
| | | | | | | | | |
Collapse
|
11
|
Bakhmutova-Albert EV, Margerum DW, Auer JG, Applegate BM. Chlorine dioxide oxidation of dihydronicotinamide adenine dinucleotide (NADH). Inorg Chem 2008; 47:2205-11. [PMID: 18278862 DOI: 10.1021/ic7019022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxidation of dihydronicotinamide adenine dinucleotide (NADH) by chlorine dioxide in phosphate buffered solutions (pH 6-8) is very rapid with a second-order rate constant of 3.9 x 10(6) M(-1) s(-1) at 24.6 degrees C. The overall reaction stoichiometry is 2ClO2(*) per NADH. In contrast to many oxidants where NADH reacts by hydride transfer, the proposed mechanism is a rate-limiting transfer of an electron from NADH to ClO2(*). Subsequent sequential fast reactions with H(+) transfer to H2O and transfer of an electron to a second ClO2(*) give 2ClO2(-), H3O(+), and NAD(+) as products. The electrode potential of 0.936 V for the ClO2(*)/ClO2(-) couple is so large that even 0.1 M of added ClO2(-) (a 10(3) excess over the initial ClO2(*) concentration) fails to suppress the reaction rate.
Collapse
|